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ABSTRACT. One of the main research areas in Bayesian Nonparametrics is the proposal and study
of priors which generalize the Dirichlet process. In this paper, we provide a comprehensive Bayesian
non-parametric analysis of random probabilities which are obtained by normalizing random
measures with independent increments (NRMI). Special cases of these priors have already shown
to be useful for statistical applications such as mixture models and species sampling problems. How-
ever, in order to fully exploit these priors, the derivation of the posterior distribution of NRMIs is
crucial: here we achieve this goal and, indeed, provide explicit and tractable expressions suitable for
practical implementation. The posterior distribution of an NRMI turns out to be a mixture with
respect to the distribution of a specific latent variable. The analysis is completed by the derivation
of the corresponding predictive distributions and by a thorough investigation of the marginal
structure. These results allow to derive a generalized Blackwell–MacQueen sampling scheme, which
is then adapted to cover also mixture models driven by general NRMIs.
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1. Introduction

The starting problem in Bayesian non-parametric inference is the definition of a prior
distribution on the space of all probability measures. After the introduction of the Dirich-
let process by Ferguson (1973), various approaches for constructing random probability
measures, whose distribution acts as a non-parametric prior, have been undertaken with the
aim of overcoming some of the drawbacks of the Dirichlet process (see Müller and Quintana,
2004, for a recent review). In the present paper, we focus on priors derived by a suitable nor-
malization procedure. To this end, it is worth recalling that the Dirichlet process can be
defined by normalizing the increments of a Gamma process (see Ferguson, 1973). Indeed, the
idea of constructing random probability measures by means of a normalization procedure has
been exploited and developed in a variety of contexts not closely related to Bayesian infer-
ence. An early example is Kingman (1975), where a random discrete distribution generated
by the stable subordinator is considered in connection with optimal storage problems. Other
interesting applications of the ‘normalization’ approach can be found in various areas such
as computer science, population genetics, statistical physics, excursion theory, combinatorics
and number theory. Further details and references on this are found in Pitman (2006).
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Even though the analysis of Kingman (1975) is developed without any reference to possible
implications for Bayesian inference, these are effectively pointed out by A.F.M. Smith in the
discussion of Kingman (1975): ‘. . . Ferguson’s Dirichlet process is a special case of a rather
more general class of processes. The question of interest to a Bayesian statistician is whether
there are any other processes in this class which are tractable’. In Regazzini et al. (2003)
the class of normalized random measures with independent increments (NRMI) is formally
introduced as the normalization of suitably time-changed independent increment processes
and distributional results for their means derived: this work shows that, at least in terms of
means, such processes are indeed tractable (see also James, 2002). In Lijoi et al. (2005) atten-
tion is focused on a special case of NRMI, namely the normalized-inverse Gaussian (N-IG)
process: the quantities relevant for its implementation in the context of mixture models are
derived and it is shown that such a prior exhibits an interesting and useful clustering behav-
iour, quite different from that of the Dirichlet process. The N-IG process is then embedded
in a larger subclass of NRMI in Lijoi et al. (2007a), which allows for an additional parameter
which greatly influences the clustering structure. Special NRMIs turn out to be useful also
in relation to species sampling problems, in particular, for the analysis of expressed sequence
tags (ESTs) in genomics as shown in Lijoi et al. (2007b). In order to both understand
better the structural properties of and go beyond the specific processes dealt with in the above
mentioned papers, it is clear that the knowledge of the posterior distribution of an NRMI is
required. Here we fill this gap and provide a complete and implementable description of the
posterior distribution: this addresses the issue of tractability raised by A. F. M. Smith, which
in a Bayesian setting, necessarily coincides with the tractability of the posterior distribution.

Before proceeding, the important contributions in Perman et al. (1992), Pitman &
Yor (1997) and Pitman (2003) related to Kingman’s construction, albeit not directly in
Bayesian Nonparametrics, are to be noted. In Pitman (1996, 2003) a thorough analysis of the
two parameter Poisson-Dirichlet family, which can be generated by a stable subordinator, is
provided. The utility of this family for Bayesian mixture models is discussed in Ishwaran &
James (2001, 2003).

1.1. Preliminaries

The results achieved in the paper are heavily based on the notion of completely random
measure. Hence, it is worth providing a brief preliminary description of the main concepts
involved in the next sections.

For any topological space T , B(T ) will denote the Borel �-field of subsets of T . Let
(�, F, P) be some probability space and X be complete, separable and endowed with a metric
dX. Define on (�, F, P) a Poisson random measure Ñ on S=R+ ×X with intensity measure
�. This means that

(i) for any C in B(S) such that �(C)=E[Ñ(C)] <∞, the probability distribution of the
random variable Ñ(C) is Poisson(�(C));

(ii) for any finite collection of pairwise disjoint sets, A1, . . ., Ak , in B(S), the random vari-
ables Ñ(A1), . . ., Ñ(Ak) are mutually independent.

Moreover, the measure � must satisfy the following conditions,∫
(0,1)

s� (ds, X) <∞, �([1, ∞)×X) <∞.

We refer to Daley & Vere-Jones (1988) for an exhaustive account on Poisson random
measures.
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If (M, B(M)) is the space of boundedly finite measures on (X, B(X)), denote by �̃ a ran-
dom element defined on (�, F, P) and with values in (M, B(M)) which can be represented
as a linear functional of the Poisson random measure Ñ , with intensity �, as follows,

�̃(B)=
∫

R+×B
sÑ (ds, dx) ∀B ∈B(X). (1)

It can be easily seen from the properties of Ñ that �̃ is, in the terminology of Kingman
(1967), a completely random measure on X, i.e. for any collection of disjoint sets in B(X),
A1, A2, . . ., the random variables �̃(A1), �̃(A2), . . . are mutually independent and �̃(∪j≥1Aj)=∑

j ≥1 �̃(Aj) holds true a.s.-P. It is well known that �̃ is uniquely characterized by its Laplace
functional

E
[
e−∫

X h(x)�̃ (dx)
]
= e−∫

S [1−e−sh(x) ]� (ds, dx),

where h : X→R+ is a measurable function. For a proof of such a representation, see theorem
2 in Kingman (1967). Details and further references on completely random measures can be
found in Kingman (1993).

From this preliminary illustration, it is apparent that both the Poisson random measure Ñ
and the completely random measure �̃ are identified by the corresponding intensity
measure �. This suggests a simple and useful distinction of the random measures we deal
with according to the decomposition of �. Letting H be a non-atomic and �-finite measure
on X, we have:

(a) if �(ds, dx)=�(ds)H(dx), for some measure � on R+, we say that the corresponding
Ñ and �̃ are homogeneous;

(b) if �(ds, dx)=�(ds |x)H(dx), where � :B(R+)×X→R+ is a kernel, i.e. x �→�(C |x) is
B(X) measurable for any C ∈B(R+) and �(·|x) is a �-finite measure on B(R+) for
any x in X, we say that the corresponding Ñ and �̃ are non-homogeneous.

Recall that in our framework � always admits a disintegration as in (b); this follows, e.g. from
theorem 15.3.3 in Kallenberg (1986).

Remark 1. Note that the construction which led us to define a random measure via (1) can
be extended by considering more general linear functionals of the Poisson measure Ñ . For
example, James (2002), using an approach closely connected to Perman et al. (1992), con-
siders the so-called h-biased random measures, that is

∫
S×X

h(s)Ñ (ds, dx), where h : S → R+

and S is any complete and separable metric space. The results we provide in the next sections
can also be extended to h-biased random measures.

1.2. Construction of NRMI

Since the aim is to define random probability measures by means of normalization of com-
pletely random measures, the total mass T := �̃(X) needs to be finite and positive, almost
surely. This happens if �(S)=+∞ and the Laplace exponent

�(�) :=
∫

S

[
1− e−�s

]
� (ds, dx) (2)

is finite for any positive �. A proof of this fact can be found, e.g. in Regazzini et al. (2003,
p. 563 and proposition 1, respectively). When these conditions hold true, a normalized
random measure with independent increments (NRMI) on (X, B(X)) is given by

P̃(·)= �̃(·)
T

. (3)
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Note that, when X=R, this definition coincides with the one given in Regazzini et al. (2003)
in terms of increasing additive processes. Indeed, it is worth remarking that an increasing
additive process can always be seen as the càdlàg distribution function induced by a com-
pletely random measure on R. Moreover, as shown in James (2003), NRMIs select, almost
surely, discrete distributions. Before proceeding, we recall that T is assumed to be a random
variable whose distribution is absolutely continuous with respect to the Lebesgue measure on
R and denote its density as fT . Such a regularity assumption allows to avoid some technical
difficulties and it is commonly adopted in this framework. The interested reader is referred
to section 3 of Pitman (2003) for further details.

It is worth noting that some priors that are used in Bayesian non-parametric inference
can be defined as in (3). For instance, consider the Dirichlet process with parameter
measure H =�P0. Then, as already noted by Ferguson (1973), such a prior can be recovered
by considering a Gamma random measure with Laplace functional

E
[
e−∫

X h(x)�̃ (dx)
]
= e−�

∫
S[1−e−sh(x)] e−s

s dsP0 (dx) = e−�
∫

X log[1+h(x)]P0 (dx)

for any h : X → R+ such that
∫

log[1+h(x)]P0 (dx) <∞. Other examples are the normalized
stable process (Kingman, 1975); the normalized inverse-Gaussian process (Lijoi et al., 2005);
the generalized Gamma process (James, 2002; Lijoi et al., 2007a). It is interesting to note that
the two latter models as well as the two parameter Poisson–Dirichlet process are derivable
from a stable subordinator by a change of measure (see Pitman, 2003).

We close this subsection by pointing out that P̃ in (3) admits a series representation of
the kind �i≥1p̃i	Xi (·), where 	x denotes the point mass at x. The most notable example is the
Sethuraman (1994) representation of the Dirichlet process. In the case of a general NRMI,
if the underlying intensity � is homogeneous, then the weights p̃is are independent from the
locations Xi and P̃ is a species sampling model (see Pitman, 1996, 2003). On the other hand,
when � is non-homogeneous, the weights and the locations are no longer independent and
P̃ is not a species sampling model.

1.3. Outline of the paper

In this paper we consider Bayesian inference by exploiting the law of an NRMI as
a non-parametric prior distribution. Under the usual assumption of exchangeability of the
observation process, we derive in section 2 a representation for the posterior distribution
of P̃ in terms of a mixture with respect to the distribution of a suitable latent variable. In
section 3 we determine the prediction rule and thoroughly study the marginal distribution of
the observations. Relying on these results, a generalization of the Blackwell–MacQueen
sampling scheme is also provided. In section 4 the results are adapted to cover mixture models
driven by NRMIs and the corresponding simulation algorithm is described in detail. Finally,
section 5 provides some concluding remarks. In order to ease the flow of ideas, proofs are
given in the Appendix.

2. Posterior distributions for NRMIs

In this section we aim at deriving a tractable expression for the posterior distribution of an
NRMI. This represents a challenging issue since, with the exception of the Dirichlet process,
NRMIs are not conjugate as shown in James et al. (2006). Indeed, apart from its simplicity
and ease of interpretation, the popularity of the Dirichlet process is also due to its conju-
gacy property which makes posterior inferences more tractable from an analytic point of
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view. However, we are able to show that, conditional on a specific latent variable, the pos-
terior distribution of an NRMI coincides with the distribution of another NRMI having a
rescaled intensity and fixed points of discontinuity. This can be seen as a kind of conditional
conjugacy.

Let us first introduce a sequence (Xn)n≥1 of exchangeable observations defined on (�, F, P)
and with values in X in such a way that, given P̃, the Xis are i.i.d. with distribution P̃, i.e.

P[X1 ∈C1, . . ., Xn ∈Cn | P̃]=
n∏

i =1

P̃(Ci). (4)

Moreover, set X= (X1, . . ., Xn). It is clear that one can always represent X as (Y, �), where
Y= (Y1, . . ., Yn(�)) denotes the distinct observations within the sample and � stands for
a partition of {1, . . ., n} of size n(�) recording which observations within the sample are
equal. The number of elements in the jth set of the partition is indicated by nj , for
j =1, . . ., n(�), so that �n(�)

j =1nj =n. The partition mechanism is ideally suited to carry out
posterior analysis when data contain ties: this is certainly the case for discrete random prob-
ability measures and thus, in particular, for NRMIs.

Before stating the main theorem, we define a positive random variable Un as follows. Let
�n be a Gamma random variable with scale parameter 1 and shape parameter n, which is
independent from the total mass T. Then, set Un =�n/T . It is immediate to show that, for
any n≥1, the density function of Un is given by

fUn (u)= un−1

�(n)

∫
R+

tn e−utfT (t) dt, (5)

where fT is the density function of T. It will be shown that the posterior distribution of Un,
given X, is of great importance for our analysis.

Proposition 1
Let P̃ be an NRMI. Then, the conditional distribution of Un, given X, admits a density function
coinciding with

f X
Un

(u)∝un−1
n(�)∏
i =1


ni (u |Yi) e−�(u),

where 
ni (u |Yi)=
∫

R+ sni e−us� (ds |Yi) for i =1, . . ., n(�).

Even though its proof is based on the result of the next theorem 1, it is worth introducing
it in advance because of the key role played by this latent random variable Un for developing
the posterior analysis of NRMIs. In what follows, for any pair of random elements Z and
W defined on (�, F, P), we use the symbol Z(W ) to denote a random element on (�, F, P)
whose distribution coincides with a regular conditional distribution of Z, given W. Let us
provide the main result concerning a posterior characterization of the completely random
measure itself.

Theorem 1
Let P̃ be an NRMI with intensity �(ds, dx)=�(ds |x)H(dx). Then

�̃(Un ,X) d= �̃(Un) +
n(�)∑
i =1

J (Un ,X)
i 	Yi ,

where

© 2008 Board of the Foundation of the Scandinavian Journal of Statistics.
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(i) �̃(Un) is a completely random measure with intensity

�(Un)(ds, dx)= e−Uns�(ds |x)H(dx),

(ii) Yi, for i =1, . . ., n(�), are the fixed points of discontinuity and the J (Un ,X)
i s are the

corresponding jumps whose density is proportional to sni e−Uns�(ds |Yi),
(iii) �̃(Un) and J (Un ,X)

i (i =1, . . ., n(�)) are independent.

Given the importance of theorem 1, we provide two alternative proofs in the Appendix,
which rely on different general techniques for deriving posterior distributions. The first works
with the underlying Poisson random measure, which constitutes the core of many discrete
random measures, and is due to James (2002, 2005a). The second proof exploits the
approach set forth in Prünster (2002) and works directly at the level of the completely random
measure �̃.

The result in theorem 1 sheds some light on the deep structure of the random measures
at issue. It essentially shows that, given some latent variable, a posteriori �̃ is still a com-
pletely random measure with fixed points of discontinuity corresponding to the locations of
the observations. The reader may note that this characterization is somehow reminiscent of
the posterior characterization of neutral to the right priors provided by Ferguson (1974). Re-
call that the class of neutral to the right priors, introduced in Doksum (1974) and of great
popularity in the context of survival analysis, is defined via an exponential transformation of
increasing additive processes. Indeed, Ferguson’s characterization studies the posterior distri-
bution of the increasing additive process (instead of its transformation) and identifies it as
a process with updated Poisson intensity and with fixed points of discontinuity at the loca-
tion of the observations (see also Hjort, 1990; Walker & Muliere, 1997; Kim, 1999; James,
2006). Besides the analogy, it is worth remarking two substantial differences. The first is due
to the non-conjugacy of NRMIs: in contrast to the neutral to the right case, here we first
have to identify an appropriate latent variable and then, conditionally on it, determine a pos-
terior characterization of �̃. The second is due to the type of transformation of �̃ employed
for defining the random probability measures: NRMIs are obtained via normalization while
neutral to the right measures via an exponential transformation. This clearly affects the updat-
ing mechanism of the intensity measure and the distribution of the jumps which are very
different. The previous result is also essential for deriving the posterior distribution for the
class of NRMIs. In the following, by posterior distribution of P̃, given Un, we always refer
to the distribution of P̃ given the data X and Un.

Theorem 2
If P̃ is an NRMI with intensity �(ds, dx)=�(ds |x)H(dx), then the posterior distribution of P̃,
given Un, is again an NRMI (with fixed points of discontinuity). In particular, it coincides in
distribution with the random measure

w
�̃(Un)

T (Un)
+ (1−w)

∑n(�)
i =1 J (Un ,X)

i 	Yi∑n(�)
i =1 J (Un ,X)

i

,

where T (Un) = �̃(Un)(X), w=T (Un){T (Un) +∑n(�)
i =1 J (Un ,X)

i }−1. The distributions of �̃(Un) and J (Un ,X)
i

(i =1, . . ., n(�)) and the distribution of Un, given X, are those specified in theorem 1.

We close the present section by introducing two examples of NRMIs; thus, pointing out
how the results obtained so far can be applied in order to determine the posterior distribu-
tions. It is worth remarking that other examples can be easily obtained by simply plugging
into theorem 1 any Poisson intensity leading to a well-defined NRMI (3).
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Example 1. We first consider an NRMI based on the homogeneous intensity measure

� (ds, dx)= 1√
2�

e− 1
2 s

s
3
2

dsH(dx). (6)

Since �(R+ × X)=∞, then T is positive almost surely and finiteness of (2) is equivalent to
requiring H to be a finite measure. Hence, H can be represented as H =�P0, where �> 0 and
P0 is a probability distribution on X. The resulting prior P̃, obtained through (3), is also
known as normalized inverse-Gaussian (N-IG) process. Note that for this process a descrip-
tion of the family of finite-dimensional distributions has been provided in Lijoi et al. (2005).
Here, based on theorem 1, we provide a characterization of the posterior distribution of this
useful prior. It can be easily checked that 
j(u |x)= 
j(u)=2 j−1�( j − 1

2 )(
√

�[2u +1] j−1/2)−1, for
any j ≥1. Moreover, �(u)=�(

√
2u +1−1). From proposition 1, one then gets

f X
Un

(u)∝ un−1 e−�
√

2u +1

(2u +1)n−n(�)/2
.

Given Un, the posterior distribution of �̃ coincides with the distribution of �̃(Un) +∑n(�)
i =1 J (Un ,X)

i 	Yi where �̃(Un) is a completely random measure with intensity

1√
2�

e−s
(

1
2 +Un

)

s
3
2

dsH(dx),

and the jumps J (Un ,X)
i are Gamma distributed with scale parameter Un +1/2 and shape

parameter ni − 1/2, for i =1, . . ., n(�). By replacing (6) with the intensity corresponding to
generalized Gamma random measures, which include the inverse Gaussian process
as a special case, one obtains the class of NRMI considered in Lijoi et al. (2007a) and
applied, within a hierarchical model, to clustering problems. Theorem 1 allows to derive their
posterior distribution in a straightforward way.

Example 2. Let us now consider an NRMI based on the non-homogeneous intensity

�(ds, dx)= e−�(x)s

s
dsH(dx),

where � : X → R+. Dykstra & Laud (1981) discussed such a random measure for the case
X=R and termed it extended Gamma process with parameters (H , �). This model described
on more abstract spaces is discussed in Lo (1982) and is termed a weighted Gamma pro-
cess. Much attention has been paid to extended Gamma processes in the Bayesian literature,
with particular emphasis on problems related to survival analysis. In order to exploit the
extended Gamma process for defining an NRMI, we need to ensure that T is positive and
finite almost surely. Since �(S)=∞, positiveness follows. Moreover, finiteness is equivalent
to the requirement that H and � are such that

∫
X

log(1+��(x)−1)H (dx) <∞, for every �≥0.
Given these, the corresponding extended Gamma NRMI with parameter (H , �) is well
defined. Since 
j(u | x)=�(j)[�(x)+u]−j , for any j ≥ 1 and x in X, and �(u)=∫

X
log[�(x)+

u]H(dx), from proposition 1 it is possible to deduce that

f X
Un

(u)∝u n−1 exp
{

−
∫

X

log[�(x)+u]H∗ (dx)
}

, (7)

where H∗(·)=H(·)+∑n(�)
i =1 ni	Yi (·). As for the posterior distribution, by theorem 1 one has

that, conditionally on Un, the posterior distribution of �̃ coincides with the distribution of
the sum of an extended Gamma process with parameter (H , �+Un) and n(�) jumps corres-
ponding to the distinct observations Y. Conditionally on Un and X, the ith jump is Gamma
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distributed with parameters (�(Yi)+Un, ni), for i =1, . . ., n(�). Thus, for any function
h : X→R+ such that

∫
X

log[h(x)+�(x)]H (dx) <∞,

E[e−∫
X h(x)�̃ (dx) |Un, X]= e−∫

X log[h(x)+�(x)+Un ]H (dx)−∑n(�)
i =1 ni log[h(Yi )+�(Yi )+Un ]

= e−∫
X log[h(x)+�(x)+Un ]H∗ (dx)

and one easily concludes that the extended Gamma NRMI, given Un and X, is still an
extended Gamma NRMI with parameter (H∗, �+Un). It is worth noting that priors based
on non-homogeneous measures have always played an important role in the Bayesian non-
parametric inference for modelling survival data and spatial phenomena (see, e.g. Ferguson,
1974; Lo, 1982; Hjort, 1990; Walker & Muliere, 1997; Wolpert & Ickstadt, 1998). Up to now
NRMI based on non-homogeneous intensities appeared to be untractable, but thanks to
theorem 1 this seems not to be the case anymore.

3. Predictive and marginal distributions

Apart from the posterior distribution, a Bayesian can be also interested in a rule for predict-
ing future values of the observations, given those already observed, and a sampling scheme
for generating observations governed by an NRMI. When P̃ is a Dirichlet process, with
parameter measure �P0, it is well known that the predictive distribution has the following
simple form,

P[Xn+1 ∈C |X ]= �
�+n

P0(C)+ n
�+n

1
n

n∑
i =1

	Xi (C) (8)

for any C in B(X). Moreover, the marginal distribution of the observations can be expressed
in terms of the celebrated Ewens sampling formula. More precisely, given that the distribu-
tion of X is characterized by the joint distribution of (Y , �), one has that the latter coincides
with(

n(�)∏
i =1

P0(dYi)

)
�n(�)

(�)n

n(�)∏
i =1

�(ni), (9)

where (�)n =�(�+n)/�(�) is the Pochhammer symbol. The Ewens sampling formula is
the best-known case of exchangeable partition probability function (EPPF) and it basically
represents the marginal distribution of the partition �. A detailed illustration of the EPPF
concept can be found in Pitman (2006). Its role in a Bayesian context, for the homogeneous
case, can be deduced from Pitman (1996) and Ishwaran & James (2003), whereas for the non-
homogeneous case one can refer to James (2006). In this section we provide the analogues
of (8) and (9) for the more general class of NRMIs.

3.1. The prediction rule

Once we have derived the posterior distribution of an NRMI, the determination of the cor-
responding predictive distributions is quite straightforward.

Proposition 2
Let P̃ be an NRMI with intensity �(ds, dx)=�(ds |x)H(dx). Then the predictive distribution for
Xn+1 given X coincides with
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P
[
Xn+1 ∈dx |X]=w(n)H(dx)+ 1

n

n(�)∑
j =1

w(n)
j 	Yj (dx), (10)

where, for j =1, . . ., n(�),

w(n) = 1
n

∫
R+

u
1(u |x)f
X

Un
(u) du, w(n)

j =
∫

R+
u

nj +1(u |Yj)


nj (u |Yj)
f

X

Un
(u) du.

These predictive distributions have quite intuitive forms, since they consist of a linear com-
bination of H and of a weighted version of the empirical distribution. Note that the predic-
tion rule reduces to the one provided by Pitman (2003) in the homogeneous case (see also
James, 2002; Prünster, 2002).

3.2. The marginal distribution

It is apparent from the previous results on the posterior and the predictive distributions that
the use of partitions is of great help. The same can be said when facing the issue of character-
izing the marginal distribution of the vector of (exchangeable) observations X= (X1, . . ., Xn),
for any n≥1. Indeed, the marginal distribution of X can be described in terms of the distri-
bution of (Y, �), where, as before, � is a partition of the n integers {1, . . ., n} into n(�) sets,
Y = (Y1, . . ., Yn(�)) is the vector of distinct values among the Xis. Note that n(�) ∈{1, . . ., n}
since, as was mentioned before, NRMIs select discrete distributions on X with probability 1.
This allows us to confine ourselves to the determination of the distribution of (Y , �). Before
describing the distribution M of X, let us introduce the following quantity,


nj (u)=
∫

X


nj (u |x)H (dx),

which is the cumulant of order nj of the conditional distribution of the total mass T , given
Un =u.

Proposition 3
Let P̃ be an NRMI. Then the distribution of (Y, �) coincides with

1
�(n)

⎧⎨
⎩
∫

R+
un−1 e−�(u)

⎡
⎣n(�)∏

j =1


nj (u |Yj)

⎤
⎦ du

⎫⎬
⎭

n(�)∏
j =1

H (dYi). (11)

Moreover, the marginal distribution of � yields the EPPF and it is given by

�(n)(�)= 1
�(n)

∫
R+

un−1 e−�(u)

⎡
⎣n(�)∏

j =1


nj (u)

⎤
⎦ du. (12)

The EPPF given in (12) was first obtained by Pitman (2003). For a concrete use of the
marginal distribution of the Xis, we will generally need a simpler description of M and of
the corresponding EPPF. This can be achieved by working conditionally on the latent variable
Un. As for the EPPF, a tractable form we wish to obtain is of the kind

�(n)(�)=Vn,n(�)

n(�)∏
i =1

Wni ,

where Vn,n(�) is a positive quantity not depending on the specific (n1, . . ., nn(�)) and each Wni is
a positive number depending solely on the corresponding ni . A random partition having such
an EPPF is said to be of a Gibbs type (see Pitman, 2006, for the notion of infinite and finite
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Gibbs partitions). However, it is worth recalling that the only infinite EPPF admitting such
a representation are the EPPFs derived from a Dirichlet process and those derived from a
stable law of index 0 <�< 1 (see Pitman, 2006). Among them, we mention the two parameter
Poisson–Dirichlet process and the generalized Gamma class of processes.

Now, by examining (11), an augmentation and an application of Bayes’ rule makes it
apparent that, for fixed u > 0 and �,

P
[
Yi ∈dy |Un =u, �

]= 
ni (u |y)H(dy)

ni (u)

=: Hi,n(dy |u) (13)

for any i =1, . . ., n(�). At this point, we can provide a characterization of M, conditional on
Un.

Proposition 4
Let P̃ be an NRMI. Conditional on Un and on the partition �, the n(�) distinct values Y1, . . ., Yn(�)

among the Xis are independent and the distribution of Yi is given by (13), for any i =1, . . ., n(�).
Moreover, the conditional distribution of the random partition �, given Un =u, coincides with

�(n)(� |u)= e−�(u)
∏n(�)

i =1 
ni (u)∫
R+ tn e−utfT (t) dt

. (14)

Hence, conditional on Un, � is a finite Gibbs partition.

Note that in the homogeneous case the distinct observations are independent and identi-
cally distributed (i.i.d.) with common distribution P0.

In the light of proposition 4, an interesting quantity to consider is the number n(�) of dis-
tinct observations in a sample X of size n. For example, in non-parametric mixture models,
n(�) stands for the number of clusters in the sample of observations. Because of this, the liter-
ature has devoted much attention to it. In the Dirichlet case, the distribution of n(�) has been
investigated by Korwar & Hollander (1973) and exploited in the context of mixture models
by Antoniak (1974) and Lo (1984), where it takes on the interpretation of prior distribu-
tion on the number of components. In Pitman (2003, 2006) this distribution is described for
the case of the two parameter Poisson–Dirichlet process. More recently, the distribution of
n(�) for NIG and generalized Gamma mixture models has been studied in Lijoi et al. (2005,
2007a). We also refer to Lijoi et al. (2007b), where such distributions are used for devising a
Bayesian non-parametric estimator of the discovery probability in genomics problems. In our
case, using the fact that, conditionally on Un, � is a finite Gibbs partition one can determine
the distribution of n(�), given Un, as follows,

P
[
n(�)=k |Un =u

]= e−�(u)∫
R+ tn e−utfT (t) dt

n!
k!

∑
(n1,…, nk )

k∏
j =1


nj (u)

nj !

for k =1, . . ., n. The sum above runs over all vectors of positive integers (n1, . . ., nk) such that∑k
i =1 ni =n.
An important related issue to consider in this setting, is the distribution of the random

vector (|�1,n|, . . ., |�n,n|), where |�i,n| denotes the number of clusters of size i. According
to this definition, one obviously has

∑n
i =1 |�i,n|=n(�) and

∑n
i =1 i|�i,n|=n. Combination of

proposition 4 and of formula (52) in Pitman (2006, chapter 1) yields

P
[|�j,n|=mj , 1≤ j ≤n |Un =u

]= n! e−�(u)∫
R+ tn e−utfT (t) dt

n∏
j =1

(

j(u)

j!

)mj 1
mj !

(15)

where
∑n

j =1 mj =k and
∑n

j =1 jmj =n. Equivalently (15) is the conditional distribution, given
Un, of the number of values of (X1, . . ., Xn) appearing one time, two times, etc. corresponding
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to the numbers (m1, . . ., mn). Moreover, (15) is a generalization of the well-known Ewens
sampling formula.

Remark 2. It is interesting to note that all our results conditioned on Un, contain the
known unconditional results for the Dirichlet process. This is because the Dirichlet process
is independent of Un. To see this, recall that the Dirichlet process, with total mass �> 0, cor-
responds to the choice of �(ds)=�s−1 e−sds. It follows that for each j, 
j(u)=�(1+u)−j�(j)
and E[T (Un) |X]=E[T (Un)]= (1+Un)−n[�(�)/�(�+n)]. Additionally

f
X

Un
(u) := fUn (u)∝un−1(1+u)−(n+�),

that is Un =�n/T is a Gamma–Gamma random variable independent of X. Or, equivalently,
1/(1+Un) is a Beta(�, n) random variable. Hence, (15), specializes to

P
[|�j,n |=mj , 1≤ j ≤n |Un =u

]= n!∏n
i =1(�+ i −1)

n∏
j =1

(
�
j

)mj 1
mj !

.

This coincides with the Ewens sampling formula derived by Ewens (1972), which is equivalent
to an important result in Antoniak (1974). Finally, note that (14) becomes

�(n)(� |u) := �n(�)∏n(�)
j =1(ej −1)!∏n

i =1(�+ i −1)
,

which is the variant of Ewens sampling formula, often called the Chinese restaurant
process (see Ishwaran & James, 2003; Pitman, 2006). The calculations for the Dirichlet
process involving Un may be found in James (2005b), where it is shown that Un and its
variants still play a significant role.

Let us illustrate the results concerning the predictive and marginal distributions provided
in this section by referring to the two examples initiated in section 2.

Example 1 (continued).With reference to the N-IG process, as shown in Lijoi et al. (2005),
an application of proposition 2 leads to a predictive distribution of the form (10) with

w(n) =
∑n

r =0

(n
r

)
(−�2)−r +1�(n(�)+1+2r −2n;�)

2n
∑n−1

r =0

(n−1
r

)
(−�2)−r�(n(�)+2+2r −2n;�)

(16)

w(n)
j =

(
nj − 1

2

) ∑n
r =0

(n
r

)
(−�2)−r +1�(n(�)+2r −2n;�)∑n−1

r =0

(n−1
r

)
(−�2)−r�(n(�)+2+2r −2n;�)

, (17)

where �(a, b)=∫∞
b xa−1 e−x dx is the incomplete Gamma function. The EPPF corresponding

to the N-IG process turns out to be

e�(−�2)n−1

2n(�)−1�(n)

n−1∑
r =0

(
n−1

r

)
(−�2)−r�(n(�)+2+2r −2n;�)

⎧⎨
⎩

n(�)∏
j =1

(
1
2

)
nj −1

⎫⎬
⎭.

With reference to the conditional representations, we have, for instance, that the conditional
distribution of the random partition �, given Un =u, coincides with

�(n)(� |u)=
√

� e−�2n−n(�)−1/2

(�
√

1+2u)n−n(�)+1/2Kn−1/2(�
√

1+2u)

n(�)∏
i =1

(1−�)ni−1,

where K� denotes the modified Bessel function of second kind with index �.
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Example 2 (continued). According to proposition 2, the weights of the predictive
distribution are given by

w(n) = 1
nKX

∫
R+

un e−∫
R+ log[u +�(y)]H∗

x (dy) du,

w(n)
j = nj

KX

∫
R+

un e
−∫

R+ log[u +�(y)]H∗
Yj

(dy)
du,

where H∗
v (dy)=H(dy)+∑n(�)

i =1 ni	Yi (dy)+	v(dy), for any v in X, and KX is the normalizing
constant in (7). The predictive distribution can now be given a simplified representation as

P
[
Xn+1 ∈dx |X]= 1

nKX

∫
R+

un e−∫
X log[u +�(y)]H∗

x (dy) duH∗ (dx).

If one exploits proposition 4, it is possible to describe the partition structure induced by the
normalized extended Gamma prior through its conditional EPPF

�(n)(� |u)= e−∫
X log[u +�(x)]H (dx)

�n

n(�)∏
i =1

∫
X

�(ni)
[u +�(y)]ni

H (dy),

where �n :=∫
R+ tn e−utfT (t) dt. It is worth remarking the nice and simple Gibbs structure

featured by the above conditional EPPF. Moving to the unconditional EPPF, we resort to
proposition 3 and obtain∏n(�)

i =1 �(ni)
�(n)

∫
Xn(�)

∫
R+

un−1 e−∫
X log[u +�(x)]H∗ (dx) duH (dy1) · · ·H (dyn(�)),

where H∗(dx)=H(dx)+∑n(�)
i =1 ni	yi (dx).

3.3. A generalized Blackwell–MacQueen sampling scheme

Proposition 2, combined with the representation of the latent variable Un in proposition
1, suggests a simple scheme for sampling from the marginal distribution of the observa-
tions governed by a general NRMI. This yields an extension of the celebrated Blackwell–
MacQueen sampling scheme for the Dirichlet process. Let us provide a description of the
algorithm. Firstly, introduce a sequential formulation for partitions and related functions: for
r =1, . . ., n, let �r ={C1,r, . . ., Cn(�r ),r} denote a partition of the integers {1, . . ., r} into n(�r)≤ r
distinct sets. For each j =1, . . ., n(�r), one now has Cj,r ={i ∈{1, . . ., r} : Xi =Yj} and the size
of each set Cj,r is denoted by nj,r. Note that �n =�. The main idea of the algorithm is to
exploit the simple structure of the predictive conditional on the latent variable Un. Indeed,
such a predictive distribution can be represented as follows,

m(dXi |X1, . . ., Xi−1, Ui−1)=m(dXi |Y, �i−1, Ui−1)

∝
1(Ui−1)H1,1(dXi |Ui−1)+
n(�i−1)∑

j =1


nj, i−1 +1(Ui−1|Yj)


nj, i−1 (Ui−1 |Yj)
	Yj (dXi) (18)

for any i ≥ 2 and m(dX1 |u) ∝ 
1(u)H1,1(dX1 |u). The computational recipe works, then, as
follows,

(1) sample U0 from q0(u)= e−�(u)
∫

X

1(u |x)� (dx),

(2) sample X1 from m(dX1|U0),
(3) for any i ≥2,

(3a) sample Ui−1 from f Xi−1
Ui−1

(u) where Xi−1 = (X1, . . ., Xi−1),
(3b) sample Xi from m(dXi |X1, . . ., Xi−1, Ui−1),

(4) go to (3).
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The sampling scheme can be applied once the Poisson intensity of the underlying completely
random measure is assigned: indeed all relevant densities from which to sample are known
at least up to a proportionality constant. For instance, in the N-IG case, (18) reduces to

m(dXi |X1, . . ., Xi−1, Ui−1)= �(1+2Ui−1)
1
2

�(1+2Ui−1)
1
2 +2(i −1)−n(�i−1)

P0(dXi)

+ 2

�(1+2Ui−1)
1
2 +2(i −1)−n(�i−1)

n(�i−1)∑
i =1

(
ni − 1

2

)
	Yi (dXi),

(19)

which is straightforward to compute in contrast to the unconditional predictive which is
of the form (10) with weights (16)–(17). Having established a computational scheme for
generating from the marginal distribution of the observations, the most natural application
to think of is Bayesian non-parametric inference within hierarchical mixtures. This is the
topic of the next section.

4. Hierarchical mixture models

In terms of statistical applications, owing to the success of the Dirichlet process, one of the
most fruitful ways for exploiting NRMIs is their potential use as basic building blocks in
hierarchical mixture models. In this setting, X are missing values which capture the cluster-
ing structure within the data. This class of models was first introduced, for the Dirichlet
process, by Lo (1984) and later popularized by the development of suitable Markov Chain
Monte Carlo (MCMC) techniques in Escobar & West (1995). Recently, mixtures of Dirichlet
processes have been generalized to mixtures of stick-breaking priors (Ishwaran & James 2001,
2003) and of particular NRMIs (Lijoi et al., 2005, 2007a).

We first recall the model as set up by Lo (1984). Suppose {f (· |x) : x ∈ X} is a family
of non-negative kernels defined on a complete and separable metric space W such that∫

Y f (w |x)� (dw)=1 for any x in X and for some �-finite measure �. Next, let W= (W1, . . ., Wn)
be a vector of W-valued random elements such that

Wi | Xi
i.n.d.∼ f (· |Xi),

Xi | P̃ i.i.d.∼ P̃,

P̃ ∼NRMI.

This is the same as supposing that W1, . . ., Wn are exchangeable draws from the random den-
sity f̃ (·)=∫

X
f (· |x)P̃ (dx). One is naturally interested in the determination of the distribution

of the posterior density f̃ , given the observations W, which coincides with the distribution
of the random density∫

X

f (· |x)P̃
W

(dx),

where P̃
W

is the (posterior) random probability measure whose distribution is∫
P (dp |X)P (dX |W). (20)

Notice that in the previous integral P(dp |X) is the posterior distribution of the NRMI P̃,
given X, which is provided by theorem 2 and P(dX |W) is the distribution of the latent
variables, given the data W, which can be determined via Bayes’ theorem as

{∏n
i =1 f (Wi | Xi)}m(dX)∫ {∏n
i =1 f (Wi | Xi)}m (dX)′
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where m(dX) is the marginal distribution of the latent variables as described in (11) (see
Ishwaran & James, 2003). It is apparent that the main difficulties arise from the evaluation
of the integral in (20). In fact, one has to integrate with respect to all possible partitions of
the n latent variables X. The impossibility of achieving an exact analytical evaluation of the
posterior distribution of f̃ , given W, makes it necessary to devise a computational scheme for
drawing samples from the posterior. To this end, the generalization of the Blackwell–
MacQueen urn scheme as described in subsection 3.3 is important. As a first step, generate a
sample X1,0, . . ., Xn,0 of i.i.d. values of the latent variable from E[P̃(dx)]=∫ ∞

0 
1(u |x) e−�(u) duH
(dx). Then, for any t ≥1, proceed as follows

(1) draw U t
n from f Xt−1

Un
(u) where X t−1 = (X1, t−1, . . ., Xn, t−1) is the vector of latent variables

sampled in the previous step t −1;
(2) draw the latent X1, t, . . ., Xn, t from the Pólya urn scheme as follows: for any i sample

Xi from

P(Xi, t ∈· | X t
−i , W, U t

n)=q∗
i,0(U t

n)H1,1(dXi, t |U t
n) f (Wi | Xi, t)+

ki, t∑
j =1

q∗
i, j(U

t
n)	Yj (·),

where X t
−i = (X1, t, . . ., Xi−1, t, Xi +1, t−1, . . ., Xn, t−1), Yj are the ki, t distinct values in the

vector X t
−i . The mixing proportions are given by

q∗
i,0(U t

n)∝
1(U t
n)
∫

X

f (Wi |x)H1,1 (dx |U t
n) q∗

i, j(U
t
n)∝ 
nj +1 (U t

n |Yj)


nj (U t
n |Yj)

f (Wi |Yj),

subject to the constraint
∑ki, t

j =0 q∗
i, j(U

t
n)=1.

This represents a generalization of the Escobar & West (1995) algorithm and, by resorting
to the latent variable Un, allows the generation of a sample from a mixture model governed
by any NRMI.

It is well-known that the performance, in terms of mixing speed, of the Escobar & West
(1995) algorithm can be improved by implementing an acceleration step which basically con-
sists in adding a further iteration to the algorithm we have just described. Such a variation
of the MCMC algorithm for Mixture of Dirichlet Process (MDP) models has been proposed
by MacEachern (1994, 1998; see also Ishwaran & James, 2001). Indeed, step (2) above is used
in order to fix the number of clusters and the cluster memberships for the latent variables. In
order to generate the representative of each cluster, i.e. the unique distinct values Yj , one pro-
ceeds as follows. Suppose that from step (2) one has kt clusters with memberships identified
by the sets of indices I1, t, . . ., Ikt , t. Then

(3) draw the unique values Y1, t, . . ., Ykt , t from the full conditional

P
(
Yj, t ∈dx |W, Xt, U t

n

)∝
∏
i∈Ij, t

f (yi |x)H1,1(dx |U t
n).

One can see that an important point of the algorithm is the evaluation of the weights q∗
i,0.

In order to obtain an explicit form for them, one can choose a conjugate pair { f (· | ·), P0}.

Numerical example. As an illustration we analyse a data set concerning the environmen-
tal problem of acidification, which consists of measurements of an acid neutralizing capac-
ity (ANC) index in a sample of 155 lakes in North-Central Wisconsin, USA. A low value
of ANC can lead to a loss of biological resources. The identification of clusters of lakes is
important for the determination of lake characteristics which can be used to predict higher
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acidification. Also these data were studied by several authors and were considered on a log-
scale as we do. Most of the previous studies support the existence of two to three clusters
(see, e.g. Crawford, 1994; McGrory & Titterington, 2007).

Here we compare Dirichlet and N-IG mixtures in terms of the posterior distribution on
the number of components. The model we adopt is a normal mixture where both means and
variances are random and chosen according to either a Dirichlet or a N-IG process, i.e.

(Wi |mi , Vi)
i.n.d∼ N(Yi |mi , Vi), i =1, . . ., n,

(mi , Vi | P̃) i.i.d∼ P̃,

P̃ ∼ Dir or N-IG,

where N is a normal kernel. In order to appreciate the different behaviours, we fix the prior
parameters for both mixtures so that the prior distribution on the number of components
n(�) has mode in 20, thus far away from the low number of components estimated in pre-
vious studies. This is achieved by setting the total mass parameter � equal to 5.9 in the
Dirichlet case and equal to 1.29 in the N-IG case. Figure 1 displays the corresponding prior
distributions for n(�).

The general phenomenon of the N-IG process inducing a relatively flat prior, in contrast
to the Dirichlet process inducing a highly peaked distribution, is apparent from the plot. For
the remaining part concerning P0, we employ the quite standard semiparametric prior speci-
fication of Escobar & West (1995), namely P0(dx dv)=N(x |�, 
v−1)Ga(v |1, 1) dx dv, where
Ga(· |c, d) is the density corresponding to a Gamma distribution with mean c/d . A further
hierarchy is assumed for � and 
, i.e. �∼N(· |0, .001) and 
−1 ∼Ga(· |1, 100). Simulations for
the Dirichlet process mixture were carried out using the usual Blackwell–MacQueen sampling
scheme with acceleration step. As for the N-IG mixture, we resorted to the algorithm detailed
above: the possibility of using the predictive distributions conditionally on Un given in (19)
reduced the computational burden significantly with respect to the unconditional scheme used
in Lijoi et al. (2005) where computation of the weights in (16)–(17) were required. All infer-
ences are based on 20,000 iterations after a burn-in period of 5000 sweeps. Table 1 reports
the posterior distribution on the number of components in the mixture: the N-IG mixture
favours two to three components and, though starting from a prior tuned on 20 compo-
nents, more than 90% of the mass is concentrated on one to six components. In contrast, the

0 5 10 15 20 25 30 35 40 45 50 55 60

0.02

0.04

0.06

0.08

0.10

Dirichlet
N−IG 

Fig. 1. Prior distributions for the number of components n(�) corresponding to the Dirichlet and the
N-IG mixtures for the 155 acidity data. Their parameters are specified such that the mode of the prior
distribution of n(�) is in 20. The probabilities are connected by lines only for visual simplification.
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Table 1. Posterior probabilities on the number of components n(�) corresponding to the Dirichlet and the
N-IG mixtures for the 155 acidity data

n(�) 1 2 3 4 5 6 7 8 9 ≥10

Dirichlet mixture 0.007 0.031 0.074 0.117 0.157 0.160 0.145 0.118 0.078 0.113
N-IG mixture 0.151 0.226 0.212 0.166 0.104 0.063 0.038 0.019 0.011 0.010

Dirichlet mixture is still stuck on a significantly higher number of components: the posterior
mode is in six components and the shortest interval cumulating 90% posterior probability
is given by [3, 11] components. On the other hand, by tuning the mode of the prior distri-
bution on the number of components on a smaller number of clusters (e.g. �=1.63, which
corresponds to a median in eight components) also the Dirichlet mixture leads to infer the
existence of two to three components. This clearly highlights the fact that N-IG mixtures are
more robust with respect to wrong prior specifications.

5. Concluding remarks and computational issues

The present paper has aimed at providing the theoretical framework for a complete Bayesian
analysis of NRMIs. Particular cases of these priors have been shown to be useful in various
settings such as, e.g. mixture modelling or prediction problems arising when one needs to
evaluate the probability of discovering a new species. The main goal is now to study novel
concrete examples of NRMIs and evaluate their suitability to the specific applications. Hence,
within the class of NRMIs, one has a wide range of non-parametric priors to resort to and
does not need to confine herself to the Dirichlet process motivating her choice with the
intractability of other options.

Employing the terminology of Papaspiliopoulos & Roberts (2008), one can set up either
a conditional or a marginal algorithm and, for both cases, the results of the present paper
are essential. As for the latter class of algorithms, one can refer to subsection 3.3, on the
generalization of the Blackwell–MacQueen sampling scheme, and to section 4, on applica-
tion to hierarchical mixture models. As for the former, the representation of the posterior
distribution in theorem 1 can be used in order to build a Ferguson–Klass type algorithm
(see Ferguson & Klass, 1972; Walker & Damien, 2000): at any iteration of the algorithm one
samples a Un value, given the data X, from f X

Un
and then simulates a realization of �̃(Un ,X).

This, combined with a standard Gibbs sampler, allows to exploit any NRMI as a basic
building block in complex hierarchical mixture models. A preliminary investigation on this
simulation approach is provided in Nieto-Barajas & Prünster (2008): the authors resort to
it in order to develop a sensitivity analysis for non-parametric density estimation based
on NRMIs.

Finally, it is worth mentioning a recent interesting contribution heavily relying on NRMIs:
they are used in order to define time-dependent random probability measures (see Griffin,
2007).
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Appendix: Proofs

Proof of theorem 1. We can show the validity of the statements in theorem 1 by work-
ing directly on the underlying Poisson process Ñ . The basic idea is to use the fact that, �̃
being a function of Ñ through (1), the posterior distribution of �̃ given X can be deduced
from the posterior distribution of Ñ given X. First, let P� denote the distribution of the
Poisson random measure Ñ with intensity � and, consequently, E�[·] represents the expected
value computed with respect to P�. The proof of theorem 1, then, follows from an
application of the approach of James (2005a) in conjunction with the introduction of the
latent variable Un.

First notice that P̃(dy)=T−1�̃(dy) is a special case of the random probability measure
described in James (2005a, equation (22), p. 1780) as

P�̃(dy)=q(y, �̃)�̃(dy).

That is seen by recalling that T := �̃(X) and setting

T−1 =q(y, �̃).
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Note further that in our setting we use the notation (Yj , Jj) to play the role of the unique
points (Y ∗

j , Jj,n) for j =1, . . ., n(�) described in James (2005a). The (Jj)= (J1, . . ., Jn(�)) now

represent the unique values of n latent variables say J̃ = (J̃1, . . ., J̃ n). The (Yj) represent the
unique values of X. Now, let N∗

n =N ′ +∑n(�)
j =1 	Jj ,Yj and

�∗
n(dy)=

∫ ∞

0
sN∗

n , (ds, dy) :=�′ (dy)+
n(�)∑
j =1

Jj	Yj (dy),

where �′ and N ′ are of the same form as �̃ and Ñ , respectively. Hence, it follows that
�*n(X)=T ′ +∑n(�)

l =1 Jl , where T ′ =�′(X). Furthermore, for j =1, . . ., n(�),

q(Yj , �∗
n)= 1

(T ′ +∑n(�)
l =1 Jl )

which does not depend on Yj or j. This implies that,

n(�)∏
j =1

[q(Yj , �∗
n)]nj = 1

(T ′ +∑n(�)
i =1 Ji))n

.

Furthermore, specializing a definition in James (2005a, p. 1781), we have that

�n(J̃, X)=
∫

P� (dN)

(T +∑n(�)
i =1 Ji))n

=
∫ ∞

0

fT (t)

[(t +∑n(�)
j =1 Jj)]n

dt.

Now from theorem 3.2 in James (2005a), it can be deduced that the posterior distribution of
�̃ |X is equivalent to that of �∗

n |X and is determined by the posterior distribution of N |X
which is equivalent to the distribution of N∗

n |X. That is, statement (i) of theorem 3.2 in
James (2005a) shows that the posterior distribution of Ñ , given X, coincides with the distribu-
tion of the random measure N∗

n =N ′ +∑n(�)
i =1 	Ji ,Yi , where the joint law of (N ′, (Jj)), given X,

evaluated at some point (N , s1, . . ., sn(�)), is proportional to the joint measure

1

(T +∑n(�)
i =1 si))n

P�(dN)
n(�)∏
i =1

[si ]
ni �(dsi |Yi). (21)

This in turn determines the posterior distribution of �̃ |X. Additionally, given the form of �n,
statements (ii) and (iii) of theorem 3.2 in James (2005a) can be exploited in order to provide
a preliminary description of the posterior distribution of P̃.

Now to obtain the generally more tractable distributions given Un, X we first apply the
Gamma identity,

1

(T +∑n(�)
i =1 Ji)n

= 1
�(n)

∫
R+

e−u[T +∑n(�)
i =1 Ji ]un−1 du.

An augmentation of the previous expression combined with (21) yields a joint distribution
of (N ′, (Jj), Un, X) proportional to

un−1 e−uT P�(dN)
n(�)∏
i =1

sni
i e−usi �(dsi |Yi)H(dYi). (22)

Now applying proposition 2.1 of James (2005a), with uT :=N(f ) :=∫
f (s, y)N (ds, dy), where

f (s, y)=us, yields the equivalence of measures

e−uT P�(dN)=P�u (dN) e−�(u)
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where �u(ds, dx)= e−us�(ds |y)H(dy) and E�[e−uT ]= e−�(u). Applying this equality to (22) yields
a further description of the joint distribution of (N ′, (Jj), Un, X) proportional to

un−1 e−�(u)P�u (dN)
n(�)∏
i =1

sni
i e−usi �(dsi |Yi)H(dYi). (23)

A description of the distribution of N ′, (Jj) |Un, X and hence that of Ñ |Un, X and �̃ |Un, X
follows from application of Bayes’ rule to (23). Moreover, conditionally on Un and X, N ′

and the Jis have the same distribution as Ñ
(Un)

and the J (Un ,X)
i s, respectively.

Alternative Proof of theorem 1. We provide an alternative proof which obtains the poster-
ior Laplace functional via a limiting argument. We first compute the Laplace functional of �̃
given X. To this end, consider n(�) disjoint subsets C1, . . ., Cn(�) of X and set Cn(�)+1 = (∪n(�)

j =1Cj)c.
Moreover, for notational simplicity, we set �̃j = �̃(Cj) for j =1, . . ., n(�) and n(�)=k. If one
combines the assumption of exchangeability of the observations as outlined in (4) with the
definition of the NRMI P̃ as given in (3), the conditional Laplace functional of �̃ is given
by

E(e−∫
X h(x)�̃ (dx)|Y∈×k

j =1Cj)=
E
(
e−∫

X h(x)� (dx)T−n�̃n1
1 · · · �̃nk

k

)
E
(
T−n�̃n1

1 · · · �̃nk
k

) .

Let us first focus on the numerator which can be rewritten as

1
�(n)

∫
R+

un−1E
[
e−∫

X(h(x)+u)�̃ (dx)�̃n1
1 · · · �̃nk

k

]
du

= 1
�(n)

∫
R+

un−1E
[
e
−∫

Ck +1
(h(x)+u)�̃ (dx)

] k∏
i =1

(−1)ni
dni

duni
E
[
e
−∫

Cj
(h(x)+u)�̃ (dx)

]
du.

Now, introduce the following functions, for any Cj ,

V (n)
Cj

(u)=
{

(−1)n dn

dun
e
−∫

R+×Cj

(
1−e−(h(x)+u)s

)
� (ds | x)H (dx)

}

× e
∫

R+×Cj
(1−e−(h(x)+u)s )� (ds | x)H (dx)

for any n≥1 and set V (0)
Cj

(u)≡1. By induction, one observes that

V (n)
Cj

(u)=
∫

Cj

n−1∑
i =0

(
n−1

i

)
�n−i(u, x)V (i)

Cj
(u)H (dx)=

∫
Cj

�(n)
Hj

(u, x)H (dx),

where

�(n)
Hj

(u, x) :=
n−1∑
i =0

(
n−1

i

)
�n−i(u, x)V (i)

Cj
(u),

�n−i(u, x)=∫
R+ e−(h(x)+u)ssn−i� (ds |x) and Hj =H(Cj). Hence the numerator is equal to

1
�(n)

∫
R+

un−1 e−∫
S

(
1−e−(h(x)+u)s

)
� (ds | x)H (dx)

k∏
i =1

∫
Cj

�
(nj )
Hj

(u, x)H (dx) du.

The denominator is determined via similar arguments thus yielding

E(e−∫
X h(x)�̃ (dx)|Y∈×k

j =1Cj)

=
∫

R+ un−1 e−∫
R+×X

(1−e−(h(x)+u)s )� (ds | x)H (dx)∏k
j =1

∫
Cj

�
(nj )
Hj

(u, x)H (dx) du∫
R+ un−1 e−∫

R+×X
(1−e−us )� (ds | x)H (dx)∏k

j =1

∫
Cj

�
(nj )
Hj

(u, x)H (dx) du
.
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If we set Cj =Cj,� :={x ∈ X : dX(x, Yj) < �}, where dX is the distance function on X, non-
atomicity of H yields∫

Cj

�
(nj )
Hj

(u, x)H (dx)=H (dYj)(�nj
(u, Yj)+o(H (dYj)) as �↓0

holds true. Hence, as �↓0

E
(

e−∫
X h(x)�̃ (dx)

∣∣∣Y∈×k
j =1Cj

)
→
∫

R+
e−∫

R+×X

(
1−e−(h(x)+u)s

)
� (ds | x)H (dx)

×
k∏

i =1

∫
R+

e−h(Yi )s
sni e−us� (ds |Yi)


ni (u |Yi)
un−1

∏k
i =1 
ni (u |Yi) du∫

R+ un−1
∏k

i =1 
ni (u |Yi) du

=
∫

R+
E
(

e−∫
X h(x)�̃(u) (dx)

) k∏
i =1

E
(

e−h(Yi )J
(u, X)
i

)

×
un−1

(∏k
i =1 
ni (u |Yi)

)
e−�(u) du∫

R+ un−1
(∏k

i =1 
ni (u |Yi)
)

e−�(u) du
.

Thus, the proof is complete.

Proof of proposition 1. This easily follows from an application of Bayes’ rule to (23). That
is by first integrating out the N , and the sis to first obtain a joint distribution of Un, X. Note
how this also gives the 
ni

Proof of theorem 2. For denoting a linear functional of the completely random measure
�̃ we use the short notation �̃(f )=∫

X
f (x)�̃ (dx) for any measurable f : X → R such that

�̃(| f |) <∞ a.s. Now, notice that for any y1, . . ., yn ∈ (0, 1) and A1, . . ., An ∈B(X) one has

P[P̃(A1)≤y1, . . ., P̃(An)≤yn|Un, X]=P
[
�̃(IA1 −y1)≤0, . . ., �̃(IAn −yn)≤0 |Un, X

]
.

By definition the latter coincides with

P[�̃(Un ,X)(IA1 −y1)≤0, . . ., �̃(Un ,X)(IAn −yn)≤0],

and the result follows since the finite dimensional distributions of �̃(Un ,X)/�̃(Un ,X)(X) coincide
with the finite dimensional distributions of P̃ given Un and X.

Proof of proposition 2. The proof follows from observing that

P[Xn+1 ∈dx |X]=E[P̃(dx) |X ]=
∫

R+
E[P̃ (dx) |Un =u, X ] f X

Un
(u) du.

By virtue of theorem 1,

E
[
P̃(dx) |Un =u, X

]
=E

[
�̃(u)(dx)

T (u) +∑n(�)
i =1 J (u,X)

i

]
+E

[∑n(�)
i =1 J (u,X)

i 	Yi (dx)

T (u) +∑n(�)
i =1 J (u,X)

i

]

= I1(u, x, X)+ I2(u, x, X).

Let us now focus on I1(u, x, X). We are going to prove that∫
R+

I1(u, x, X)f X
Un

(u) du =w(n)H (dx). (24)
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To this end, one can exploit the independence, conditional on Un =u and on X, between the
J (u,X)

i s and �u and the independence of the increments of �u to show that

I1(u, x, X)=
∫

R+
E[e−v

∑n(�)
i =1 J (u,X)

i ] E[�̃(u) (dx) e−vT (u)
] dv

=H(dx)
∫

R+

(
n(�)∏
i =1


ni (u + v |Yi)

ni (u |Yi)

)

1(u + v |x) e−�(u)(v) dv,

where �(u)(v)=− log E[e−v�̄(u)
]. Now, observe that �(u)(v)+�(u)=�(u + v) so that the right-

hand side of (24) reduces to

H(dx)
∫

R+

∫
R+

un−1e−�(u + v)

(
n(�)∏
i =1


ni (u + v |Yi)

)

1(u + v |x) du dv.

The change of variable (w, z)= (u + v, u) and subsequent integration with respect to z
immediately yield w(n). The proof for the remaining weights of the predictive distribution
moves along the same lines and it is omitted. Note that one may also use proposition 3 to
prove this result.

Proof of proposition 3. This easily follows from (23), if one integrates out N , the sis and u.

Proof of proposition 4. The conditional distribution of Y, given Un and �, is obtained by
applying Bayes’ rule to (23). An application of Bayes’ rule also yields readily a description of
the conditional distribution of � given Un, the normalizing constant being

∑
�

∏n(�)
i =1 
ni (Un).

Here
∑

� stands for the sum over all partitions of the set of integers {1, . . ., n}. The
simpler form in (14) may be obtained by noting some known relationships between cumu-
lants, partitions and moments. However, for immediate clarity one can use (23) to establish
that identity

fUn (u)= 1
�(n)

un−1 e−�(u)
∑

�

n(�)∏
i =1


ni (u).

The result then follows by noting the form of fUn (u) given in (5).
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