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Abstract

Species sampling problems have a long history in ecological and biological studies and a

number of issues, including the evaluation of species richness, the design of sampling experi-

ments, the estimation of rare species variety, are to be addressed. Such inferential problems

have recently emerged also in genomic applications, however exhibiting some peculiar features

that make them more challenging: specifically, one has to deal with very large populations

(genomic libraries) containing a huge number of distinct species (genes) and only a small

portion of the library has been sampled (sequenced). These aspects motivate the Bayesian

nonparametric approach we undertake, since it allows to achieve the degree of flexibility

typically needed in this framework. Basing on an observed sample of size n, focus will be

on prediction of a key aspect of the outcome from an additional sample of size m, namely

the so–called discovery probability. In particular, conditionally on an observed basic sample

of size n, we derive a novel estimator of the probability of detecting, at the (n+m+ 1)–th

observation, species that have been observed with any given frequency in the enlarged sam-

ple of size n + m. Such an estimator admits a closed form expression that can be exactly

evaluated. The result we obtain allows us to quantify both the rate at which rare species

are detected and the achieved sample coverage of abundant species, as m increases. Natural

applications are represented by the estimation of the probability of discovering rare genes

within genomic libraries and the results are illustrated by means of two Expressed Sequence

Tags datasets.

Key words and phrases: Bayesian nonparametrics; Gibbs–type priors; Rare species discovery;

Species sampling models; Two–parameter Poisson–Dirichlet process.

∗A minor inaccuracy appearing in the previous version has been corrected.
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1 Introduction

Species sampling problems have a long history in ecological and biological studies. Suppose data

are recorded from a population whose statistical units belong to different species. Therefore,

data will consist of species labels and their corresponding frequencies. Based on a sample,

various interesting predictive issues concerning the composition of the population arise. Such

problems have regained popularity in recent years due to their frequent appearance in genomic

applications, which are characterized by very large populations (genomic libraries) containing a

huge number of distinct species (genes) and only a small portion of the library has been sampled

(sequenced). Recently a Bayesian nonparametric method, particularly suited to such genomic

contexts, has been proposed and implemented in Lijoi et al. (2007a,b). This approach is based

on the randomization of the unknown proportions pi of the individuals belonging to the species

i in the whole population, for i ≥ 1. It is further assumed that the recorded data X1, . . . , Xn are

part of an exchangeable sequence (Xn)n≥1. In this case, it is well–known that by de Finetti’s

representation theorem (Xn)n≥1 can be characterized by a hierarchical model, namely the Xn’s

as a random sample from some distribution P̃ and a prior Π on P̃ , that is

Xi|P̃
iid∼ P̃

P̃ ∼ Π. (1)

Moreover, P̃ is a discrete random probability measure P̃ =
∑

i≥1wi δYi , with
∑

i≥1wi = 1

almost surely, belonging to the class of Gibbs–type priors (Gnedin and Pitman, 2006). Note

that δc is used to denote the unit mass at point c, and the Yi’s are independent and identically

distributed from some non–atomic distribution P0: hence any two Yi and Yj , with i 6= j, are

different with probability 1 and can be used to represent labels identifying different species in the

population whose random proportions are pi and pj . The n observations X1, . . . , Xn forming

a basic sample are, then, observed species labels and, due to the discrete nature of P̃ , may

feature ties. If Kn = j is the number of different species (labels) detected in the basic sample

with respective frequencies n1, . . . , nj , an additional potential and unobserved sample of size

m, Xn+1, . . . , Xn+m, is considered. Focus will be on prediction of a key aspect of the outcome

of the additional sample, namely the so–called discovery probability, which coincides with the

probability of sampling certain types of genes in further sequencing. The discovery probability

represents a natural tool for a quantitative assessment of qualitative concepts such as species

richness, rare species variety, sample coverage and optimal design of sampling experiments. A

first partial result in this direction is obtained in Lijoi et al. (2007a), where an estimator for the

probability that the (n+m+ 1)–th observation leads to discover a new species without actually

observing the additional m–size sample is provided.
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More specifically, an important inferential goal in ecological and biological studies is the

evaluation of the probability that further sampling reveals: (i) new species; (ii) species that

appear only once in the observed sample, the so–called unique species; (iii) rare species, where

by rare species one refers to species whose frequency is below a certain threshold τ . In ecology, for

instance, conservation of biodiversity is a fundamental theme and it can be formalized in terms

of the proportion of species whose frequency is greater than a specified threshold of abundance.

Indeed, any form of management on a sustained basis requires a certain proportion of sufficiently

abundant species, the so–called breeding stock. See Magurran (2003), and references therein,

for a comprehensive and stimulating survey on measurement of biodiversity, conservation of

populations, commonness and rarity of species. On the other hand, in genomics rare genes are

a fundamental issue in several problems, the most evident being that they are often associated

with deleterious diseases. See, e.g., Laird and Lange (2010).

In this paper we provide an estimator for detecting a species of any given frequency at the

(n + m + 1)–th observation, therefore addressing the issues (ii) and (iii) above and improving

remarkably, both in terms of theory and applications potential, on the results in Lijoi et al.

(2007a) concerning problem (i) only. Specifically, based on a sample of size n, we will provide,

for any frequency k = 0, . . . , n + m and additional unobserved sample size m ≥ 0, an explicit

estimator for the probability that the (n+m+ 1)–th observation coincides with a species whose

frequency, within the sample of size n + m, is exactly k. In the sequel, we refer to such a

probability as m–step k–discovery probability or, in short, [m : k]–discovery. Expressed in terms

of the unknown species proportions in the whole population, pi for i ≥ 1, the determination of

the [m : k]–discovery corresponds to estimating

Un+m(k) :=
∑
i≥1

pi1{k}(Ni,n+m), (2)

where Ni,n+m is the frequency with which the i–th species is recorded in the enlarged sample

of size n + m and clearly Un+m(0) represents the proportion of yet unobserved species or,

equivalently, the probability of observing a new species.

For m = 0 such a problem has already been tackled in the literature. In particular, Good

(1953) proposed a popular estimator for (2) of the form

Ǔn+0(k) = (k + 1)
`k+1

n
(3)

where `r is the number of species in the sample with frequency r. Such an estimator is sometimes

referred to as Turing estimator. In Mao and Lindsay (2002) an interesting new moment based

derivation of (3) is provided. Note that 1 − Ǔn+0(0) estimates the sample coverage that is the

proportion of distinct species present in the observed sample. On the other hand, Good and
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Toulmin (1956) and Mao (2004) faced the general case of m ≥ 0, however with the restriction

k = 0, which corresponds only to the discovery of a new species. The resulting estimator

is known as Good–Toulmin estimator. Further references addressing related issues are Chao

(1981); Starr (1979); Clayton and Frees (1987); Guindani and Müller (2010); Sepulveda et al.

(2010); Barger and Bunge (2010).

Our contribution therefore fills in an important gap since it allows to deal with the cases of

both the additional sample size m and the frequency k to be any desired integer. As a by–product

also the corresponding coverage estimators are obtained. Moreover, the coherent probabilistic

structure of Bayesian nonparametric modeling allows to avoid some possible drawbacks related

to the estimator (3), which will be detailed in the sequel by comparing the two estimators.

The structure of the paper is as follows. In Section 2 we describe the Bayesian nonparametric

model and provide the main result. A completely explicit expression of the new estimator is then

provided in the two–parameter Poisson–Dirichlet process case. Section 3 contains an illustration

dealing with genomic EST datasets. The proofs are deferred to the Appendix.

2 Estimation of the m–step k–discovery

As outlined in the Introduction, the main aim of the present contribution is the estimation of the

[m : k]–discovery. The deduced Bayesian estimator is based on a nonparametric model for the

unknown distribution of species labels in (1) and, more importantly, can be exactly evaluated.

The latter seems to be an attractive feature since it makes our approach readily implementable

by practitioners. Let us first provide a quick introduction of the nonparametric process prior we

resort to, along with some known results. We will, then, state the main result.

2.1 Preliminaries

It is apparent, from (1), that the prior Π can be defined as a distribution on the space of all

probability measures for the observables (Xn)n≥1. We now consider the case where the support

of Π does not degenerate on a finite–dimensional space, so that the model is nonparametric,

and Π is concentrated on the set of all discrete probability distributions for the Xi’s. Such a

specification is consistent with the nature of our data, since the process of observation leads

to detecting multiple records for the same species. In other terms, if we let Π select discrete

probability measures with probability one, then P[Xi = Xj ] > 0 for i 6= j which is what we

aim at. In this setup, a sample X1, . . . , Xn is partitioned into Kn distinct values, i.e. species,

X∗1 , . . . , X
∗
Kn

with vector of respective frequencies Nn = (N1,n, . . . , NKn,n) being such that∑Kn
i=1Ni,n = n. In the sequel we consider a broad class of discrete random probability measures
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defined as P̃ =
∑

i≥1wi δYi , where the non–negative weights wi’s sum up to 1, i.e.
∑

iwi = 1

(almost surely), and are independent from the locations Yi’s. The Yi’s, in turn, are i.i.d. from

some non–atomic distribution P0. It is further supposed that P̃ is such that the probability

distribution of the partition of a sample into Kn distinct values with respective frequencies Nn

is of the form

P[Kn = j,Nn = (n1, . . . , nj)] = Vn,j

j∏
i=1

(1− σ)ni−1 (4)

where (a)n = a(a+ 1) · · · (a+n− 1) stands for the n–th ascending factorial of a, with (a)0 ≡ 1,

σ is some parameter in (0, 1) and the nonnegative weights {Vn,j : n ≥ 1, 1 ≤ j ≤ n} satisfy the

following forward recursion Vn,j = Vn+1,j+1 + (n− jσ)Vn+1,j . Such random probability measures

and their corresponding distribution Π, which represents our prior distribution, are said of Gibbs–

type and were introduced by Gnedin and Pitman (2006). The parameter σ that characterizes Π

influences the partition structure of the data: indeed, as noted in Lijoi et al. (2007c), it regulates

a reinforcement mechanism that determines the concentration of the observations in the different

groups forming the partition. In summary, large values of σ tend to favour partitions with a

larger number of clusters, i.e. of different observed species: most of the clusters (species) display

very low frequencies whereas just a few clusters have very large abundances. Hence, a large value

of σ reflects a prior opinion according to which a large number of species will be detected though

only a few of them with high frequencies, which is a common situation in genomic datasets like

the ones we are going to consider in Section 3.

In various applications, it is useful to describe the probability distribution of the random

partition induced by Π in terms of the vector L(n) := (L1,n, . . . ,Ln,n) where Li,n stands for the

number of distinct species in the basic sample, of size n, with frequency i. Hence, (4) can be

rewritten as

P[L(n) = (`1, . . . , `n)] = Vn,j n!
n∏
i=1

{
(1− σ)i−1

i!

}`i 1

`i!
, (5)

for any vector of nonnegative integers (`1, . . . , `n) such that `i ≥ 0 for any i,
∑n

i=1 i`i = n and∑n
i=1 `i = j. The probability distribution in (5) is termed Gibbs–type sampling formula and

it includes as special case the well–known Ewens sampling formula (Ewens, 1972) and Ewens–

Pitman sampling formula (Pitman, 1995).

Gibbs–type priors lead to predictive distributions, given a sample of size n, (X1, . . . , Xn), featur-

ing Kn = j distinct species X∗1 , . . . , X
∗
j with frequencies n1, . . . , nj , having the following simple

structural form, which can be deduced from (4),

P[Xn+1 ∈ A |X1, . . . , Xn] =
Vn+1,j+1

Vn,j
P0(A) +

Vn+1,j

Vn,j

j∑
i=1

(ni − σ)δX∗i (A). (6)
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Various noteworthy priors fall within the class of Gibbs–type priors, according as to the specific

form of the weights Vn,j . For example, the Dirichlet process (Ferguson, 1973) with parameter

measure θP0 is recovered when Vn,j = θj/(θ)n, whereas the two–parameter Poisson–Dirichlet

process (Pitman, 1995) is obtained with Vn,j =
∏j−1
i=1 (θ + iσ)/(θ + 1)n−1. Also the normalized

inverse Gaussian process (Lijoi et al., 2005) belongs to this class, with the Vn,j ’s expressed in

terms of a linear combination of incomplete gamma functions. Another instance of Gibbs–type

prior is the normalized generalized gamma process that has been used in Lijoi et al. (2007c)

for hierarchical mixture modelling and, more recently, in Kolossiatis et al. (2011) for modelling

overdispersion in count data.

In Lijoi et al. (2007a) one can find a few results concerning Gibbs–type priors in view of their

application to species sampling problems. For example, an estimator of the sample coverage can

be easily deduced from the predictive distributions (6) so that

1− Ûn(0) := Ĉn =
Vn+1,j

Vn,j
(n− jσ). (7)

Moreover, they determine an estimator for the [m : 0]–discovery given by

Ûn+m(0) =

m∑
k=0

Vn+m+1,j+k+1

Vn,j

C (m, k;σ,−n+ jσ)

σk
(8)

with C (m, k;σ,−n+jσ) = (k!)−1
∑k

r=0(−1)r
(
k
r

)
(n−σ(r+j))m being the non–central generalized

factorial coefficient; see Charalambides (2005) for details and properties. The corresponding es-

timator of the sample coverage, given an observed sample of size n and an additional unobserved

sample of size m, Ĉn+m is then obtained as 1− Ûn+m(0). The estimators (8) and, consequently,

Ĉn+m can then be specialized to various particular cases by plugging in the corresponding Vn,j ’s.

2.2 Main results

As anticipated, our main goal is the estimation of Un+m(k), for any value of m and k, conditional

on an observed sample of size n featuring j distinct species. We first state a simple result yielding

a nonparametric Bayes estimator of Un+0(k) for any integer k. Such an estimation involves the

one–step predictive distribution since it amounts to evaluating

P[Xn+1 ∈ Gk,n |X1, . . . , Xn] (9)

where Gk,n = {X∗i : Ni,n = k} is the set of all distinct species that have appeared k times in

the sample X1, . . . , Xn. For k = 0 it is apparent that (9) coincides with the probability that

the (n + 1)–th observation reveals a new species and is readily available from the predictive

distribution (6), i.e. Vn+1,j+1/Vn,j . See also (7). Hence, we can focus on k ≥ 1 and provide an

explicit expression of the predictive probability (9).
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Theorem 1. If (Xn)n≥1 is an exchangeable sequence with Gibbs–type prior Π in (1)

Ûn+0(k) =
Vn+1,j(k − σ)

Vn,j
`k, (10)

where `k ≥ 0 is the number of distinct species with frequency k observed within the sample

(X1, . . . , Xn).

It is worth noting that (10) implies that (Kn,Lk,n) is sufficient for estimating the [0 : k]–

discovery Un+0(k).

Remark 1. The estimator Ûn+0(k) represents a Bayesian nonparametric counterpart to

the popular Turing estimator Ǔn+0(k) recalled in (3) and used in a frequentist approach. The

most notable difference between the two estimators can be traced back to the different frequency

count used. Indeed Ǔn+0(k) in (3) depends only on the frequency `k+1 of species that appeared

k + 1 times in the basic sample. This seems, in our opinion, counterintuitive since `k should

be the main ingredient for the estimation of the discovery probability of species appearing k

times. And the Bayesian estimator Ûn+0(k) in (10) perfectly adheres to such an intuition. Note

that if there are no species appearing k + 1 times (i.e. `k+1 = 0) in the original sample of size

n, then one would estimate as zero the probability of detecting a species with frequency k at

the (n + 1)–th observation; and this regardless of how many species with frequency k one has

observed in the basic sample. This is not the case for the Bayesian nonparametric estimator

(10). �

In many applications one is interested, rather than in identifying the [0 : k]–discovery, in

evaluating the chances of observing species that can be considered as rare, namely the sum of

those not yet observed and of those having frequency below a certain threshold τ . In this case,

an estimator of
∑τ

k=0 Un+0(k) is

Ûn+0,τ =
τ∑
k=0

Ûn+0(k)

and it depends on the vector of summary statistics (Kn,L1,n, . . . ,Lτ,n).

Remark 2. It is worth pointing out that the Bayesian nonparametric estimator of the sample

coverage (7) can also be recovered from (10). Indeed, by definition one has Ĉn = 1− Ûn+0(0) =∑n
k=1 Ûn+0(k) and the expression in (7) can be determined by resorting to Theorem 1 and

by recalling that
∑n

k=1 k`k = n and
∑n

k=1 `k = j. Another related quantity of interest can be

determined from Theorem 1, namely an estimated abundant species coverage, where by abundant
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we mean species which are not rare. This is given by the proportion of species with frequency

larger than τ represented in the sample, i.e. Ĉabundn = 1−
∑τ

k=0 Ûn+0(k). �

Let us now consider the case where m ≥ 1: we are, then, going to evaluate the conditional

probability, given the sample X1, . . . , Xn, that the (n+m+ 1)–th observation displays a species

observed k times within X1, . . . , Xn, Xn+1, . . . , Xn+m. This implies that we wish to estimate

P[Xn+m+1 ∈ Gk,n+m|X1, . . . , Xn, Xn+1, . . . , Xn+m]. (11)

Assuming a squared loss function, we estimate (11) by evaluating the expectation with respect

to the conditional distribution of the unobserved portion of the sample, Xn+1, . . . , Xn+m, given

the sample that has been actually observed, X1, . . . , Xn, i.e. the m–step ahead predictive distri-

bution. In other terms the desired estimator Ûn+m(k) is obtained by minimizing

E
{

(P[Xn+m+1 ∈ Gk,n+m |X1, . . . , Xn, Xn+1, . . . , Xn+m]− U)2 |X1, . . . , Xn

}
with respect to U and coincides with P[Xn+m+1 ∈ Gk,n+m |X1, . . . , Xn]. For k = 0, the [m : 0]–

discovery coincides with the probability of discovering a new species at the (n+m+ 1)–th step

given the basic sample of size n, which has been derived in Lijoi et al. (2007a) and is recalled in

(7). The case of k ≥ 1 is dealt with by the following result.

Theorem 2. If (Xn)n≥1 is an exchangeable sequence with Gibbs–type prior Π in (1), a

Bayesian nonparametric estimator of the [m : k]–discovery coincides with

Ûn+m(k) =

k∑
i=1

`i (i− σ)k+1−i

(
m

k − i

)
Q

(n,j)
m,k (i, 0, i− σ) (12)

+ σ(1− σ)k

(
m

k

)
Q

(n,j)
m,k (1, 1, 0)

where

Q
(n,j)
m,l (α, β, γ) :=

m−l+α∑
k=β

Vn+m+1,j+k

Vn,j

C (m− l + α− β, k − β;σ,−n+ jσ + γ)

σk

and `i ≥ 0 is the number of species observed with frequency i in the sample (X1, . . . , Xn).

The analytic form of the estimator in (12) implies that the vector of the number of species

and frequency counts (Kn,L1,n, . . . ,Lk,n) is sufficient for estimating the [m : k]–discovery. It

is worth remarking that the novel estimator in Theorem 2 does not have any counterpart both

in the frequentist and in the Bayesian frameworks. As recalled in the introduction, frequentist

estimators for m–step k–discovery exist only when either m = 0 and k ≥ 0 or m ≥ 1 and k = 0:
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the former corresponds to the Turing estimator displayed in (3), whereas the latter corresponds

to the so–called Good–Toulmin estimator (Good and Toulmin, 1956), which however becomes

unstable for m ≥ 2n (see e.g. Lijoi et al. (2007b) for an illustration).

Obviously, from (12) one can also deduce estimators for cumulative [m : k]–discoveries, which

allow to evaluate the probability of observing a rare species at the (n + m + 1)–th draw from

the population. Hence, for an abundance threshold τ one just needs to evaluate

Ûn+m,τ =
τ∑
k=0

Ûn+m(k). (13)

This implies that (Kn,L1,n, . . . ,Lτ,n) is sufficient for estimating the [m : k]-discovery probability

for species with frequencies less than or equal to τ , conditionally on the basic sample. An impor-

tant application of the estimator in (13) is related to sample size determination. Indeed, one is

often willing to determine the size of the additional sample m as the smallest integer m∗ for which

Ûn+m∗,τ is not smaller than a certain threshold κ. See, e.g., Christen and Nakamura (2003).

The rationale is that the smaller the probability of sampling rare species the less informative is

the sampling procedure since, in this case, it mainly consists of re–observing species with large

abundances. Hence, a further enlargement of the sample size beyond m∗ would not yield enough

relevant information compared the cost of further sampling. For instance, in applications one

often sets such a threshold to κ ∈ {0.1, 0.2, 0.5}.
The result in Theorem 2 allows to obtain a decomposition of the sample coverage estimator,

given an observed sample of size n and an additional unobserved sample of size m, Ĉn+m. Indeed,

one has that

Ĉn+m =

n+m∑
k=1

Ûn+m(k) (14)

which provides an alternative derivation of Ĉn+m w.r.t. the derivation based on (8). Similarly to

the case m = 0, based on Theorem 2, one can deduce an estimator for abundant species coverage

after sampling n+m species, which is given by the proportion of species with frequency larger

than τ represented in both the observed basic and unobserved additional sample, i.e.

Ĉabundn+m = 1−
τ∑
k=0

Ûn+m(k).

2.3 The two–parameter Poisson–Dirichlet process

As already mentioned, a prominent special case of Gibbs type prior is the two–parameter

Poisson–Dirichlet process. The system of predictive distributions it induces for the data in

(1) can be deduced from (6) by recalling the simple form of its weights Vn,j ’s, namely Vn,j =

9



∏j−1
i=1 (θ + iσ)/(θ + 1)n−1, which leads to

P[Xn+1 ∈ A |X1, . . . , Xn] =
θ + kσ

θ + n
P0(A) +

1

θ + n

j∑
i=1

(ni − σ) δX∗i (A) (15)

for any set A. The vector of parameters is such that σ ∈ (0, 1) and θ > −σ and we shall,

henceforth, adopt the concise notation PD(σ, θ;P0) for denoting such a prior. Its specification

is particularly appealing: besides being analytically tractable for addressing various inferential

issues in a Bayesian setting, it also represents a very flexible model, as detailed, e.g., in Lijoi et

al. (2007a). For these reasons, it has become an increasingly popular prior in several applica-

tions such as, e.g., mixture models (Ishwaran and James, 2001), linguistics (Teh, 2006), species

sampling models (Navarrete et al., 2008), information retrieval in document modeling (Teh and

Jordan, 2010) and survival analysis (Jara et al., 2010). And while its use can be considered

as routine in Bayesian nonparametrics modeling, its effective implementation has become easily

accessible also to practitioners due to the availability of an efficient R package that embodies

various MCMC algorithms with the two–parameter Poisson–Dirichlet process. See Jara et al.

(2011) for details.

Within the present framework, Lijoi et al. (2007b); Favaro et al. (2009) provided closed form

expressions for PD(σ, θ;P0)–estimators of: (i) the expected number of new species K
(n)
m that

will be observed from a further sampling of size m and (ii) the [m : 0]–discovery as described

in (8). However, as mentioned before, it is important to extend the analysis to rare species,

whose quantification is often a major goal not only in EST analysis but also in different genomic

applications such as Cap Analysis Gene Expression (CAGE) (see, e.g., Valen (2009)). Based on

the general results of Section 2.2, here we provide completely explicit estimators of the [m : k]–

discovery in this noteworthy particular case.

Proposition 3. If (Xn)n≥1 is an exchangeable sequence with Π in (1) being a Poisson–

Dirichlet process with parameters (σ, θ), then

Ûn+0(k) =
k − σ
θ + n

`k (16)

where `k ≥ 0 is the number of distinct species with frequency k observed within the sample

(X1, . . . , Xn). Moreover,

Ûn+m(k) =
k∑
i=1

`i(i− σ)k+1−i

(
m

k − i

)
(θ + n− i+ σ)m−k+i

(θ + n)m+1
(17)

+ (1− σ)k

(
m

k

)
(θ + jσ)

(θ + n+ σ)m−k
(θ + n)m+1

.
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From the previous result one then immediately deduces the cumulative discovery estimator

Ûn+m,τ . Finally, for completeness we also consider the special case of the Dirichlet process

with parameter θ > 0 and baseline probability measure P0, which coincides, in distribution,

with the PD(0, θ;P0) process. Therefore, from (16)–(17) it is straightforward to see that the

corresponding estimators reduce to, respectively, Ûn+0(k) = k `k/(θ + n) and

Ûn+m(k) = k!
k∑
i=1

`i
(i− 1)!

(
m

k − i

)
(θ + n− i)m−k+i

(θ + n)m+1

+

(
m

k

)
k!

(θ + n)m+1
θ (θ + n)m−k

It is interesting to note that in the Dirichlet case Ûn+0(k + 1) = (θ + n)Ǔn+0(k)/n where Ǔn+0

is the Turing estimator in (3).

3 An application to genomic data

The genomic datasets we analyze consist of expressed sequence tags (ESTs) samples, which

play an important role in the identification, discovery and characterization of organisms as they

provide an attractive and efficient alternative to full genome sequencing. ESTs are single–read

sequences of complementary DNA (cDNA) fragments obtained by sequencing randomly selected

cDNA clones from a cDNA library. Since a cDNA library consists of millions of cDNA clones,

only a small fraction is usually sequenced because of cost constraints. This is a natural setting in

which prediction and, in particular, the estimation of discovery probabilities is of great relevance.

We focus on EST data obtained from Naegleria gruberi cDNA libraries. Naegleria gruberi

is a widespread free–living soil and freshwater amoeboflagellate widely studied in the biological

literature. The two datasets we consider are sequenced from two cDNA libraries prepared from

cells grown under different culture conditions, aerobic and anaerobic. These data sets have been

previously analyzed in Susko and Roger (2004), where a full account of their preparation is

detailed. The datasets, which will constitute our basic samples, can be effectively summarized

in terms of their frequency counts `k, for k = 1, . . . , n and are reported in Table 1 below. One

observes that the frequency counts `k are large for small values of k and, for initial values of k,

`k decreases monotonically with a few isolated points of increase for larger values of k. These

are features common to most EST datasets and to samples drawn from genomic libraries in

general. Moreover, the Naegleria Aerobic dataset exhibits several genes with high frequency

and, in particular, two genes appearing 27 and 55 times, respectively. On the other hand, the

Naegleria Anaerobic dataset yields `k = 0 for any k > 14.
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Table 1: ESTs from two Nageleria gruberi libraries. Reported data include: frequency counts

`k, for different values of k, total number of distinct genes j and sample size n. Source: Susko

and Roger (2004).

Library 1 2 3 4 5 6 7 8 9 10 11

Naeglaria Aerobic 346 57 19 12 9 5 4 2 4 5 4

Naeglaria Anaerobic 491 72 30 9 13 5 3 1 2 0 1

Library 12 13 14 15 16 17 18 27 55 j n

Naeglaria Aerobic 1 0 0 0 1 1 1 1 1 473 959

Naeglaria Anaerobic 0 1 3 0 0 0 0 0 0 631 969

The nonparametric prior in (1) we adopt for analyzing these datsets is given by the two–

parameter Poisson–Dirichlet process, concisely discussed in Section 2.3. We will focus on quan-

tifying the rare species variety and provide estimates of both the [m : k]–discovery and of the

cumulative discovery Un+m,τ for different values of the additional sample size m, frequency k and

threshold τ . It is worth noting that such an analysis, still within the two–parameter Poisson–

Dirichlet framework, has been carried out in Lijoi et al. (2007b): there the analysis is focused on

overall species variety and a comparison of the heterogeneity of the two cDNA libraries, which

in this context is typically quantified in terms of their redundancy (the counterpart of species

variety), is carried out. According to such a prior specification, one is left to eliciting the actual

values of σ and θ that will be used in the inferential process. A natural way to fix these param-

eters is through an empirical Bayes argument. In particular, (σ̂, θ̂) are fixed so to maximize the

distribution of L(n) in correspondence to the observed frequency counts (`1, . . . , `n), i.e. (σ̂, θ̂)

result from

arg max
(σ,θ)

P
[
L(n) = (`1, . . . , `n)

]
= arg max

(σ,θ)

∏j−1
i=1 (θ + iσ)

(θ + 1)n−1
n!

n∏
i=1

{
(1− σ)i−1

i!

