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Department of Finance, Università Bocconi
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1 Introduction

The no arbitrage pricing formula for the valuation of random payoffs is a milestone of asset

pricing theory. For instance, it states that the proper price of a European option at time t

is given by the conditional expectation of the discounted future payoff under a risk-neutral

probability Q. If the derivative has payoff hT at maturity T , a risk-neutral price π(t) is

π(t) = EQt
[
e−r(T−t)hT

]
,

where r is a constant interest rate. From this formulation it is clear that the instanta-

neous rate r plays a fundamental role in the derivative pricing. Indeed, price dynamics are

determined by the same interest rate process, whatever the terminal payoff of the option.

This intuition goes back to Cox and Ross (1976), who derived the Black and Scholes (1973)

result by exploiting the accounting relations between bonds, stocks and options. This line

of reasoning actually stems from the original approach of Modigliani and Miller (1958).

In this paper we formalize the intuition that risk-neutral valuation is driven by the

process of interest rates by generalizing the ordinary differential equation satisfied by the

(deterministic) risk-free bond price B(t) = e
∫ t
0 r(s)ds, namely

dB

dt
= rB.

When the price process under consideration is stochastic, the issue of properly differentiating

a random process arises. We address this problem by introducing the notion of weak time-

derivative for adapted processes - denoted by D - and showing the basic rules of its calculus.

By using this differential instrument, we prove that the no arbitrage pricing formula is the

unique solution of the equation

Dπ = rπ (1)

with the terminal condition π(T ) = hT . We prove this result in Theorems 18 and 21, where

we suppose interest rates to be stochastic. The relation formalized by (1) stems from the

foundations of asset pricing theory since it rephrases the equality between the instantaneous

return of a risky asset - namely Dπ/π - and the instantaneous interest rate r, that needs

to be valid in arbitrage-free markets. Indeed, by employing weak time-derivatives we are

able to characterize no arbitrage - in particular, equivalent martingale measures - for a wide

class of semimartingale price processes (see Proposition 17).

The definition of weak time-derivative requires a suitable set of test functions (see Def-

initions 1 and 20) and involves the conditional expectation of an adapted process. This

instrument provides a handy characterization of martingales with respect to a given proba-

bility measure. Indeed, as claimed in Proposition 4, the weak time-derivative of a stochastic
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process is null if and only if the process is a martingale. Hence, the weak time-derivative

allows us to qualify martingales as the stochastic counterpart of constant sequences in de-

terministic settings.

The parallel between calculus of weak time-derivatives - that we develop in Subsections

2.3 and 2.4 - and deterministic differential calculus is even deeper. For instance, submartin-

gality and supermartingality are monotonicity properties related to positive or negative

signs of weak time-derivatives. In terms of interpretation, the weak time-derivative pro-

vides an indication of the upward or downward growth rate of the conditional expectation

of a random process.

More generally, by Theorem 9 the set of weakly time-differentiable processes coincides

with a large class of special semimartingales. Specifically, weak time-derivatives capture

the drift of processes under consideration, a useful property when canonical decompositions

are unknown. Furthermore, the identification of the drift and of the martingale component

reminds of the logic behind Girsanov Theorem and, in fact, is crucial for the analysis of eq.

(1).

A nice feature of the weak time-derivative is that it applies to any adapted processes,

without requiring the Feller property (as the infinitesimal generator) or Markovianity (as

the extended infinitesimal generator). In addition, under suitable assumptions, the weak

time-derivative specializes to both these notions, as we illustrate in Corollaries 14 and 15.

In fact, the weak time-derivative allows us to deal with generalized formulations of problems

that are usually formalized by these instruments.

As anticipated, the main results of the paper are summarized by Theorems 18 and 21,

which show existence and uniqueness of the solution of eq. (1) under both deterministic and

stochastic interest rates. In addition, Proposition 19 provides an interesting generalization

of eq. (1) to cashflows.

When the risk-free rate is constant, by rewriting eq. (1) in operator form, we obtain a

reformulation of the eigenvalue-eigenvector problem, analyzed by Hansen and Scheinkman

(2009), which employs the weak time-derivative in place of the extended infinitesimal gen-

erator. Following Hansen and Scheinkman, we obtain in our setting a decomposition of the

stochastic discount factor into a martingale and a transient component.

Our paper combines different areas of mathematical analysis and stochastic calculus.

The overall approach comes from variational calculus, it exploits the theory of Sobolev

spaces and weak formulations of differential equations. See, for example, Brezis (2010),

Adams and Fournier (2003) and Lions (1971) for a comprehensive introduction to variational

calculus, and Revuz and Yor (1999) for stochastic calculus.

From a financial point of view, our work builds directly on the foundations of no ar-
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bitrage asset pricing theory illustrated, for instance, in Björk (2004), Hansen and Richard

(1987), Föllmer and Schied (2011) and Delbaen and Schachermayer (1998). In addition,

our eigenvalue formulation refers to the long-term risk literature, in particular to Hansen

and Scheinkman (2009) and related works, like Alvarez and Jermann (2005).

The paper is organized as follows. Section 2 develops the mathematical formalism of

the weak time-derivative, proves its main properties (Subsections 2.3 and 2.4) and relates

it to infinitesimal generators (Subsections 2.5 and 2.6). In Sections 3 and 5 we solve the no

arbitrage pricing equation with deterministic and stochastic interest rates, respectively. A

brief discussion of the special case of Black-Scholes model is presented in Subsection 3.1,

while Subsection 3.2 discusses the risk-neutral pricing of cashflows. Section 4 deals with

the eigenvalue-eigenvector problem and the decomposition of the stochastic discount factor.

In particular, Subsection 4.1 compares the roles of weak time-derivative and infinitesimal

generator in the eigenvalue-eigenvector formulation.

2 The weak time-derivative

After describing the technical framework, we define weak time-derivatives and illustrate

their peculiar features. Then, in the last subsections we contrast weak time-derivatives

with infinitesimal generators of Feller processes and with extended infinitesimal generators

of Markov processes.

2.1 Filtration, measurability and identification

Given a probability space (Ω,F , P ) with strictly positive P , we fix T > 0, N ∈ N and

consider a vectorial process X = {Xt}t∈[0,T ] such that X : [0, T ]×Ω −→ RN . In particular

Xt =
[
X

(1)
t , . . . , X

(N)
t

]′
for all t ∈ [0, T ]. For example, Xt may be a bunch of primary

asset prices at time t. By convenience we will equivalently use both the notations Xt and

X(t). Moreover, RN is endowed with the Borel σ-algebra and F = {Ft}t∈[0,T ] denotes the

filtration generated by X.

We assume that the filtered probability space (Ω,F ,F, P ) satisfies the usual conditions,

namely F is complete and right-continuous. Accordingly, we write Ft = Ft+ = ∩s>tFs for

all t ∈ [0, T ). In addition, we assume left-continuity in T , i.e. FT = FT− .

Throughout the paper, random variables are identified almost surely. Also inequali-

ties between random variables are meant almost surely. Moreover, we identify stochastic

processes up to modifications.

On the given filtered probability space, we consider processes u : [0, T ]× Ω −→ R that

are progressively measurable (progressive, for brevity), namely, for all t ∈ [0, T ], the function
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[0, t]×Ω −→ R that maps (τ, ω) to the valuation uω(τ) is Borel([0, t]) ⊗ Ft-measurable (see

Revuz and Yor (1999)). In particular, such processes are adapted. Since any measurable

and adapted u admits a progressive modification - see Karatzas and Shreve (2012) - and we

identify stochastic processes up to modifications, we will simply require adaptability.

Seen as function of time, our processes take values in L1 (FT ) and, with a small abuse

of notation, we simply write u : [0, T ] −→ L1 (FT ). We will also often require that u is

L1-continuous, meaning that, for every t ∈ [0, T ], E [|u(τ)− u(t)|] tends to zero whenever τ

goes to t.

Moreover, we denote as C ([0, T ],R) the space of continuous functions f : [0, T ] −→ R
while Cnc ([0, T ],R) contains n-times continuously differentiable functions from [0, T ] to R
with compact support.

We define the space V as

V =

{
adapted u : [0, T ] −→ L1 (FT ) , L1-right-continuous in [0, T ),

L1-left-continuous in T,

∫ T

0
E [|u (τ)|] dτ < +∞

}
. (2)

As a result, any u ∈ V is Bochner integrable and the Bochner integral of u is the

element of L1 (FT ) denoted by
∫ T

0 u (τ) dτ . Indeed, condition (2) is necessary and sufficient

for Bochner integrability of u. In addition, progressive measurability ensures the joint

measurability of u on [0, T ] × Ω. This property guarantees that the Bochner integral of u

coincides almost surely with the pathwise Lebesgue integral, that we will employ at some

point. See Diestel and Uhl (1977) and Aliprantis and Border (2006) as general references.

Observe that the space V contains all martingales defined on (Ω,F ,F, P ). The one

requirement to check is L1-continuity. In fact, for any t ∈ [0, T ), if τ → t+,

E [|u(τ)− u(t)|] = E [|Eτ [u(T )]− Et [u(T )]|] = E [|Eτ [u(T )]− Et+ [u(T )]|] −→ 0

by Lévy’s Downward Theorem. Moreover, if τ → T−,

E [|u(τ)− u(T )|] = E [|Eτ [u(T )]− ET− [u(T )]|] −→ 0

by Lévy’s Upward Theorem. See, for instance, Williams (1991).

2.2 Weak time-differentiability

We have now all the instruments to introduce the concept of weak time-differentiability for

processes in V.
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Definition 1. Given u ∈ V, we say that u is weakly time-differentiable when there exists

w ∈ V such that for every t ∈ [0, T ]∫ T

t
E [w (τ) 1At ]ϕ(τ)dτ = −

∫ T

t
E [u (τ) 1At ]ϕ

′(τ)dτ

∀At ∈ Ft, ∀ϕ ∈ C1
c ([t, T ],R) .

In this case we call w a weak time-derivative of u.

Similarly, u ∈ V is said to be twice weakly time-differentiable when there exists z ∈ V
such that for every t ∈ [0, T ]∫ T

t
E [z (τ) 1At ]ϕ(τ)dτ =

∫ T

t
E [u (τ) 1At ]ϕ

′′(τ)dτ

∀At ∈ Ft, ∀ϕ ∈ C2
c ([t, T ],R) .

Observe that, if u ∈ V, the integrals∫ T

t
E [u (τ) 1At ]ϕ

′(τ)dτ and

∫ T

t
E [w (τ) 1At ]ϕ(τ)dτ

are finite for any choice of ϕ ∈ C1
c ([t, T ],R) and At ∈ Ft. As a result, Definition 1 is

well-posed.

The definition of weak time-derivative combines a variational approach, employed for

weak solutions of (deterministic) partial differential equations, with the information struc-

ture due to the filtered probability space. Hence, the weak time-derivative builds a bridge

between the information-free setting of calculus of variations and the adaptability concerns

of stochastic process.

The presence of indicator functions reveals that weak time-differentiability actually in-

volves the conditional expectation of random processes. The definition is stated in terms of

the physical measure P . However, weak time-differentiability may be established also with

respect to other probability measures. This is the case of asset pricing applications in which

risk-neutral measures equivalent to P are employed for no arbitrage pricing, as illustrated in

Section 3. Moreover, measure changes associated with the choice of a convenient numéraire

are common practices in option pricing and interest rate theory. See, e.g., Margrabe (1978)

and Geman et al (1995), among the others. Therefore, the weak time-derivative may be a

fruitful instrument for asset pricing applications also in these settings.

The weak time-derivative is unique, up to modifications.

Proposition 2. Let u ∈ V be weakly time-differentiable. Then, the weak time-derivative of

u is unique.
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Proof. Let w and ŵ be two weak time-derivatives of u. Then, for every t ∈ [0, T ]∫ T

t
E [{w (τ)− ŵ (τ)}1At ]ϕ(τ)dτ = 0

∀At ∈ Ft, ∀ϕ ∈ C1
c ([t, T ],R) .

By Lemma 1 in Appendix, for a.e. τ ∈ [t, T ],

E [{w (τ)− ŵ (τ)}1At ] = E [01At ] = 0 ∀At ∈ Ft.

Hence, the null process fits the definition of conditional expectation of w (τ) − ŵ (τ) with

respect to Ft. Therefore, for a.e. τ ∈ [t, T ],

Et [w (τ)] = Et [ŵ (τ)] .

Now, consider a sequence {τi}i∈N ⊂ [t, τ ] such that τi −→ t+ and Et [w (τi)] = Et [ŵ (τi)]

for all i. Since w is L1-continuous from the right, Et [w (τi)] converges in L1 to w(t) as τi

approaches t because

E [|Et [w (τi)]− w(t)|] = E [|Et [w (τi)− w(t)]|] 6 E [|w (τi)− w(t)|] −→ 0.

Simultaneously, Et [ŵ (τi)] converges in L1 to ŵ(t). However, Et [w (τi)] and Et [ŵ (τi)] co-

incide a.s. Therefore, by uniqueness of the L1-limit, w (t) = ŵ (t).

We denote by Du the weak time-derivative of u. Moreover, we introduce the space

W = {weakly time-differentiable u ∈ V}

with norm

‖u‖W =

∫ T

0
E [|u (τ)|] dτ +

∫ T

0
E [|Du (τ)|] dτ.

When we consider deterministic processes, the weak time-derivative coincides with the

classical derivative of calculus.

Proposition 3. Let u ∈ V, g ∈ C ([0, T ],R) and, for every t ∈ [0, T ]

u (t) =

∫ t

0
g(s)ds.

Then, Du = g.
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Proof. As g is deterministic and continuous, g ∈ V. Taken any At ∈ Ft and any ϕ ∈
C1
c ([t, T ],R), for every t ∈ [0, T ] we have∫ T

t
E [u (τ) 1At ]ϕ

′(τ)dτ =

∫ T

t
E
[∫ τ

0
g(s)ds1At

]
ϕ′(τ)dτ

= E [1At ]

∫ T

t

(∫ τ

0
g(s)ds

)
ϕ′(τ)dτ

= −E [1At ]

∫ T

t
g(τ)ϕ(τ)dτ

= −
∫ T

t
E [g(τ)1At ]ϕ(τ)dτ

because ϕ has compact support. Hence, g is the weak time-derivative of u.

2.3 Calculus of the weak time-derivative

We start by establishing the equivalence between processes with null weak time-derivative

and martingales.

Proposition 4. A process u belongs toW and it has Du = 0 if and only if it is a martingale.

Proof. Assume that u is a martingale. As observed in Subsection 2.1, u belongs to V. Fixed

t ∈ [0, T ], for all ϕ ∈ C1
c ([t, T ],R) and At ∈ Ft,∫ T

t
E [u (τ) 1At ]ϕ

′(τ)dτ =

∫ T

t
E [Et [u (τ)] 1At ]ϕ

′(τ)dτ

=

∫ T

t
E [u(t)1At ]ϕ

′(τ)dτ

= E [u(t)1At ]

∫ T

t
ϕ′(τ)dτ

= 0

because ϕ is a function in C1
c ([t, T ],R). As a result, w(t) = 0 for all t ∈ [0, T ] satisfies the

definition of weak time-derivative of u, i.e. Du = 0.

Conversely, suppose that u ∈ W has Du = 0. We first show that, given t ∈ [0, T ],

Et [u (τ)] is not dependent on τ for a.e. τ ∈ [t, T ].

Take a continuous function η : [t, T ] −→ R with compact support such that
∫ T
t η(τ)dτ =

1. Given a continuous function ξ : [t, T ] −→ R with compact support, we define the function

kξ : [t, T ] −→ R by

kξ(s) = ξ(s)−
(∫ T

t
ξ(τ)dτ

)
η(s).
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kξ is continuous with compact support and
∫ T
t kξ(τ)dτ = 0. Hence, kξ has a primitive Kξ

which is continuous with compact support. As Kξ ∈ C1
c ([t, T ],R), we employ it as a test

function in the definition of weak time-derivative of u. Since Du = 0, for all At ∈ Ft we

have

0 =

∫ T

t
E [u (s) 1At ]

{
ξ(s)−

(∫ T

t
ξ(τ)dτ

)
η(s)

}
ds

=

∫ T

t
E [u (s) 1At ] ξ(s)ds−

∫ T

t
E [u (s) 1At ]

(∫ T

t
ξ(τ)dτ

)
η(s)ds

=

∫ T

t
E [u (τ) 1At ] ξ(τ)dτ −

∫ T

t

{∫ T

t
E [u (s) 1At ] η(s)ds

}
ξ(τ)dτ

=

∫ T

t

{
E [u (τ) 1At ]−

∫ T

t
E [u (s) 1At ] η(s)ds

}
ξ(τ)dτ.

By the density of continuous functions ξ, Lemma 1 in Appendix ensures that for a.e.

τ ∈ [t, T ]

E [u (τ) 1At ] =

∫ T

t
E [u (s) 1At ] η(s)ds.

Since
∫ T
t η(s)ds = 1, we can rewrite the left-hand side as

∫ T
t E [u (τ) 1At ] η(s)ds so that∫ T

t
{E [u (τ) 1At ]− E [u (s) 1At ]} η(s)ds = 0.

As the last equality holds for any continuous function η with compact support in [t, T ], we

find that, for a.e. s ∈ [t, T ],

E [u (s) 1At ] = E [u (τ) 1At ]

and so Et [u (s)] = Et [u (τ)]. As a result, Et [u (τ)] is not dependent on τ for a.e. τ ∈ [t, T ]

and we can state that Et [u (τ)] = ft for some ft ∈ L1 (Ft).
Since u is L1-right-continuous,

Et [u (τ)]
L1

−−→ u (t) τ −→ t+.

Since for a.e. τ ∈ [t, T ], Et [u (τ)] coincides a.s. with ft, which is not dependent on τ , the

uniqueness of the L1-limit implies that ft = u (t). Therefore, for any t ∈ [0, T ], for a.e.

τ ∈ [t, T ]

Et [u (τ)] = u (t) .

This property is actually satisfied by any τ ∈ [t, T ]. Indeed, fix any τ and consider a

sequence {τi}i∈N ⊂ [t, T ] such that τi −→ τ+ and Et [u (τi)] = u (t). Since u is L1-right-

continuous, the L1-limit of Et [u (τi)] is Et [u (τ)]. Nevertheless, Et [u (τi)] = u (t) for all i

and so, by uniqueness of the L1-limit, Et [u (τ)] = u (t).
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A simple corollary of Proposition 4 shows that, given a weak time-derivative w, all

processes u ∈ W such that Du = w differ by a martingale.

Corollary 5. Let w ∈ V be the weak time-derivative of u1 ∈ W. w is also the weak

time-derivative of u2 ∈ W if and only if

u2 = u1 +m,

where m is a martingale

Proof. Assume that w is also the weak time-derivative of u2 ∈ W and consider the process

m = u2 − u1 ∈ W. The weak time-derivative of m is null and so, by Proposition 4, m is a

martingale.

The converse implication follows from the fact that the weak time-derivative of any

martingale is null.

Moreover, the following result holds.

Proposition 6. Let u be defined, for all t ∈ [0, T ], by

u (t) =

∫ t

0
g (s) ds+m(t),

where g ∈ V and m is a martingale. Then, u belongs to W and Du = g.

Proof. As g ∈ V, g is Bochner integrable. Thus, for all t ∈ [0, T ], the process G(t) =∫ t
0 g(s)ds is well-defined and adapted.

Firstly, observe that∫ T

0
E [|G(τ)|] dτ 6

∫ T

0
E
[∫ τ

0
|g(s)| ds

]
dτ 6

∫ T

0
E
[∫ T

0
|g(s)| ds

]
dτ

= TE
[∫ T

0
|g(s)| ds

]
= T

∫ T

0
E [|g(s)|] ds,

which is finite because g ∈ V. Here, the exchange between the order of expectation (which

is a bounded operator) and Bochner integral is made possible by Lemma 11.45 in Aliprantis

and Border (2006).

Secondly, for any t, τ ∈ [0, T ],

E [|G(τ)−G(t)|] 6 E

[∫ max{τ,t}

min{τ,t}
|g(s)| ds

]
=

∫ max{τ,t}

min{τ,t}
E [|g(s)|] ds

and the last quantity tends to zero as τ approaches t, ensuring L1-continuity. As a result,

G belongs to V.
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We now show that DG = g. Given t ∈ [0, T ], consider any ϕ ∈ C1
c ([t, T ],R) and At ∈ Ft.

Then ∫ T

t
E [u (τ) 1At ]ϕ

′(τ)dτ =

∫ T

t
E
[∫ τ

0
g (s) ds1At

]
ϕ′(τ)dτ.

We exchange the order of expectation and Bochner integral and, later, we apply Fubini’s

Theorem and we exploit the compact support of ϕ:∫ T

t
E [G (τ) 1At ]ϕ

′(τ)dτ =

∫ T

t

(∫ τ

0
E
[
g (s) 1Atϕ

′(τ)
]
ds

)
dτ

=

∫ t

0

(∫ T

t
E [g (s) 1At ]ϕ

′(τ)dτ

)
ds

+

∫ T

t

(∫ T

s
E [g (s) 1At ]ϕ

′(τ)dτ

)
ds

=

∫ t

0

(
E [g (s) 1At ]

∫ T

t
ϕ′(τ)dτ

)
ds

+

∫ T

t

(
E [g (s) 1At ]

∫ T

s
ϕ′(τ)dτ

)
ds

= −
∫ T

t
E [g (s) 1At ]ϕ(s)ds.

In consequence, g is the weak time-derivative of G.

As for m, this process belongs to W and Dm = 0 (see Proposition 4). Therefore, by

additivity, u ∈ W and Du = g.

Example 7. Assume that for every t ∈ [0, T ]

u (t) = αt+m(t) (3)

with α ∈ R and m a martingale. Then Du = α. In addition, by Corollary 5 all processes

u ∈ W such that Du = α may be written as in eq. (3). In other words, a process in W
is the sum of a deterministic trend and a martingale if and only if it has constant weak

time-derivative. In this case, the value of Du identifies the linear drift.

If N = 1 this feature may be retrieved, for instance, in the Black-Scholes model, where

the stock price satisfies

Xt = X0e

(
r−σ

2

2

)
t+σWt

with r ∈ R, σ > 0 and W denoting a Wiener process under the risk-neutral measure Q. In

fact, log prices are the sum of a deterministic drift and a martingale process, namely

log (Xt) = log (X0) +

(
r − σ2

2

)
t+ σWt.
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Here, the weak time-derivative of log prices properly captures the drift coefficient r − σ2/2

under Q.

Example 8. When N = 1 another illustration of Proposition 6 comes from continuous Itô

semimartingales (or generalized diffusions) as, for instance, the process X in V such that

Xt = X0 +

∫ t

0
g (s) ds+

∫ t

0
h(s)dWs,

where g ∈ V, h is adapted and
∫ T

0 E
[
h2(s)

]
ds finite. The stochastic differential of the

process is usually written as

dXt = g(t)dt+ h(t)dWt.

The Itô integral of h with respect to the Wiener process W is a martingale and it belongs to

W. As a result, the weak time-derivative of X is the drift g:

DX = g.

Moreover, any process defined by v(t) = f (Xt) for all t ∈ [0, T ] with f twice continuously

differentiable is a continuous Itô semimartingale, too. The stochastic differential of v can,

then, be derived by Itô’s formula and the weak time-derivative of v is identified as the drift

in the stochastic differential of v.

Inspired by Example 8, we provide a characterization of weakly time-differentiable pro-

cesses in terms of special semimartingales (see Protter (2004)). Although by Definition

1 weak time-differentiability is established through an integration by parts relation, this

notion identifies a class of stochastic processes widely employed in dynamic asset pricing

modelling.

Theorem 9. W is the space of special semimartingales u such that

u = a+m,

with a(t) =
∫ t

0 g(s)ds, g ∈ V and m a martingale.

Proof. Take u ∈ W and let Du denote its weak time-derivative. For any t ∈ [0, T ] define

a(t) =

∫ t

0
Du(s)ds.

a ∈ W and it has the same weak time-derivative of u. Therefore, by Corollary 5, m = u−a
is a martingale. As a result, u decomposes into the sum u = a + m. Here, a has finite

variation (because Du is integrable), it is càdlàg (because its paths are continuous) and

12



adapted. Moreover, m is a local martingale (because it is a martingale). These features

make u a semimartingale. In addition, a is also predictable (because it is left-continuous

and adapted). As a result, u is a special semimartingale.

Conversely, let u be a special semimartingale such that, for all t ∈ [0, T ]

u(t) =

∫ t

0
g(s)ds+m(t),

with g ∈ V and m a martingale. By Proposition 6, u belongs to W and Du = g.

It is now apparent that weak time-differentiability captures a class of special semimartin-

gales that feature a (unique) absolutely continuous finite variation term and a (unique) local

martingale term which is actually a martingale. The innovation of our approach relies on

the fact that this class of processes is characterized via a synthetic differentiability condi-

tion that does not require the knowledge, ex-ante, of the canonical decomposition of the

semimartingale into consideration. In other words, the weak time-derivative allows the iden-

tification of the drift term of semimartingales in W even when the canonical decomposition

is not available.

In the next example we dig into the martingale term of Theorem 9. Indeed, in general

contexts m combines a continuous martingale term with a pure-jump martingale.

Example 10. Set N = 1 and consider in the time interval [0, T ] the process X driven by

the dynamics
dXt

Xt−
= µdt+ σdWt + dHt,

where µ ∈ R, σ > 0, W is a Wiener process and H is a compound Poisson process.

In particular, Ht =
∑Nt

k=1 zk, i.e. dHt = zNt−+1dNt, where N is a Poisson process with

intensity λ and zk are i.i.d. random variables independent of W and N such that E [zk] = z

and zk > −1. This jump-diffusion process has been, firstly, employed by Merton (1976) for

option pricing. A taxonomy of similar SDEs applied in asset valuation can be retrieved, for

instance, in Platen and Bruti-Liberati (2010).

Although H is not a martingale in general, the compensated Poisson process Ĥ defined

by Ĥt = Yt − λzt for all t ∈ [0, T ] is a martingale. Therefore, we can rewrite the dynamics

of X as
dXt

Xt−
= (µ+ λz)dt+ σdWt + dĤt.

In the last formulation, the finite variation term - eventually captured by the weak time-

derivative - is driven by the deterministic drift coefficient µ+ λz. However, the martingale

term is the sum of two process: a continuous martingale given by the Wiener process and a

pure-jump martingale individuated by the compensated Poisson process.

13



As Example 10 suggests, the decomposition of Theorem 9 holds for a wide class of Lévy

processes. Beyond Merton’s model, such processes are extensively employed for modelling

asset price dynamics. Relevant examples are provided by Kou (2002), Barndorff-Nielsen

(1997) and Carr et al (2002), among the others.

2.4 Monotonicity and convexity

We now discuss the connection between monotonicity and sign of the weak time-derivative.

In conditional terms, we can associate the positivity of Du with the increasing monotonicity

of u. Similarly, a negative weak time-derivative reveals the decreasing monotonicity of

u. Interestingly, these features can be related to submartingality and supermartingality

respectively.

Proposition 11. Let u ∈ W. We have Du > 0 if and only if, for every t ∈ [0, T ] and

τ1, τ2 ∈ [t, T ] such that τ2 > τ1,

Et [u (τ2)] > Et [u (τ1)] .

In this case, u is a submartingale.

An analogous result holds with 6 instead of >.

Proof. As in the proof of Proposition 4, we consider the continuous with compact support

functions η, ξ : [t, T ] −→ R, with
∫ T
t η(s)ds = 1 and we define kξ : [t, T ] −→ R by

kξ(τ) = ξ(τ)−
(∫ T

t
ξ(s)ds

)
η(τ).

The primitive

Kξ(τ) =

∫ τ

t
ξ(s)ds−

(∫ T

t
ξ(s)dτ

)∫ τ

t
η(s)ds

belongs to C1
c ([t, T ],R) and we employ it as a test function in the definition of weak time-

derivative of u. In addition, we require that
∫ T
t ξ(s)ds = 1, so that we consider

Kξ(τ) =

∫ τ

t
(ξ(s)− η(s)) ds, kξ(τ) = ξ(τ)− η(τ).

As u ∈ W, for all ϕ ∈ C1
c ([t, T ],R) and At ∈ Ft, we have∫ T

t
E [u (τ) 1At ] (ξ(τ)− η(τ)) dτ

= −
∫ T

t
E [Du (τ) 1At ]

(∫ τ

t
(ξ(s)− η(s)) ds

)
dτ.

14



By Fubini’s Theorem,∫ T

t
E [u (τ) 1At ] (ξ(τ)− η(τ)) dτ

= −
∫ T

t

(∫ T

s
E [Du (τ) 1At ] dτ

)
(ξ(s)− η(s)) ds

so that ∫ T

t

(
E
[
u (τ)1At

]
+

∫ T

τ
E [Du (s) 1At ] ds

)
ξ(τ)dτ

=

∫ T

t

(
E [u (τ) 1At ] +

∫ T

τ
E [Du (s) 1At ] ds

)
η(τ)dτ.

By the density of continuous functions ξ, η, Lemma 1 in Appendix implies that for a.e.

τ1, τ2 ∈ [t, T ]

E [u (τ1) 1At ] +

∫ T

τ1

E [Du (s) 1At ] ds

= E [u (τ2) 1At ] +

∫ T

τ2

E [Du (s) 1At ] ds,

namely

E [(u (τ2)− u (τ1)) 1At ] =

∫ τ2

τ1

E [Du (s) 1At ] ds. (4)

If Du > 0, then, for a.e. τ1, τ2 ∈ [t, T ] such that τ2 > τ1,∫ τ2

τ1

E [Du (s) 1At ] ds > 0

for any At ∈ Ft and so E [(u (τ2)− u (τ1)) 1At ] > 0. Since this holds for any Ft-measurable

set At, we infer that

Et [u (τ2)− u (τ1)] > 0

for a.e. τ1, τ2 ∈ [t, T ] with τ2 > τ1.

We are left to show that the last inequality is satisfied by all τ1, τ2 ∈ [t, T ] with τ2 > τ1.

Indeed, suppose by contradiction that there exists a pair τ1, τ2 ∈ [t, T ] such that τ2 > τ1

and

Et [u (τ2)] 1Et < Et [u (τ1)] 1Et ,

where Et is a Ft-measurable set with positive measure. Then,

E [u (τ2) 1Et ] < E [u (τ1) 1Et ] .
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Now take into consideration a sequence {ti}i∈N ⊂ [τ1, τ2] such that ti −→ τ+
1 and

Et [u (τ2)] > Et [u (ti)] .

This ensures that

E [u (τ2) 1Et ] > E [u (ti) 1Et ] .

Since u is L1-right-continuous,

Et [u (ti)]
L1

−→ Et [u (τ1)] ti −→ τ+
1

and so

Et [u (ti)] 1Et
L1

−→ Et [u (τ1)] 1Et ti −→ τ+
1 .

As a result,

E [u (ti) 1Et ] −→ E [u (τ1) 1Et ] ti −→ τ+
1 ,

where we deal with a sequence of real numbers. Since E [u (τ1) 1Et ] > E [u (τ2) 1Et ], by

permanence of sings we can find an index î such that

E [u (ti) 1Et ] > E [u (τ2) 1Et ]

for all i > î. Therefore, we obtain a contradiction.

Conversely, if Et [u (τ2)− u (τ1)] > 0 for every τ1, τ2 ∈ [t, T ] such that τ2 > τ1, then∫ τ2

τ1

E [Du (s) 1At ] ds > 0.

Since this holds for any τ1, τ2 ∈ [t, T ], it follows that, for a.e. τ ∈ [t, T ]

E [Du (τ) 1At ] > 0.

As At is any Ft-measurable set, we have

Et [Du (τ)] > 0.

By L1-right-continuity of du/dt, as τ −→ t+,

Et [Du (τ)]
L1

−→ Du (t) .

As a result, Du > 0 for all t ∈ [0, T ].

We are left to show that, in this case, u is a submartingale: for every t ∈ [0, T ] and

τ ∈ [t, T ]

Et [u(τ)] > u(t).
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By contradiction, suppose that there exists τ ∈ (t, T ] and a set Ft ∈ Ft with P (Ft) > 0

such that

Et [u(τ)] 1Ft < u(t)1Ft

This implies that

E [u(τ)1Ft ] < E [u(t)1Ft ] .

Now, consider a sequence {ti}i∈N ⊂ [t, τ ] such that ti −→ t+. For all i we have

Et [u(τ)] > Et [u (ti)] .

It follows that

E [u(τ)1Ft ] > E [u (ti) 1Ft ] .

Since u is L1-continuous from the right,

Et [u (ti)]
L1

−−→ u (t) ti −→ t+

and so

Et [u (ti)] 1Ft
L1

−−→ u (t) 1Ft ti −→ t+.

In consequence,

E [u (ti) 1Ft ] −→ E [u (t) 1Ft ] ti −→ t+,

which is the limit of a sequence of real numbers. As observed at the beginning,

E [u (t) 1Ft ] > E [u (τ) 1Ft ]

and so, by permanence of signs, it is possible to find an index î such that, for all i > î,

E [u (ti) 1Ft ] > E [u (τ) 1Ft ] .

Hence, we meet a contradiction.

Next we focus on the increments of weak time-derivatives, i.e. we deal with convexity (or

concavity). The following result shows that a process u ∈ W satisfies a convexity property

when Du is increasing, after taking the conditional expectation.

Proposition 12. Let u ∈ W. For every t ∈ [0, T ] and τ1, τ2 ∈ [t, T ] such that τ1 6 τ2

Et [Du (τ1)] 6 Et [Du (τ2)]

if and only if, for every t ∈ [0, T ] and τ1, τ2 ∈ [t, T ] such that τ1 6 τ2

Et [Du (τ1)] 6
Et [u (τ2)]− Et [u (τ1)]

τ2 − τ1
6 Et [Du (τ2)] .
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An analogous result holds with > instead of 6.

Proof. Following the proof of Proposition 11, in particular eq. (4), given t ∈ [0, T ], for a.e.

τ1, τ2 ∈ [t, T ], for every Ft-measurable set At

E [Et [u (τ2)− u (τ1)] 1At ] =

∫ τ2

τ1

E [Et [Du (s)] 1At ] ds.

Let τ1 6 τ2. If

Et [Du (τ1)] 6 Et [Du (τ2)] ,

we have

E [Et [Du (τ1)] 1At ] 6 E [Et [Du (τ2)] 1At ]

and this monotonicity ensures that

E [Et [Du (τ1)] 1At ] 6

∫ τ2
τ1

E [Et [Du (s)] 1At ] ds

τ2 − τ1

6 E [Et [Du (τ2)] 1At ] .

By the initial equality,

E [Et [Du (τ1)] 1At ] 6
E [Et [u (τ2)− u (τ1)] 1At ]

τ2 − τ1

6 E [Et [Du (τ2)] 1At ] .

As this holds for any At ∈ Ft, we deduce that

Et [Du (τ1)] 6
Et [u (τ2)]− Et [u (τ1)]

τ2 − τ1
6 Et [Du (τ2)] .

Conversely, if the last inequality holds, it is clear that

Et [Du (τ1)] 6 Et [Du (τ2)] .

Although the results written so far hold for a.e. τ1, τ2 ∈ [t, T ] such that τ1 6 τ2, by

exploiting L1-continuity as in the proof of Proposition 11, we obtain that all conclusions

are satisfied for every τ1, τ2 ∈ [t, T ] such that τ1 6 τ2.

Summing up, the calculus of weak time-derivatives generalizes in a natural way some

key results of standard differential calculus.
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2.5 Comparison with the infinitesimal generator

We relate the notion of weak time-derivative with the one of infinitesimal generator, widely

employed in stochastic calculus. A further comparison of the applications of both instru-

ments in option pricing is discussed in Subsection 4.1.

We begin by considering the infinitesimal incremental ratios of conditional expectations.

These quantities converge to the weak time-derivative.

Proposition 13. Let u ∈ W and t ∈ [0, T ]. If for any τ ∈ [t, T ]

Et [u (τ + h)− u (τ)]

h

is convergent in L1 when h −→ 0+, then

Et [u (t+ h)]− u (t)

h

L1

−−→ Du (t) h −→ 0+.

Proof. We first show that, for a.e. τ ∈ [t, T ]

Et [u (τ + h)− u (τ)]

h

L1

−−→ Et [Du (τ)] h −→ 0+. (5)

By following the same steps of the proof of Proposition 11 we find that, for a.e. τ, τ̂ ∈
[t, T ], for every Ft-measurable set At

E [Et [u (τ̂)− u (τ)] 1At ] =

∫ τ̂

τ
E [Du (s) 1At ] ds.

By setting τ̂ = τ + h for some h > 0, we have

E
[
Et [u (τ + h)− u (τ)]

h
1At

]
=

1

h

∫ τ+h

τ
E [Du (s) 1At ] ds.

Now we take the limit as h −→ 0+. By Lebesgue Differentiation Theorem, the right-hand

side converges to E [Du (τ) 1At ]. Moreover, if w (τ) denotes the Ft-measurable L1-limit of
Et[u(τ+h)−u(τ)]

h , the left-hand side converges to E [w (τ) 1At ]. Consequently,

E [w (τ) 1At ] = E [Du (τ) 1At ]

for every Ft-measurable set At. Hence, by definition of conditional expectation,

w (τ) = Et [Du (τ)] .

As a result, the convergence in eq. (5) is proved.

Now recall that, since u and Du are L1-right-continuous, as τ −→ t+,

Et [u (τ)]
L1

−−→ u (t) , Et [Du (τ)]
L1

−−→ Du (t) .
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Also, the fact that, for any τ ∈ [t, T ],

Et [u (τ + h)− u (τ)]

h

L1

−−→ w (τ) h −→ 0+

ensures that, for any τ ∈ [t, T ],

Et [u (τ + h)]
L1

−−→ Et [u (τ)] h −→ 0+.

Indeed, for every h > 0,

E
[∣∣Et[u (τ + h)− u (τ)]

∣∣] = hE
[
|Et [u (τ + h)− u (τ)]|

h

]
6 h

{
E
[∣∣∣∣Et [u (τ + h)− u (τ)]

h
− w (τ)

∣∣∣∣]+ E [|w (τ)|]
}

and this quantity converges to 0 as h −→ 0+ since w(τ) is in L1. In particular, for any fixed

h > 0, we have

Et [u (τ + h)]
L1

−−→ Et [u (t+ h)] τ −→ t+

and so
Et [u (τ + h)− u (τ)]

h

L1

−−→ Et [u (t+ h)]− u (t)

h
τ −→ t+.

Putting things together, for any τ ∈ [t, T ], h > 0 we have

E

[∣∣∣∣∣Et [u (t+ h)]− u (t)

h
−Du (t)

∣∣∣∣∣
]

6 E
[∣∣∣∣Et [u (t+ h)]− u (t)

h
− Et [u (τ + h)− u (τ)]

h

∣∣∣∣]
+ E [|−Du (t) + Et [Du (τ)]|]

+ E
[∣∣∣∣Et [u (τ + h)− u (τ)]

h
− Et [Du (τ)]

∣∣∣∣] .
The previous convergences allow us to choose τ ∈ [t, T ] in a way that the first two terms in

the right-hand side are arbitrarily small and the convergence in eq. (5) allows us to choose

h so that the last term is arbitrarily little. Hence, when h −→ 0+,

Et [u (t+ h)]− u (t)

h

L1

−−→ Du (t) .

Fixing t ∈ [0, T ], the outcome of Proposition 13 can be restated as

Et [u (τ)]− u (t)−Du (t) (τ − t) L1

−−→ 0 τ −→ t+,
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which is a first-order expansion of Et [u (τ)] in a right neighbourhood of t, with the limit

taken in L1.

As described in Revuz and Yor (1999), the infinitesimal generator of a Feller process X

is the operator A that maps any continuous bounded function f belonging to the domain

of A into the function Af such that, for any t ∈ [0, T ],

Af (Xt) = lim
h→0+

Et [f (Xt+h)]− f (Xt)

h
.

The limit, here, is in the uniform topology over all states ω ∈ Ω and Af is continuous and

bounded.

Proposition 13 shows that the weak time-derivative in W generally works as the in-

finitesimal generator with the limit h −→ 0+ taken in the L1-norm without requiring the

Feller property of the underlying process. We now show that the weak time-derivative and

the infinitesimal generator coincide when they are both well-defined.

Corollary 14. Let X be a Feller process. Let u ∈ W be such that, for every t ∈ [0, T ],

u (t) = f (Xt) with f continuous and bounded in the domain of A. Then, for every t ∈ [0, T ],

Du (t) = Af (Xt) .

Proof. The function f is continuous and bounded, Af is continuous and bounded and

Af (Xt) belongs to L1. Since, for every τ ∈ [t, T ],

Eτ [f (Xτ+h)]− f (Xτ )

h

converges to Af (Xτ ) as h −→ 0+ in the uniform topology,

Et [f (Xτ+h)− f (Xτ )]

h

L1

−−→ Et [Af (Xτ )] h −→ 0+.

Indeed, since f is in the domain of the infinitesimal generator A, we can find an arbitrary

small ε > 0 such that∣∣∣∣Eτ [f (Xτ+h)]− f (Xτ )

h

∣∣∣∣ 6 ∣∣∣∣Et [f (Xτ+h)]− f (Xτ )

h
−Af (Xτ )

∣∣∣∣+ |Af (Xτ )|

6 sup
ω∈Ω

∣∣∣∣Et [f (Xτ+h)]− f (Xτ )

h
−Af (Xτ )

∣∣∣∣+ |Af (Xτ )|

6 ε+ |Af (Xτ )| .

By the Conditional Dominated Convergence Theorem, when h −→ 0+

Et
[
Eτ [f (Xτ+h)]− f (Xτ )

h

]
a.s.−−→ Et [Af (Xτ )] ,
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that is
Et [f (Xτ+h)− f (Xτ )]

h

a.s.−−→ Et [Af (Xτ )] .

Moreover, ∣∣∣∣Et [f (Xτ+h)− f (Xτ )]

h

∣∣∣∣ =

∣∣∣∣Et [Eτ [f (Xτ+h)]− f (Xτ )

h

]∣∣∣∣
6 Et

[∣∣∣∣Eτ [f (Xτ+h)]− f (Xτ )

h

∣∣∣∣]
6 Et [ε+ |Af (Xτ )|]

= ε+ Et [|Af (Xτ )|] .

Therefore, by the Dominated Convergence Theorem, for every t ∈ [0, T ], for every τ ∈ [t, T ]

Et [f (Xτ+h)− f (Xτ )]

h

L1

−−→ Et [Af (Xτ )] h −→ 0+.

In particular,
Et [f (Xt+h)]− f (Xt)

h

L1

−−→ Af (Xt) h −→ 0+.

Since
Et[f(Xτ+h)]−f(Xτ )

h is convergent in L1 as h −→ 0+ for every t ∈ [0, T ] and every

τ ∈ [t, T ], Proposition 13 applies. In consequence,

Et [f (Xt+h)]− f (Xt)

h

L1

−−→ Du (t) h −→ 0+.

By uniqueness of the L1-limit, we infer that

Du (t) = Af (Xt) .

As we will see in Subsection 4.1, weak time-derivatives provide more general formulations

of operator equations that are usually expressed through infinitesimal generators, such as

the eigenvalue-eigenvector problem Af = rf . This kind of generalization is made possible

by the fact that both instruments provide a similar characterization of martingales. Indeed,

the process {f (Xt)}t∈[0,T ] is a martingale when the infinitesimal generator of f is null, as

ensured by Proposition 1.6 in Chapter VII of Revuz and Yor (1999). This result actually

shares the same insight of Proposition 4 that relates the martingale property to the nullity

of weak time-derivatives.
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2.6 Comparison with the extended infinitesimal generator

To illustrate the relation between the weak time-derivative and the extended infinitesimal

generator, we begin with a corollary of Proposition 6.

Corollary 15. Let u ∈ W. Then, the process v defined, for all t ∈ [0, T ], by

v(t) = u(t)− u(0)−
∫ t

0
Du(τ)dτ

is a martingale.

Proof. v belongs to V as discussed in the proof of Proposition 6. Still by Proposition 6, the

weak time-derivative of the process U(t) =
∫ t

0 Du(s)ds is Du. Since the weak time-derivative

of u(0) is null, by additivity we conclude that

Dv = