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2 Università degli Studi di Pavia and Collegio Carlo Alberto.

E-mail : lijoi@unipv.it
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Abstract

Random probability measures are the main tool for Bayesian nonparametric inference,

with their laws acting as prior distributions. Many well–known priors used in practice admit

different, though (in distribution) equivalent, representations. Some of these are convenient

if one wishes to thoroughly analyze the theoretical properties of the priors being used, others

are more useful for modeling dependence and for addressing computational issues. As for

the latter purpose, so–called stick–breaking constructions certainly stand out. In this paper

we focus on the recently introduced normalized inverse Gaussian process and provide a

completely explicit stick–breaking representation for it. Such a new result is of interest both

from a theoretical viewpoint and for statistical practice.

Key words and phrases: Bayesian Nonparametrics; Dirichlet process; Normalized Inverse

Gaussian process; Random Probability Measures; Stick–breaking representation.

1 Introduction

1.1 Bayesian Nonparametrics and the stick–breaking construction

Bayesian nonparametric inference has recently undergone strong development. See [12] for an

up to date review. At the heart of the approach lies the concept of random probability mea-

sure, whose law acts as a prior for Bayesian nonparametric inference, the most notable example

being the Dirichlet process [8]. There exist different representations for a number of nonpara-

metric priors, which, although equivalent in distribution, may serve different purposes. For

example, representations based on completely random measures allow one to study analytically
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their properties [21], whereas stick-breaking representations have displayed great potential in ad-

dressing modelling and computational issues. The main result of this paper is a stick-breaking

representation of the normalized inverse Gaussian process [19], a tractable alternative to the

Dirichlet process. Our result is of interest from a theoretical point of view since: it is the first

representation of a random probability measure in terms of dependent and non-beta distributed

stick-breaking weights; it completes the study of the normalized inverse Gaussian process: most

of its properties are known by now but a stick-breaking representation was missing. From a

modeling and computational point of view: it paves the way for the definition of complex mod-

els based on the normalized inverse Gaussian process by simply replacing the stick-breaking

constructed Dirichlet process, most notably within dependent models for nonparametric regres-

sion; it allows to extend recent simulation algorithms, based on stick-breaking constructions, to

cover also the normalized inverse Gaussian process.

There are several different ways to define the Dirichlet process: each one has the merit of

highlighting one of its peculiar aspects. The original definition of [8] constructs the Dirichlet

process Dc,P0 , with parameter α = cP0 and P0 a probability measure, in terms of a consistent

family of finite-dimensional Dirichlet distributions. An alternative definition of the Dirichlet

process, still due to [8], relies on the idea of normalizing a gamma process. A third construction

is based on a stick-breaking procedure that follows from a result in [24] (recalled as Theorem 1

in [28]) under the assumption of non-atomic P0, and that has been extended to any P0 in [31].

Let (Vi)i≥1 be a sequence of independent and identically distributed random variables, with

Vi ∼ beta(1, c) and c > 0, and define random probability weights (p̃j)j≥1 as

p1 = V1, pj = Vj

j−1∏
i=1

(1− Vi) j = 2, 3, . . . . (1)

If (Yi)i≥1 is a sequence of independent and identically distributed random variables, independent

of the p̃i and whose common probability distribution is P0, then
∑

j≥1 p̃j δYj ( · ) = Dc,P0( · ) in

distribution, where δa denote the point unit mass at a.

Another prominent nonparametric prior is the two-parameter Poisson-Dirichlet process [26],

also known, according to terminology introduced in [13], as Pitman-Yor process. It also admits a

simple stick-breaking representation: let (Vi)i≥1 be a sequence of independent random variables,

with Vi ∼ Beta(1 − σ, θ + iσ), σ ∈ (0, 1) and θ > −σ, define the random probability masses as

in (1) and let (Yi)i≥1 be as above with the only difference of requiring a non-atomic P0. The

corresponding discrete random probability measure
∑

j≥1 p̃j δYj ( · ) coincides, in distribution,

with the two-parameter Poisson-Dirichlet process. See [29] for a detailed account on theoretical

properties. Bayesian nonparametric applications include mixture models [13], linguistics [32],

species sampling [20] and survival analysis [16].
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The extreme flexibility of stick-breaking representations originated a vast literature concern-

ing both modeling and computation. In terms of modeling, the proposal and investigation of

dependent processes, initiated by [22, 23], heavily rely on a stick-breaking construction and have

proved to be effective prior specifications within regression problems. Important contributions

to this area include, among others, [3, 4, 5, 6, 10, 11, 27]. From a computational point of

view significant progress, especially in designing efficient simulation algorithms for hierarchical

mixtures, has been made using stick-breaking representations. Among the most relevant contri-

butions, which devise algorithms working in principle for any random probability with explicit

stick–breaking representation, are the blocked Gibbs sampler [13], the retrospective sampler [25],

the slice sampler [33] and a very efficient synthesis [34] of these last two.

1.2 General remarks and motivation

Starting from the stick-breaking representations of the Dirichlet and the two parameter Poisson-

Dirichlet processes, a general class of stick-breaking priors can be defined by allowing indepen-

dent stick-breaking weights Vi with an arbitrary distribution on (0, 1). This issue is addressed

in [13] limited to beta distributed Vi. However, their results are readily extendible to general

distributions. One might wonder whether, besides the Dirichlet and two-parameter Poisson-

Dirichlet processes, there are other members of this large class that share a similar degree of

mathematical tractability allowing the investigation of some of their properties, such as, the pre-

diction rules, the posterior distribution or the distribution of the random partition they induce.

Unfortunately, to date no other instances are known and this clearly affects their appeal in terms

of modeling and applications beyond the Dirichlet and two-parameter Poisson-Dirichlet cases.

The reason for the poor tractability may be traced back to a distributional concept originated in

population genetics, which is termed invariance under size biased permutations and is recalled

in Section 2. For the moment it is enough to note that such an invariance property implies

significant mathematical simplifications when working out distributional properties of a random

probability measure. In particular, as shown in [24], the Dirichlet process is the only random

probability measure admitting stick-breaking representation with independent and identically

distributed weights Vi which is invariant under size biased permutations. On the other hand,

the two-parameter Poisson-Dirichlet process is essentially the only invariant under size biased

permutations random probability measure that admits a stick-breaking representation with in-

dependent weights Vi [28]. These considerations hint towards the fact that if one would like to

identify further random probability measures both enjoying a sufficient degree of tractability

and admitting a sufficiently simple stick-breaking representation one has to focus on dependent

stick-breaking weights Vi.
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Here we consider the normalized inverse Gaussian process [19]. By now many properties such

as finite-dimensional, predictive and posterior distributions are known [19, 14, 15]. In some sense,

for any distributional property of the Dirichlet process an analogous property of the normalized

inverse Gaussian process is known with the notable exception of a stick-breaking representation.

Our main result fills in this gap. It is important to anticipate that the stick-breaking weights Vi
will be dependent: this fact is not surprising and actually necessary. To see why this is the case

first note that any discrete random probability measure admits stick-breaking representation if

one allows any possible distribution and form of dependence for the Vi [28]. Moreover, from

[26] it is immediate to deduce that the normalized inverse Gaussian process, and more generally

any homogeneous normalized random measure with independent increments [30, 14], is invariant

under size biased permutations. Therefore, by the above mentioned characterizations provided

in [24, 28], none of them can admit stick-breaking representation with independent, and a fortiori

independent and identically distributed, weights Vi. Hence, the weights Vi necessarily have to be

dependent. In this respect, the stick-breaking representation for the normalized inverse Gaussian

process represents the first case of a tractable prior with explicit stick-breaking representation

based on dependent weights. To avoid misunderstandings it is to be stressed that, in principle,

one can define random probability measures by writing down a stick-breaking representation

with either independent or dependent weights: the key point is, however, achieving a random

probability whose properties can still be analyzed in more or less explicit form. If this is not

the case, an arbitrary stick-breaking representation is essentially a vacuous object since the

construction itself is not able to provide, on its own, intuition and understanding of the behaviour

of the resulting random probability.

1.3 The stick-breaking representation of the normalized inverse Gaussian

process

Let us first fix some notation and display the distributions that play a key role in the construction.

Let X be a generalized inverse Gaussian random variable with parameters a > 0, b > 0 and

p ∈ R, in symbols X ∼ GIG(a, b, p), whose probability density function is of the form

fX(x) =

(
a
b

)p/2
2Kp

{
(ab)1/2

} xp−1 exp
{
−1

2

(
ax+

b

x

)}
1(0,∞)(x) (2)

with 1A denoting the indicator function of set A and Kν the modified Bessel function of the

third type. Moreover, let Z be a positive 1/2-stable random variable with scale parameter b > 0,

Z ∼ St1/2(b), whose density is given by

fZ(z) =
b1/2

(2π)1/2
z−3/2 exp

{
−1

2
b

z

}
1(0,∞)(z).
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Note that 1/2-stable random variables can also be seen as a reciprocal gamma random variables

with shape parameter 1/2 and scale parameter b/2. Introduce, now, a sequence (Zi)i≥1 of inde-

pendent and identically distributed random variables with Zi ∼ St1/2(1) and define a sequence

of dependent (0, 1)-valued random variables (Vi)i≥1 as follows

V1 =
X1

X1 + Z1
s.t. X1 ∼ GIG

(
a, 1,−1

2

)
, (3)

(Vi | V1, . . . , Vi−1) =
Xi

Xi + Zi
s.t. Xi ∼ GIG

(
a∏i−1

j=1(1− Vj)
, 1,− i

2

)
, i ≥ 2,

where the sequences (Xi)i≥1 and (Zi)i≥1 are independent. Sampling the Vi is straightforward

[1]. It will be shown in Section 2 that the distribution of V1 and of Vi | V1 . . . , Vi−1, for i ≥ 2, in

(3), is a special case of normalized generalized inverse Gaussian distribution and admits closed

form density

fV1(v) =
a

1
4 (v)−

1
2 (1− v)−1

(2π)
1
2 K−1/2(a

1
2 )

K−1

{(
a

1− v

) 1
2

}
1(0,1)(v) (4)

f(Vi|V1...,Vi−1)(v) =

(
aQi−1

j=1(1−Vj)

) 1
4

(v)−
1
2 (1− v)−

5
4
+ i

4

(2π)
1
2 K− i

2

{(
aQi−1

j=1(1−Vj)

) 1
2

} K− 1
2
− i

2


 aQi−1

j=1(1−Vj)

1− v

 1
2

1(0,1)(v).

Such a class of distributions is denoted as N-GIG∗(a, p) and therefore (3) can be expressed

equivalently as

V1 ∼ N-GIG∗(a,−1/2) & (Vi | V1 . . . , Vi−1) ∼ N-GIG∗
(

a∏i−1
j=1(1− Vj)

,− i
2

)
i ≥ 2. (3′)

Finally, N-IGc,P0 stands for a normalized inverse Gaussian process with parameter α = c P0.

Proposition 1.1 Let (Vi)i≥1 be a sequence of dependent random variables as in (3), or equiv-

alently (3′), and define the random probability weights (p̃j)j≥1 via stick-breaking as in (1). Let

(Yi)i≥1 be a sequence of independent and identically distributed random variables, independent

of the p̃i and with non-atomic distribution P0. Then, for c = a1/2,

∑
j≥1

p̃j δYj ( · ) = N-IGc,P0 .

The proof, together with the necessary background and auxiliary results, is given in Section 2.
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2 Background, auxiliary results and proof

2.1 The normalized generalized inverse Gaussian distribution

We start by introducing a new distribution on (0, 1), which includes both the normalized inverse

Gaussian distribution and the distribution defining the stick-breaking weights (4) as specific

examples. To this end first recall that the parameter space of the distribution of a GIG(a, b, p)

random variable admitting density (2) is given by Θ = Θ1 ∪Θ2 ∪Θ3 with Θ1 = {(a, b, p) : a >

0, b > 0, p ∈ R}, Θ2 = {(a, b, p) : a > 0, b = 0, p > 0} and Θ3 = {(a, b, p) : a = 0, b > 0, p < 0}.
Interesting special cases correspond to each subspace Θi, i = 1, 2, 3: from Θ1, the case considered

in Section 1, one obtains the inverse Gaussian distributions (p = −1/2), among others; Θ2

corresponds to the class of gamma distributions; Θ3 identifies the class of reciprocal gamma

distributions and hence, in particular, of the positive 1/2-stable distribution (p = −1/2). An

exhaustive account is provided in [17].

Definition 2.1 Let X1 and X2 be two independent random variables such that X1 ∼ GIG(a1, b1, p1)

and X2 ∼ GIG(a2, b2, p2). The random variable V = X1(X1 + X2)−1, taking values in (0, 1),

is termed normalized generalized inverse Gaussian, V ∼ N-GIG(a1, b1, p1, a2, b2, p2), and admits

density

fV (v) =

(
a1
b1

)p1/2 (a2
b2

)p2/2
2Kp1{(b1a1)1/2}Kp2{(b2a2)1/2}

vp1−1(1− v)p2−1

(
b1
v + b2

1−v
a1v + a2(1− v)

)(p1+p2)/2

×Kp1+p2

[{(
b1
v

+
b2

1− v

)
(a1v + a2(1− v))

}1/2
]
1(0,1)(v). (5)

The density displayed in (5) is obtained by application of a simple change of variable and

formula 3.471.9 in [9]. Given that generalized inverse Gaussian random variables are infinitely

divisible [2], the normalized generalized inverse Gaussian distribution represents another example

of the class of normalized infinitely divisible distributions studied in [7].

For our purposes, two special cases are of particular interest. The first one is the normalized

inverse Gaussian distribution [19], which corresponds to a N-GIG(1, b1,−1/2, 1, b2,−1/2) distri-

bution or, in other terms, to (5) with X1 and X2 being inverse Gaussian. Its density simplifies

to

fV (v) =
(b1b2)1/2eb1

1/2+b2
1/2

π

K−1

{(
b1
v + b2

1−v

)1/2
}

v3/2(1− v)3/2
(
b1
v + b2

1−v

)1/2
, (6)

which is seen to coincide with Eq. (5) in [19] by setting αi = bi
1/2, for i = 1, 2.
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The second subclass of Definition 2.1 to be considered corresponds to the random vari-

able (3′) dictating the form of the stick-breaking weights in Proposition 1.1 and is denoted by

N-GIG∗(a, p). Specifically, one has N-GIG∗(a, p) := N-GIG(a, 1, p, 0, 1,−1/2) with density

fV (v) =
(a)1/4

(2π)1/2Kp(a1/2)
(v)−1/2 (1− v)−5/4−p/2Kp− 1

2

{(
a

1− v

)1/2
}
,

which reduces to (4) by setting ai = a (
∏i−1
j=1(1− Vj))−1, a > 0 and pi = −i/2.

2.2 The normalized inverse Gaussian process

The normalized inverse Gaussian process [19] enjoys a good degree of mathematical tractability

and it is particularly effective when drawing inference on the clustering structure featured by the

data. As for the Dirichlet process its original definition has been given in terms of a consistent

system of finite-dimensional distributions, which is important to recall concisely. Consider n

independent inverse Gaussian random variables Xi, which admit density as in (2) with p = −1/2.

For our purpose, we can assume, without loss of generality, a = 1 and write Xi ∼ IG(1, bi),

for i = 1, . . . , n. As one defines the Dirichlet distribution via normalization of independent

gamma random variables, one can construct the normalized inverse Gaussian distribution with

parameter (b1, . . . , bn) as the distribution of the random vector (W1, . . . ,Wn), where Wi =

Xi(
∑n

j=1Xj)−1 for i = 1, . . . , n, which admits density on the (n− 1)-dimensional simplex ∆n−1

(w.r.t. the Lebesgue measure on Rn−1) coinciding with

f(w1, . . . , wn−1) =
e

Pn
i=1 bi

1/2 ∏n
i=1 bi

1/2

2n/2−1πn/2
w
−3/2
1 · · ·w−3/2

n−1

(
1−

n−1∑
i=1

wi

)−3/2

(7)

× (An(w1, . . . , wn−1))−n/4K−n
2

(
(An(w1, . . . , wn−1))1/2

)
,

where An(w1, . . . , wn−1) :=
∑n−1

i=1 bi(wi)
−1 + bn(1 −

∑n−1
j=1 wj)

−1. Clearly, (7) reduces to the

marginal distribution (6) if n = 2. Based on the class of distributions in (7), in [19] a family of

consistent finite-dimensional distribution is defined and it is shown that there exists a random

probability measure P , termed normalized inverse Gaussian process with parameter measure

α = c P0 and denoted by N-IGc, P0 , having (7) as finite-dimensional distributions.

The second construction of a normalized inverse Gaussian process we will need is the one via

normalization of an inverse Gaussian process, which corresponds to the definition of a Dirichlet

process as normalized gamma process [8]. To this end first recall the important concept of com-

pletely random measure [18]: suppose µ is a random measure on some complete and separable

metric space X such that for any measurable A1, . . . , An, with Ai∩Aj = ∅ for i 6= j, the random

variables µ(A1), . . . , µ(An) are mutually independent. Then, µ is termed completely random
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measure. A completely random measure µ, without jumps at fixed points of discontinuity, is

uniquely identified by its Lévy intensity ν by means of its Lévy-Khintchine representation

E
[
e−

R
X f(x)µ(dx)

]
= exp

{
−
∫

R+×X

(
1− e−sf(y)

)
ν(ds, dy)

}
for any measurable R-valued function such that

∫
|f |dµ < ∞ almost surely. Another property

to recall is the almost sure discreteness of completely random measures, which implies that any

completely random measure µ is representable as µ(·) =
∑

j≥1 JjδYj (·). For our purposes it is

enough to focus on completely random measures µ such that µ(X) < ∞ almost surely and the

locations Yj are independent of the jumps Jj , Moreover, without loss of generality, the locations

(Yj)j≥1 can be assumed to be independent and identically distributed from a non-atomic P0.

This is equivalent to saying that the Lévy intensity factorizes as ν(ds, dy) = ρ(ds)P0(dy) so that

the corresponding completely random measure is homogeneous. And we further assume that

ρ admits density and ρ(R+) = ∞. Note that if ρ has infinite total mass, then the completely

random measure is strictly positive so that the normalization we are going to carry out is

admissible. On the other hand, homogeneity is motivated by mere technical convenience.

We now recall the definition of homogeneous normalized random measures with independent

increments [30, 14], which contain the Dirichlet and normalized inverse Gaussian processes as

special cases. In fact, starting from a completely random measure satisfying the above conditions

one can always define a homogeneous normalized random measure with independent increments

as

P (·) =
µ(·)
T

=
∑
j≥1

pjδYj (·), (8)

with T := µ(X) =
∑

j≥1 Jj and pj = Jj/T for any j ≥ 1.

To finally define the normalized inverse Gaussian process via normalization consider first an

inverse Gaussian completely random measure, which is characterized by the Lévy intensity

ρ(ds)P0(dy) =
b1/2

(2π)1/2
s−3/2e−

1
2
a sds P0(dy), (9)

with b > 0 and where, without loss of generality for our scope, we can set a = 1. One then

obtains the N-IGb1/2,P0
process as a homogeneous normalized random measure with independent

increments (8) characterized by the Lévy intensity (9) with a = 1. The Dirichlet process is

obtained by replacing the inverse Gaussian with a gamma completely random measure or, in

other terms, (9) with ρ(ds)P0(dy) = a s−1e−sds P0(dy) for any a > 0.

2.3 Size biased permutations

Consider any discrete random probability measure P =
∑

j≥1 pjδYj , the only constraint being

that the locations (Yj)j≥1, which are are independent and identically distributed from a non-
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atomic probability measure P0, are independent from the random probabilities (pj)j≥1. Note

that homogeneous normalized random measures with independent increments defined in Section

2.3 fit into this general framework. An interesting rearrangement of the elements of (pj)j≥1

can be obtained by the so-called size-biased permutation, a concept originated in Population

Genetics and defined by the following procedure. Consider an exchangeable sequence (Xn)n≥1

directed by the discrete random probability measure P . Correspondingly, define (Ni)i≥1 as

the successive times at which new values of the sequence (Xn)n≥1 appear, namely N1 = 1

and Nj := inf{i > Nj−1 : Xi 6∈ {X1, . . . , Xi−1}} for any j ≥ 2. Note that P[Nn > n] > 0

since, due to the discreteness of P , ties will be recorded with positive probability. Moreover,

let (ξi)i≥1 be an integer valued sequence such that P[ξi = n | (pj)j≥1] = pn and P[Xn = Yξn |
(pj)j≥1, (Yj)j≥1, (ξi)i≥1] = 1. Hence ξn identifies the specific location Xn coincides with and

this clearly entails that ξNi 6= ξN`
if i 6= `. Finally, set

p̃i = pξNi
(10)

for i ≥ 1 with the convention p̃i = 0 if the distinct values in (Xn)n≥1 are fewer than i. The

sequence (p̃j)j≥1 is termed size-biased permutation of (pj)j≥1. Moreover, (pj)j≥1, or the cor-

responding random probability measure P , is termed invariant under size-biased permutation

if (p̃j)j≥1, whose coordinates are defined according to (10), has the same finite dimensional

distributions as (pj)j≥1. See [28] and references therein for details.

The importance of invariance under size-biased permutations is best illustrated by the fol-

lowing considerations. Clearly stick–breaking priors can be defined whatever the choice of

[0, 1]–valued random weights (Vi)i≥1 provided they ensure
∑

i≥1 pi = 1, almost surely, in (1).

Nonetheless for the investigation of certain distributional properties of P , which are of interest

in statistical applications, invariance under size–biased permutations is essential. Indeed, if one

aims at analyzing the clustering structure induced by P or at making predictions about the out-

comes of future observations, one needs an expression for the exchangeable partition probability

function and this can be hardly recovered unless P is invariant under size-biased permutations.

To make this point clear, let X1, . . . , Xn be a sample from an exchangeable sequence (Xi)i≥1,

directed by P , that features Kn ≤ n distinct values: these, in turn, define a partition into Kn

clusters with respective frequencies N1,n, . . . , NKn,n. Hence, the exchangeable partition proba-

bility function is the probability distribution of the random vector (Kn, N1,n, . . . , NKn,n), that

is

p
(n)
k (n1, . . . , nk) := P(Kn = k,N1,n = n1, . . . , NKn,n = nk)

=
∑

i1 6=···6=ik

E(pn1
ij
· · · pnk

ik
). (11)
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From an operational standpoint the expression in (11) is not useful: for certain specifications

of the stick-breaking random probabilities pi’s one may be able to compute the expected value

E(pn1
ij
· · · pnk

ik
) but the sum over the indices i1, · · · , ik cannot be evaluated explicitly. Even

numerically it is a highly demanding task already for moderately small values of k. Importantly,

(11) can be re-expressed in much simpler form in terms of the size-biased permutation (p̃i)i≥1

of the sequence (pi)i≥1, namely

p
(n)
k (n1, . . . , nk) = E

 k∏
i=1

p̃ni
i

k−1∏
j=1

(1−
j∑
r=1

p̃r)

 (12)

See Equation (8) in Pitman (1996). Now, if and only if P is invariant under size-biased per-

mutations, the p̃i’s in (12) can be replaced by the stick-breaking random probabilities pi’s.

Consequently, p(n)
k can be more easily evaluated by using (12), instead of (11), with the the

simple stick-breaking pi’s in place of their sized biased permutations, whose distribution, unless

invariance holds, is typically very complicated or not known. For instance, in the Dirichlet case

one then immediately obtains from (12) the well-known Ewens’ sampling formula

p
(n)
k (n1, . . . , nk) =

ck

(c)n

k∏
i=1

(ni − 1)!

with (c)n = c(c + 1) . . . (c + n − 1) denoting the ascending factorial. Similarly one obtains the

Pitman sampling formula in the two parameter Poisson-Dirichlet case. In light of the above

considerations it is apparent why no exchangeable partition probability function is known for

stick-breaking priors other than those invariant under-sized biased permutations.

Now consider the class of homogeneous normalized random measures with independent in-

crements (8) and denote by (J(j))j≥1 the sequence of jumps of µ rearranged in decreasing order.

The corresponding sequence of random probability weights is then given by p(j) = J(j)T
−1 for

any j ≥ 1. [26] generalized the result in [24]. Indeed, they derived a stick-breaking character-

ization for the size-biased permutation (p̃j)j≥1 of the sequence of ranked random probabilities

(p(j))j≥1 by providing a detailed description of the distribution of the sequence (Vi)i≥1 within

(1) in terms of the measure ρ and the distribution of the total mass T . Now turn attention back

to the random probability measures. Since the locations (Yj)j≥1 are assumed to be independent

and identically distributed from a non-atomic probability measure P0 independent of the ran-

dom probabilities (pj)j≥1 and given the sequences (p(j))j≥1 and (p̃j)j≥1 represent two specific

rearrangements of the original sequence (pj)j≥1, one clearly has

P (·) =
∑
j≥1

p(j)δYj (·) =
∑
j≥1

p̃jδYj (·) (13)
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in distribution. By combining this with the definition of the Dirichlet process as normalized

Gamma process and the identity (13), one recovers the its stick-breaking representation. The

same strategy is followed for the derivation of the stick-breaking representation in the normalized

inverse Gaussian case.

2.4 Proof

Given the material provided in the previous sections, the proof of Proposition 1.1 is now a quite

straightforward application of Theorem 2.1 in [26]. Consider an inverse Gaussian completely

random measure: let fT be the density function of the corresponding total mass T

fT (t) =
eb

1/2
b1/2

(2π)1/2
t−3/2 exp

{
−1

2

(
t+

b

t

)}
. (14)

and denote by λ the density function of ρ in (9) given by

λ(s) =
b1/2

(2π)1/2
s−3/2 exp

{
−1

2
s

}
. (15)

The normalized inverse Gaussian process, by the identity in (13) and its construction via nor-

malization P = µ/T recalled in Section 2.2, can be represented as

P (·) =
∑
j≥1

p̃jδYj (·) (16)

where (p̃j)j≥1 is the size-biased permutation of the ranked random probabilities of P and (Yj)j≥1

is a sequence of independent and identically distributed random variables, which are independent

of the p̃j and whose common probability distribution P0 is non-atomic.

Now, by Theorem 2.1 in [26], the sequence (p̃j)j≥1 in (16) has stick-breaking representation

in terms of some sequence of dependent random variables (Vi)i≥1. In particular, they provide

a structural expression for the joint distribution of the random variables (V1, . . . , Vi), for any

i ≥ 1, in terms of the density functions fT and λ. We start by deriving the distribution of V1.

According to Eq. (2.d) in [26], the density function of the random variable V1 is of the form

fV1(v1) = v1

∫ +∞

0
tλ(v1t)fT ((1− v1)t)dt

=
eb

1/2
b1/2

2π
v
−1/2
1 (1− v1)−3/2

∫ +∞

0
t−1−1 exp

{
−

b
2(1−v1)

t
− t

2

}
dt

where the second identity is obtained by inserting (14) and (15). The density displayed in (4)

is obtained by combining the identity K−1/2(b1/2) = π1/2e−b
1/2

(2b)−1/2 with Formula 3.471.9 in

[9] and setting b = a. The representation in (3), or (3′), follows by the definition of normalized
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generalized inverse Gaussian distribution given in Definition 2.1 and the corresponding density

(5). Now consider the case i = 2: according to Eq. (2.d) in [26], the density function of the

random variables (V1, V2) is

fV1,V2(v1, v2) = v1v2(1− v1)
∫ +∞

0
t2λ(v1t)λ(v2(1− v1)t)fT ((1− v1)(1− v2)t)dt

=
eb

1/2
b

(2π)3/2
v
−1/2
1 (1− v1)−2v

−1/2
2 (1− v2)−3/2

∫ +∞

0
t−3/2−1 exp

{
b

2(1−v1)(1−v2)

t
− t

2

}
dt

where the second identity is obtained by inserting (14) and (15). The density of (V2 | V1) in (4) is

obtained by using formula 3.471.9 in [9] and by dividing by the density of V1, provided a in (4) is

set equal to b appearing in the expression above. The representations in (3) or (3′) follow again

by Definition 2.1. Proceeding along the same lines one obtains the density of (Vi | V1, . . . , Vi−1)

displayed in (4) for any i ≥ 3.

3 Concluding remarks

For drawing posterior inferences in complex models based on some stick-breaking prior, the

knowledge of a posterior representation of the random probability is not necessary. Nonetheless,

the derivation of a posterior representation is important for understanding the distributional

structure of the model conditional on observed data. Here we provide such a structural de-

scription starting from the general result provided in Theorem 1 in [15] and show how the

stick-breaking construction as well as the normalized GIG distribution appear in it.

Consider a N-IGb1/2,P0
prior and suppose the observed sample X1, . . . , Xn has displayed k

distinct values X∗1 , . . . , X
∗
k with respective frequencies n1, . . . , nk and introduce a latent random

variable Un whose density function, conditionally on X1, . . . , Xn, is such that fUn(u) ∝ un−1(u+

1/2)k/2−n exp[−{b(1 + 2u)}1/2]. It can be shown that conditionally on X1, . . . , Xn and on Un

the N-IGb1/2,P0
process coincides in distribution with

w0,u Pu +
k∑
i=1

wi,u δX∗
i

where Pu = µu/Tu is a N-IG{b(1+2u)}1/2, P0
random probability measure. Hence, the stick-

breaking weights giving rise to Pu are identified by a dependent sequence (Vi,u)i≥1 such that

V1,u ∼ N-GIG∗
(
b(1 + 2u), −1

2

)

Vi,u | V1,u, . . . , Vi−1,u ∼ N-GIG∗
(

b(1 + 2u)∏i−1
j=1(1− Vj,u)

, − i
2

)
.

12



Note, further, that

w0,u =
Tu

Tu +
∑k

i=1 Ji
wj,u =

Jj

Tu +
∑k

i=1 Ji
j ≥ 2

where Ji, for i = 1, . . . , k, and Tu are independent and Ji ∼ Ga(ni − 1/2, u+ 1/2).
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