}`i 1

`i!
. (18)

For the two considered libraries we then obtain (σ̂, θ̂) = (0.67, 46.3) in the aerobic case and

(σ̂, θ̂) = (0.66, 155.5) in the anaerobic case. Alternatively, one could specify a prior for (σ, θ)

and devise a suitable Markov Chain Monte Carlo scheme for sampling from their posteriors as in

Lijoi et al. (2008a). However, with such relatively large basic samples, the posteriors are highly

peaked and the results essentially coincide.

In Table 2 we show the estimates of the [0 : k]–discoveries and of the cumulative [0 : k]–

discoveries for different values of k and of τ resulting from the Bayesian nonparametric and

the Turing estimators. The estimates are basically the same for k = 0 and k = 1, which

12



Table 2: Bayesian nonparametric and Turing estimates, of the [0 : k]-discoveries (for k = 0, . . . , 4)

and of the cumulative [0 : k]-discoveries (for τ = 3, 4, 5) for the two EST datasets.

Naegleria aerobic Naegleria anaerobic

BNP Turing BNP Turing

Un+0(0) 0.3613 0.3608 0.5086 0.5067

Un+0(1) 0.1136 0.1189 0.1485 0.1486

Un+0(2) 0.0754 0.0594 0.0858 0.0929

Un+0(3) 0.0440 0.0501 0.0624 0.0372

Un+0(4) 0.0397 0.0469 0.0267 0.0671

Un+0,3 0.5943 0.5892 0.8053 0.7854

Un+0,4 0.6341 0.6361 0.8320 0.8524

Un+0,5 0.6728 0.6674 0.8822 0.8834

correspond to the probabilities of sequencing a new gene and a unique gene, respectively. Larger

discrepancies are detectable as k gets bigger. This is also reflected in the estimation of the

cumulative discoveries. With reference to the discussion in Remark 1, it is worth noting that

the Naegleria anaerobic basic sample displays two species with frequency 9 meaning that `9 = 2

and no species with frequency equal to 10, i.e. `10 = 0. In such a case the Turing estimator (3)

that depends on `k+1 = `10 is 0: one would then conclude that the probability that the (n+1)–th

observation coincides with one of the two species appearing 9 times in the basic sample is zero.

Moreover, if we were to estimate the [0 : 10] discovery, the frequentist estimator would lead to

a positive value, since `11 > 0, a conclusion that seems again counterintuitive since there are

no species with frequency equal to 10 in the basic sample. This puzzling feature is due to the

fact the estimator of the [0 : k]–discovery in (3) depends on `k+1. In contrast, the Bayesian

nonparametric estimator (10) is positive and actually equal to 0.014833 for the [0 : 9]–discovery

and 0 for the [0 : 10]–discovery.

In addition to one–step prediction estimates, we are also able to provide estimates of Un+m(k),

and for the corresponding cumulative values, in the case where both m and k are strictly posi-

tive. These represent the main quantities of interest in such genomic experiments and as noted

in Section 2 no other estimators are available in the literature. The results are summarized in

Table 3. It is worth remarking that the displayed numbers are exact, in the sense that (12) and

(13) can be computed without the need to resorting to any approximation scheme.

The behaviour of the cumulative [m : k]–discoveries, that provide evidence of the possibility

of detecting rare genes as the additional sample size increases, is consistent with intuition: the

13



Table 3: Estimates of the [m : k]-discoveries (for k = 0, . . . , 4) and of the cumulative [m : k]–

discoveries (for τ = 3, 4, 5) for different sizes of the additional sample m.

Naegleria Aerobic

m = 250 m = 500 m = 750 m = 1000 m = 1250 m = 1500

Un+m(0) 0.3358 0.3162 0.3006 0.2877 0.2768 0.2673

Un+m(1) 0.1066 0.1011 0.0965 0.0927 0.0894 0.0865

Un+m(2) 0.0703 0.0664 0.0634 0.0609 0.0587 0.0569

Un+m(3) 0.0475 0.0476 0.0467 0.0455 0.0443 0.0432

Un+m(4) 0.0373 0.0370 0.0366 0.0361 0.0355 0.0348

Un+m,3 0.5602 0.5313 0.5072 0.4867 0.4692 0.4539

Un+m,4 0.5974 0.5683 0.5438 0.5228 0.5046 0.4887

Un+m,5 0.6307 0.5996 0.5743 0.5528 0.5342 0.5178

Naegleria Anaerobic

m = 250 m = 500 m = 750 m = 1000 m = 1250 m = 1500

Un+m(0) 0.4751 0.4489 0.4275 0.4097 0.3945 0.3813

Un+m(1) 0.1428 0.1377 0.1330 0.1289 0.1251 0.1218

Un+m(2) 0.0849 0.0834 0.0817 0.0800 0.0783 0.0767

Un+m(3) 0.0612 0.0602 0.0593 0.0584 0.0575 0.0565

Un+m(4) 0.0388 0.0429 0.0443 0.0447 0.0446 0.0444

Un+m,3 0.7639 0.7301 0.7015 0.6769 0.6554 0.6363

Un+m,4 0.8027 0.7729 0.7458 0.7216 0.7000 0.6807

Un+m,5 0.8384 0.8074 0.7809 0.7572 0.7360 0.7167
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Figure 1: Cumulative [m : k]–discovery estimates for τ = 0 (blue line), 1 (red line), 3 (black line),

5 (green line) and additional sample sizes m = 0, . . . , 1500. Left and right panels refer, respectively,

to Naegleria Aerobic and Anaerobic datasets.

larger the additional sample size m, the lower the probability that the (n+m+1)–th observation

identifies a rare gene i.e. a gene that has never been observed before or that has been observed

with frequency not greater than τ . Moreover, the larger is the considered frequency level k the

slower is the decay rate. The two datasets display quite different results, which become even more

apparent from Figure 1. In particular, the Naegleria Anaerobic is a richer (or, equivalently, in

biological terminology, less redundant) library in the sense that the probability of detecting rare

species is significantly larger if compared with the Naegleria Aerobic library. This is consistent

with the fact that the basic sample of the Naegleria Aerobic library exhibits several genes with

high frequency, which in fact hints towards redundancy. As anticipated in Section 2.2, one

can also address the issue of sample size determination. If we agree that τ = 3 defines the

upper bound for the frequency of species considered as rare, one can consider m 7→ Ûn+m,3 and

identify the largest m that makes Ûn+m not smaller than a certain threshold κ. For example,

still referring to the Naegleria Aerobic dataset, if we were to choose κ = 0.5 then one should set

a value of the additional sample size m = 833.
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4 Appendix

Resorting to the notation set forth in Sections 2 and 3 we introduce some useful quanti-

ties induced by the basic sample X
(n)
1 = (X1, . . . , Xn) and the additional sample X

(m)
2 =

(Xn+1, . . . , Xn+m). If X∗1 , . . . , X
∗
Kn

are the labels identifying the Kn distinct species detected in

the basic sample, define

L(n)
m =

m∑
i=1

Kn∏
j=1

1{Xn+i 6=X∗j } = card
(
{Xn+1, . . . , Xn+m} ∩

{
X∗1 , . . . , X

∗
Kn

}c)
(19)

to be the number of observations from the additional sample that generate the new K
(n)
m distinct

species not coinciding with any of those already observed in the basic sample. Moreover, if

X∗Kn+1, . . . , X
∗
Kn+K

(n)
m

are the labels identifying the K
(n)
m new distinct species detected in the

additional sample, define

S∗i =
m∑
j=1

1{Xn+j=X∗Kn+i} i = 1, . . . ,K(n)
m (20)

to be the frequencies of the K
(n)
m new distinct species detected among the L

(n)
m observations in

the additional sample. Similarly, define

Vi =
m∑
j=1

1{Xn+j=X∗i } i = 1, . . . ,Kn (21)

as the number of observations from the additional sample coinciding with the i–th distinct

species detected in the basic sample. Introduce, now, the partition sets

D(L(n)
m ,K(n)

m ) := {(S∗1 , . . . , S∗K(n)
m

) : S∗i > 0 and

K
(n)
m∑
i=1

S∗i = L(n)
m }.

D0(m− L(n)
m ,Kn) := {(V1, . . . , VKn) : Vi ≥ 0 and

Kn∑
i=1

Vi = m− L(n)
m }.

According to these definitions the random vectors (S∗1 , . . . , S
∗
K

(n)
m

) and (V1, . . . , VKn) take values

in D(L
(n)
m ,K

(n)
m ) and in D0(m−L(n)

m ,Kn), respectively. The quantities defined in (19)–(21) can

obviously be extended to include a further additional sample X
(m′)
3 = (Xn+m+1, . . . , Xn+m+m′),

for some m′ ≥ 1. Indeed

L
(n+m)
m′ =

m′∑
i=1

Kn+K
(n)
m∏

j=1

1{Xn+m+i 6=X∗j } (22)

to be the number of observations from a further additional sample of size m′ that generate

the new K
(n+m)
m′ distinct species not coinciding with any of those already observed in the basic
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sample and in the additional sample. Moreover, we can define

S′i =

m′∑
j=1

1{Xn+m+j=X∗
Kn+K

(n)
m +i

} i = 1, . . . ,K
(n+m)
m′ (23)

to be the frequencies of the new distinct species detected among the L
(n+m)
m′ observations and

V ′i =
m′∑
j=1

1{Xn+m+j=X∗i } i = 1, . . . ,Kn +K(n)
m (24)

to be the number of observations coinciding with the i–th distinct species detected in the basic

sample and the additional sample.

Finally, we set An(j,nn) = {Kn = j, Nn = nn} as the event identifying a partition of

[n] = {1, . . . , n} into j clusters with vector of respective frequencies nn = (n1,n, . . . , nj,n).

Correspondingly

Π̃(l)
s,m(v, s |An(j,nn)) = P[L(n)

m = s, K(n)
m = l, V = v, S∗ = s |An(j,nn)] (25)

is the conditional probability that the additional sample of size m, Xn+1, . . . , Xn+m, has exactly

s observations generating l new species with positive frequencies s = (s1, . . . , sl) and m−s repli-

cating any of the j previously observed species with non–negative frequencies v = (v1, . . . , vj),

given the basic sample of size n.

Proof of Theorem 1. Note that, since Π is a Gibbs–type prior, we can easily derive the

following conditional probability distribution

Π̃(l)
s,m(v, s |An(j,nn)) =

Vn+m,j+l
Vn,j

∏j
i=1(1− σ)ni+vi−1

∏l
i=1(1− σ)si−1∏j

i=1(1− σ)ni−1

× 1{1,...,m}×{1,...,s}×D0(m−s,j)×D(s,l)(s, l,v, s) (26)

where v := (v1, . . . , vj) and s := (s1, . . . , sl).

Π̃
(0)
0,m(v |An(j,nn)) =

Vn+m,j
Vn,j

∏j
i=1(1− σ)ni+vi−1∏j
i=1(1− σ)ni−1

1D0(m,j)(v). (27)

Hence, under squared loss we have

Ûn(k) = P[Xn+1 ∈ Gk,n |An(j,nn)] =

j∑
i=1

Π̃
(0)
0,1(ei(k) |An(j,nn))

where ei(k) = (0, . . . , 0, k+ 1−ni, 0, . . . , 0) is the j–dimensional vector with all zero entries but

the i–th that coincides with k+ 1−ni and Gk,n = {X∗i : Ni,n = k}. From (27) one immediately
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deduces that

j∑
i=1

Π̃
(0)
0,1(ei(k) |An(j,nn)) =

Vn+1,j

Vn,j
(1− σ)k

j∑
i=1

∏
1≤t6=i≤j(1− σ)nt−1∏j
i=1(1− σ)ni−1

1{k}(ni).

Therefore, we have

Ûn(k) =
Vn+1,j

Vn,j
(1− σ)k

j∑
i=1

1

(1− σ)ni−1
1{k}(ni) =

Vn+1,j

Vn,j
(k − σ) `k

and the proof is complete. �

Proof of Theorem 2 In order to simplify the notation, we introduce some quantities to be

used in the sequel. In particular, using (19)–(24) we define the vectors

V ′ := (V ′1 , . . . , V
′
Kn+K

(n)
m

), S′ := (S′1, . . . , S
′
K

(n+m)

m′
)

and the set

An,m(j,nn, s, l,v, s) := {Kn = j,Nn = nn, L
(n)
m = s,K(n)

m = l,V = v,S = s}.

Let, further,

Π̃
(k′)
s′,m′(v

′, s′ |An,m(j,nn, s, l,v, s))

= P[L
(n+m)
m′ = s′,K

(n+m)
m′ = k′,V ′ = v′,S′ = s′ |An,m(j,nn, s, l,v, s)].

Since Π is a Gibbs–type prior, one can easily derive the following conditional probability distri-

bution

Π̃
(k′)
s′,m′(v

′, s′ |An,m(j,nn, s, l,v, s)) =
Vn+m+m′,j+l+k′

Vn+m,j+l
(28)

×
∏j
i=1(1− σ)ni+vi+v′i−1

∏l
r=1(1− σ)sj+r+v′j+r−1

∏k′

t=1(1− σ)s′t−1∏j
i=1(1− σ)ni+vi−1

∏l
r=1(1− σ)sj+r−1

× 1{1,...,m′}×{1,...,s′}×D0(m′−s′,j+l)×D(s′,k′)(s
′, k′,v′, s′),

where v′ := (v′1, . . . , v
′
j+l) and s′ := (s′1, . . . , s

′
k′). Hence, (28) corresponds to the probability

distribution of the random partition induced by the further additional sample of size m′, given

both the basic sample X
(n)
1 and the additional sample X

(m)
2 . To deal with the case s′ = k′ = 0,

namely none of the additional m′ observations generates new species that differ from those

already observed in the previous sample of size n+m, one has
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Π̃
(0)
0,m′(v

′ |An,m(j,nn, s, l,v, s)) =
Vn+m+m′,j+l

Vn+m,j+l

×
∏j
i=1(1− σ)ni+vi+v′i−1

∏l
r=1(1− σ)sj+r+v′j+r−1∏j

i=1(1− σ)ni+vi−1
∏l
r=1(1− σ)sj+r−1

1D0(m′,j+l)(v
′). (29)

For m′ = 1, from (29) one deduces

Π̃
(0)
0,1(v

′ |An,m(j,nn, s, l,v, s)) =
Vn+m+1,j+l

Vn+m,j+l

×
∏j
i=1(1− σ)ni+vi+v′i−1

∏l
r=1(1− σ)sj+r+v′j+r−1∏j

i=1(1− σ)ni+vi−1
∏l
r=1(1− σ)sj+r−1

1D0(1,j+l)(v
′). (30)

Hence

Ûn+m(k) =
m∑
s=0

s∑
l=0

(
m

s

) ∑
v∈D0(m−s,j)

(
m− s

v1, . . . , vj

)
(31)

× 1

l!

∑
s∈D(s,l)

(
s

s1, . . . , sl

)
P[Xn+m+1 ∈ Gk,n+m |An,m(j,nn, s, l,v, s)]

× Π̃(l)
s,m(v, s |An(j,nn)).

For any i = 1, . . . , j, let us introduce ei(k) = (0, . . . , 0, k + 1 − ni − vi, 0, . . . , 0), a (j + l)–

dimensional vector whose components are all zero but the i-th which is equal to k+ 1− ni− vi.
Analogously, for any r = 1, . . . , l, let gr(k) = (0, . . . , 0, k + 1 − sr, 0, . . . , 0) stand for a (j + l)–

dimensional vector with all zero components but the (j + r)–th being equal to k + 1− sr. One

can accordingly write

P[Xn+m+1 ∈ Gk,n+m |An,m(j,nn, s, l,v, s)] =

j∑
i=1

Π̃
(0)
0,1(ei(k) |An,m(j,nn, s, l,v, s))

+
l∑

r=1

Π̃
(0)
0,1(gr(k) |An,m(j,nn, s, l,v, s)).

This expression suggests that (31) can be decomposed in the sum of the following two quantities:

O(σ, n, j,nn, k) :=
m∑
s=0

s∑
l=0

(
m

s

) ∑
v∈D0(m−s,j)

(
m− s

v1, . . . , vj

)

× 1

l!

∑
s∈D(s,l)

(
s

s1, . . . , sl

)
Π̃(l)
s,m(v, s |An(j,nn))

j∑
i=1

Π̃
(0)
0,1(ei(k) |An,m(j,nn, s, l,v, s))

and

N (σ, n, j, k) :=

m∑
s=0

s∑
l=0

(
m

s

) ∑
v∈D0(m−s,j)

(
m− s

v1, . . . , vj

)
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× 1

l!

∑
s∈D(s,l)

(
s

s1, . . . , sl

)
Π̃(l)
s,m(v, s |An(j,nn))

l∑
r=1

Π̃
(0)
0,1(gr(k) |An,m(j,nn, s, l,v, s)).

We first consider the term O(σ, n, j,nn, k). According to expression (30) it can be easily verified

that

j∑
i=1

Π̃
(0)
0,1(ei(k) |An,m(j,nn, s, l,v, s)) =

Vn+m+1,j+l

Vn+m,j+l
(1− σ)k

×
j∑
i=1

∏
1≤t6=i≤j(1− σ)nt+vt−1∏j
i=1(1− σ)ni+vi−1

1{k}(ni + vi).

Therefore, we have

O(σ, n, j,nn, k) = (1− σ)k

m∑
s=0

s∑
l=0

(
m

s

)
Vn+m+1,j+l

Vn,j

×
j∑
i=1

∑
v∈D0(m−s,j)

(
m− s

v1, . . . , vj

)∏
1≤t6=i≤j(1− σ)nt+vt−1∏j

i=1(1− σ)ni−1
1{k}(ni + vi)

× 1

l!

∑
s∈D(s,l)

(
s

s1, . . . , sl

) l∏
r=1

(1− σ)sr−1

= (1− σ)k

m∑
s=0

s∑
l=0

(
m

s

)
Vn+m+1,j+l

Vn,j

C (s, l;σ)

σl

×
j∑
i=1

∑
v∈D0(m−s,j)

(
m− s

v1, . . . , vj

)∏
1≤t6=i≤j(1− σ)nt+vt−1∏j

i=1(1− σ)ni−1
1{k}(ni + vi),

where the last identity is obtained by applying Equation 2.6.1 in Charalambides (2005). Observe

that we can write the last expression as follows

(1− σ)k

m∑
s=0

s∑
l=0

(
m

s

)
Vn+m+1,j+l

Vn,j

C (s, l;σ)

σl

×
j∑
i=1

m−s∑
vi=0

(
m− s
vi

)
1{k}(ni + vi)

×
∑

v−i∈D0(m−s−vi,j−1)

(
m− s− vi

v1, . . . , vi−1, vi+1, . . . , vj

)∏
1≤t6=i≤j(1− σ)nt+vt−1∏j

i=1(1− σ)ni−1

= (1− σ)k

m∑
s=0

s∑
l=0

(
m

s

)
Vn+m+1,j+l

Vn,j

C (s, l;σ)

σl

×
j∑
i=1

m−s∑
vi=0

(
m− s
vi

)
(n− ni − (j − 1)σ)m−s−vi

(1− σ)ni−1
1{k}(ni + vi),
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where the last identity is obtained by applying Lemma A.1 in Lijoi et al. (2008b). It can be

easily verified that

j∑
i=1

m−s∑
vi=0

(
m− s
vi

)
(n− ni − (j − 1)σ)m−s−vi

(1− σ)ni−1
1{k}(ni + vi)

=
k∑
i=1

(
m− s
k − i

)
(n− i− (j − 1)σ)m−s−(k−i)

(1− σ)i−1
`i.

Therefore, we obtain

O(σ, n, j,nn, k) = (1− σ)k

m∑
s=0

s∑
l=0

(
m

s

)
Vn+m+1,j+l

Vn,j

C (s, l;σ)

σl

×
k∑
i=1

(
m− s
k − i

)
(n− i− (j − 1)σ)m−s−(k−i)

(1− σ)i−1
`i

= (1− σ)k

k∑
i=1

`i
(1− σ)i−1

m∑
l=0

1

σl
Vn+m+1,j+l

Vn,j

×
m∑
s=l

(
m

s

)(
m− s
k − i

)
(n− i− (j − 1)σ)m−s−(k−i)C (s, l;σ)

= (1− σ)k

k∑
i=1

(
m

k − i

)
`i

(1− σ)i−1

m−k+i∑
l=0

1

σl
Vn+m+1,j+l

Vn,j

× C (m− k + i, l;σ,−n+ i+ (j − 1)σ)

where the last identity is obtained by applying Equation 2.56 in Charalambides (2005). Finally,

we consider the term N (σ, n, j, l). According to expression (30) it can be easily verified that

l∑
r=1

Π̃
(0)
0,1(gr(k) |An,m(j,nn, s, l,v, s)) =

Vn+m+1,j+l

Vn+m,j+l
(1− σ)k

×
l∑

r=1

∏
1≤t6=r≤l(1− σ)st−1∏l
r=1(1− σ)sr−1

1{k}(sr).

Hence, we have

N (σ, n, j, k) = (1− σ)k

m∑
s=0

s∑
l=0

(
m

s

)
Vn+m+1,j+l

Vn,j

×
l∑

r=1

1

l!

∑
s∈D(s,l)

(
s

s1, . . . , sl

) ∏
1≤t6=r≤l

(1− σ)st−1 1{k}(sr)

×
∑

v∈D0(m−s,j)

(
m− s

v1, . . . , vj

)∏j
i=1(1− σ)ni+vi−1∏j
i=1(1− σ)ni−1
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= (1− σ)k

m∑
s=0

s∑
l=0

(
m

s

)
Vn+m+1,j+l

Vn,j
(n− jσ)m−s

×
l∑

r=1

1

l!

∑
s∈D(s,l)

(
s

s1, . . . , sl

) ∏
1≤t6=r≤l

(1− σ)st−1 1{k}(sr),

where the last identity is obtained by applying Lemma A.1 in Lijoi et al. (2008b). Observe that

we can write the last expression as follows

(1− σ)k

m∑
s=0

s∑
l=0

(
m

s

)
Vn+m+1,j+l

Vn,j
(n− jσ)m−s

1

l!

l∑
r=1

s∑
sr=1

(
s

sr

)
1{k}(sr)

×
∑

s−r∈D(s−sr,l−1)

(
s− sr

s1, . . . , sr−1, sr+1, . . . , sr+l

) ∏
1≤t6=r≤l

(1− σ)sj+t−1

= (1− σ)k

m∑
s=0

s∑
l=0

(
m

s

)
Vn+m+1,j+l

Vn,j
(n− jσ)m−s

× (l − 1)!

l!

l∑
r=1

s∑
sr=1

(
s

sr

)
C (s− sr, l − 1;σ)

σl−1
1{k}(sr),

where the last identity is obtained by applying Equation 2.6.1 in Charalambides (2005). It can

be easily verified that

l∑
r=1

s∑
sr=1

(
s

sr

)
C (s− sr, l − 1);σ

σl−1
1{k}(sr) = l

(
s

k

)
C (s− k, l − 1;σ)

σl−1
.

Therefore, we obtain

N (σ, n, j, k) = (1− σ)k

m∑
s=0

s∑
l=0

(
m

s

)
Vn+m+1,j+l

Vn,j
(n− jσ)m−s

(
s

k

)
C(s− k, l − 1;σ)

σl−1

= (1− σ)k

m∑
l=0

Vn+m+1,j+l

Vn,j

1

σl−1

m∑
s=l

(
m

s

)(
s

k

)
(n− jσ)m−sC(s− k, l − 1;σ)

= (1− σ)k

m−k+1∑
l=1

Vn+m+1,j+l

Vn,j

1

σl−1

(
m

k

)
C(m− k, l − 1;σ,−n+ jσ)

where the last identity is obtained by applying Equation 2.56 in Charalambides (2005). The

proof is, then, complete. �

Proof of Proposition 3. The expression for Ûn+0(k) follows from Equation (10) in Theorem 1

by simply inserting the corresponding weights Vn,j =
∏j−1
i=1 (θ+ iσ)/(θ+ 1)n−1. As for Ûn+m(k),

by inserting the weights Vn,j =
∏j−1
i=1 (θ + iσ)/(θ + 1)n−1 in Equation (12) in Theorem 2 we

obtain

Ûn+m(k) =
(θ + 1)n−1
(θ + 1)n+m

k∑
i=1

`i(i− σ)k+1−i

(
m

k − i

)
(32)
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×
m−k+i∑
l=0

j+l−1∏
t=j

(θ + tσ)
1

σl
C (m− k + i, l;σ,−n+ jσ + i− σ)

+ (1− σ)k

(
m

k

)
(θ + 1)n−1
(θ + 1)n+m

m−k+1∑
l=1

j+l−1∏
t=j

(θ + tσ)
1

σl−1
C (m− k, l − 1;σ,−n+ jσ).

We first consider the second part of expression (32), i.e.

(1− σ)k

(
m

k

)
(θ + 1)n−1
(θ + 1)n+m

(33)

×
m−k+1∑
l=1

j+l−1∏
t=j

(θ + tσ)
1

σl−1
C (m− k, l − 1;σ,−n+ jσ)

= (1− σ)k

(
m

k

)
(θ + 1)n−1
(θ + 1)n+m

× (θ + jσ)
m−k∑
l=0

(
j + 1 +

θ

σ

)
l

C (m− k, l;σ,−n+ jσ)

= (1− σ)k

(
m

k

)
(θ + jσ)

(θ + n+ σ)m−k
(θ + n)m+1

.

Now we consider the first part of expression (32), i.e.

(θ + 1)n−1
(θ + 1)n+m

k∑
i=1

`i(i− σ)k+1−i

(
m

k − i

)
(34)

×
m−k+i∑
l=0

j+l−1∏
t=j

(θ + tσ)
1

σl
C (m− k + i, l;σ,−n+ jσ + i− σ)

=
k∑
i=1

`i(i− σ)k+1−i

(
m

k − i

) (θ+1)n−1

(θ+1)n+m
∏j−1

t=1 (θ+tσ)
(θ + 1)n−i−1

(θ+1)n−i−1

(θ+1)n−i+m−k+i
∏j−1−1

t=1 (θ+tσ)
(θ + 1)n−i+m−k+i

∏j−1−1
t=1 (θ + tσ)

×
m−k+i∑
l=0

j−1+l∏
t=1

(θ + tσ)
1

σl
C (m− k + i, l;σ,−n+ i+ σ(j − 1)).

By combining Equation (3) with Equation (8) in Favaro et al. (2009) we can write the following

identity

(θ + 1)n−1

(θ + 1)n+m
∏j−1
t=1 (θ + tσ)

m∑
l=0

j+l∏
t=1

(θ + tσ)
1

σl
C (m, l;σ,−n+ jσ) (35)

=
(θ + jσ)(θ + n+ σ)m
(θ + n)(θ + n+ 1)m

.

Therefore, if we apply the identity (35) to expression (34) then we can write

k∑
i=1

`i(i− σ)k+1−i

(
m

k − i

) (θ+1)n−1

(θ+1)n+m
∏j−1

t=1 (θ+tσ)
(θ + 1)n−i−1

(θ+1)n−i−1

(θ+1)n−i+m−k+i
∏j−1−1

t=1 (θ+tσ)
(θ + 1)n−i+m−k+i

∏j−1−1
t=1 (θ + tσ)
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×
m−k+i∑
l=0

j−1+l∏
t=1

(θ + tσ)
1

σl
C (m− k + i, l;σ,−n+ i+ σ(j − 1))

=

k∑
i=1

`i(i− σ)k+1−i

(
m

k − i

) (θ+1)n−1

(θ+1)n+m
∏j−1

t=1 (θ+tσ)

(θ+1)n−i−1

(θ+1)n−i+m−k+i
∏j−1−1

t=1 (θ+tσ)

× (θ + (j − 1)σ)(θ + n− i+ σ)m−k+i
(θ + n− i)(θ + n− i+ 1)m−k+i

=
k∑
i=1

`i(i− σ)k+1−i

(
m

k − i

)
(θ + n− i+ σ)m−k+i

(θ + n)m+1
. (36)

Therefore, based on the simplification (33) and (36), the results follows by adding (33) and (36).
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