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Abstract

The model for the so-called “heaps” problem as set in Kingman (1975) is
considered and an explicit expression for evaluating the expectation of the
mean search time of a demanded item in equilibrium is provided. Particular
attention is devoted to the y-stable case and Kingman'’s results are recovered
in the limit.
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1 Introduction

Models that apply to the so-called “heaps” problem were introduced and
studied in Hendricks (1972), Burville and Kingman (1973), Burville (1974)
and Kingman (1975). The problem of heaps can be described as follows.
Suppose there is a finite collection of items, I, ..., I, which are literally or
figuratively stored in a heap. Such items might be, for instance, books on a
shelf, pieces of information stored in a computer or papers on a desk. Each
item is assigned a measure of popularity which coincides with the probability
the item is demanded by a potential customer or user. Let p; denote the
popularity of the ¢-th item, so that p; > 0 for each ¢ and Zf\;pi = 1.
From time to time an item is requested: it is searched through the heap
starting from the top. Then, after being used, it is returned to the top of
the heap. Moreover, successive requests are independent and the popularities
are allowed to be random.

The present paper draws inspiration from Kingman (1975), where the
pi’s are defined by means of subordinators, i.e. Lévy processes with non
negative increments. More recently, Donnelly (1991) has given a stimulating
treatment of the problem by obtaining an alternative derivation of King-
man’s limiting results together with some extensions that can be applied to
the Poisson-Dirichlet case.
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Letting 1 denote the mean search time for a typical item demanded, in
Burville and Kingman (1973) it is shown that, in statistical equilibrium,

-y

oy pi +pj

In Kingman (1975) it is first supposed that the distribution of the ran-
dom vector (p1,...,pn) is a symmetric (N — 1)-variate Dirichlet distribu-
tion whose density function, on the simplex Ay_1 := {(p1,...,pN-1) : P; >
0, Zf\;lpi < 1}, is given by

% [p1 cepn—1(l—pp — - _pN—l)]a_l

for some « > 0. With this position, one easily computes the expected mean
search time E(u) and, by taking the limits N — +o0o0 and @ — 0 in such a
way that Na — XA > 0, Kingman (1975) proves that E(x) — A. In this case,
the ranked vector of the first n random probabilities converges in distribution
to the n-th marginal of the so-called Poisson-Dirichlet distribution.

A second example one might consider arises when the p;’s are defined
by normalizing a y-stable subordinator. Unlike the previous case, the joint
distribution of the random vector (pi,...,pn) is not generally available, for
any N > 1. Indeed, in Kingman (1975), just a limiting form of E(u), as
N — 400, is evaluated, whereas no expression is obtained for E(x), with N
finite. The latter issue would still be open for any subordinator used in the
place of the y-stable one. Here, we fill in this gap by providing an expression
for E(x) which is valid for any subordinator one might use for defining the
pi’s. In particular, in the vy-stable case, the expression for E(u) turns out
to be quite simple and one can easily recover the limiting result stated by
Kingman (1975).

The paper is structured as follows. In Section 2, normalized random
measures with independent increments are employed in order to assign the
random probabilities p;. An expression for E(u) is then provided and it is
explicitly evaluated in the stable case. The result is then compared with the
known limiting form. In Section 3 some numerical examples are carried out
for illustrative purposes.

2 Main Result

Let £ = {& : t > 0} be a subordinator and let v be the corresponding
Lévy measure. For an exhaustive account on the theory of subordinators, the
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reader can refer to, e.g., Bertoin (1996) and Sato (1999). If v(R") = 400, £
is known to be an infinite activity process implying & to be (almost surely)
positive. Introduce a finite and non null measure o on R according to which
the time change ¢ = A(z) = «a((—oo,z]) is carried out. This operation
yields the reparametrized process ¢4 = {¢ A@z) @ © € R}, which has still
independent, but generally not stationary, increments. Moreover, by virtue
of the Lévy-Khintchine representation one has

E [e—uﬁw] T

where 1(u) = f(o +00) (1—e ™) v(dv) is also designated as the characteristic

exponent of ¢. Since ¢4 is (almost surely) finite, we are in a position to
consider

Fa) = A0

€a

as a random probability distribution function on R, where a := «(R). The
corresponding random probability measure is denoted by P and it will be re-
ferred to as normalized random measure with independent increments. Such
measures represent a subclass of a general family of random probability
measures introduced and studied in a Bayesian nonparametric setting by
Regazzini et al. (2003).

Take Ji,...,Jny to be a partition of the support of o and set the pop-
ularities of the N different items as p; := &,,/& where a; = a(J;), for
i=1,...,N. For notational simplicity, set ) (u + v) = (9*/du*)(u + v)
and introduce the following quantity

for every z € R

T(as, @) = a / o at(u) / @ (1 p)e (i) (W) () gy .
(0,4-00) (0,+00)

A simple formula for evaluating E(x) is now provided.

PROPOSITION 1. Let the popularities in the “heap” problem be derived
from a normalized random measure with independent increments. Then

;0
i#]

where &; = a;/a, for anyi=1,...,N.

PROOF. By the definition of the p;’s one has

oo
B = S8 | | = s
z;éj £a (gozi + £0¢j) Z#] I
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Each summand, S; ;, is then computed by exploiting the independence of
the increments of £ as follows

Sij = / B [abage” @t )] du o
(0,00)?

= /(0’00)2 E [e*U(ﬁa*&xﬁ&lj)} E [faie_(u'i'v)fai} E [faj ef(u+v)§aj} du do

_ / ef(afaifaj)w(u) E [_3 e(u+v)§ai:| E |:_3 e(u+v)§a]-:| du do
(0,00)2 ou ou

If one interchanges derivatives with the integrals above, one has

Sy =y [ elememei) [ g pteriestenetay du
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_ iy / o (0—0i—a;)y(u) [w(n(u)ef(aﬁanw(u)
(0,400)

a; + aj
LT v)e—<ai+aj>w<u+v>dv] .
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Since v(RT) = 400, it is straightforward to show that

/ 0 () e gy = L
(0,+00)

a

thus, leading to write

. L N / o at(u) / @ (e @+ ) —5(w) gy,
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The merit of such a formula relies upon the fact that it resembles both
symmetric and asymmetric case, as in Kingman’s terminology, and this holds
true for any possible choice of the subordinator £&. Moreover, note that, since
Z(ai,aj) < 0, one has E(u) < 32, ;i /(a; + @j). The weights a; admit
an interesting interpretation that can be deduced, e.g., from Pitman (2003).
Indeed, &; = E(p;) for any 7, thus mimicking what happens for the Dirichlet
process.
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A notable example we focus on is strictly related to a limiting result
proved in Kingman (1975). We consider the y-stable subordinator having
Lévy measure

v(dv) =077 do

for any « in (0,1). In this case, Z(c;, ;) can be determined explicitly.

PROPOSITION 2. If € is a y-stable subordinator, then

;0 1 _ _
E(p) = —— [1—(1— FlLLl+—1—a—a;
(/J,) Zdl—i-dj |: ( 7)2 1( y 4y +'Y, Q; a]>:|
17
where o F (a, b; ¢; ) is the Gauss hypergeometric function. Moreover, if &; =
1/N, for each i =1,...,N, then
: _Jv/l=2y) <12
NLITOOE(“)_{ 0 v >1/2
PROOF. If ¢ is the y-stable subordinator, then ¢ (u) = I'(1—~y)u" /v and,

by resorting to the transformations (v + v)Y = 2 and u” = y, one has

(o)

_ _al“(2—7)/ e(aaiaj)m;”yy;l/ o e @t T g g,
(0,+00) (y+00)

2
v
Application of (3.381.6) and of (7.621.3) in Gradshteyn and Ryzhik (2000)
and some algebra lead to the following expression for Z (o, a;)

1
—(1—7)2F1 (1,1;1-’—;; 1—0[2'—61(]').

Finally, with reference to Kingman’s limiting result, it can be easily achieved
by virtue of the asymptotic properties of the Gauss hypergeometric func-
tions. Indeed in this case, i.e. a; = 1/N fori=1,..., N,

EW)Z% [1—(1—7)2F1 <1,1;1+$;1—%>]

and the so-called duplication formula for the Gauss hypergeometric function
(see, e.g., Corollary 2.3.3 in Andrews et al., 1999) yields

F(l l)r(l 1)
1 2 1 2
Y

EO)
v

1
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From the previous expression it can be deduced that if y < 1/2,

1 2 1 v 2 1
FR{LLl+—1——)=——1[1— = —
21(” Ty N) 1—7( 1—27N>+0(N>

as N — +o0o. Hence, one has E(u) — v/(1 — 2v). On the other hand, if
v > 1/2, then

1
1. 2 1 2\> ! 1 1 1
o Fy <1,1;1+—;1——> = —+<—>7 r (1+—> r <1——>+0< . )
v N l—y \N Y v Ny~

as N — 400 and E(u) diverges. O

The result contained in Proposition 2 has the advantage of providing a
simple expression for E(u). Indeed, it can be easily evaluated since many
mathematical packages allow for computation of hypergeometric functions.
Moreover, with reference to the particular symmetric case, it provides some
hint on the rate at which E(u) converges, as N tends to +00, to the limit
v/(1 = 2y).

As a final remark for this section, it is to be observed that results analo-
gous to the one contained in Proposition 2 can be achieved for any other
normalized random measure used in the place of the y-stable. The key point
in the procedure relies on the computation of Z(ay, o), for any ¢,j. This
can be carried out either analytically or numerically.

3 Numerical Illustration

For illustrative purposes, here we provide a comprehensive treatment of
the “heaps” problem investigated in Kingman (1975). In the framework of
Proposition 2, with &; = 1/N for any ¢ = 1,..., N, E(u) is computed for
different values of v € (0,1) and of the number of items N in the heap. The
exact values of E(u) are then compared with the limit one obtains as the
number of items N goes to +oo.

TABLE 1. EXPECTATIONS OF  CORRESPONDING TO DIFFERENT VALUES
OF N AND OF THE PARAMETER OF THE STABLE SUBORDINATOR

N=10 N=50 N=100 N=200 N=+o0

v=0.2 0.257 0.315 0.324 0.328 0.333
vy=04 0.758 1.278 1.451 1.590 2
v=10.6 1.615 4.292 6.061 8.327 400

v=0.38 2.868 11.438 19.854 34.048 +00
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Note that the closer v to 0.5 and the slower is the convergence of E(u)
to its limiting value: this situation is apparent when comparing behaviours
at v =0.2 and at v = 0.4.

Finally, a description of the distribution of y is provided by exploiting a
numerical algorithm for simulating Lévy processes as set forth by Wolpert
and Ickstadt (1998). When applied to the y-stable subordinator, such an
algorithm, which is also known as the inverse Lévy measure algorithm, has
just one free parameter coinciding with the number of jumps of the trajectory
of the process one simulates. A sensible criterion for tuning it may be based
on matching the empirical mean of p with the exact value E(u), given above.
This has led us to fix such a number of jumps equal to 500. For each of the
estimates illustrated in the following figures, 1000 trajectories of the stable
subordinator have been simulated. Below one is provided with kernel density
estimates of the distributions of i corresponding to different values of 7y, with
N =50.

1.2 7

=43 y=0.2
== y=0.4
y=0.6
[ y=0.8

FI1GURE 1. KERNEL DENSITY ESTIMATES OF THE DISTRIBUTION OF u, WITH N = 50.

As far as the asymptotic behaviour is concerned, kernel density estimates
are depicted in the figures below for v = 0.4, 0.6 as N varies. Both kernel
density estimates are such that as IV increases the mass in the tails tends to
increase. This phenomenon is much more apparent with v = 0.6, in which
case the estimate becomes flatter thus being consistent with divergence of
the expected value of p.
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FIGURE 2. KERNEL DENSITY ESTIMATES OF THE DISTRIBUTION
INCREASING N.
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FIGURE 3. KERNEL DENSITY ESTIMATES OF THE DISTRIBUTION
INCREASING N.
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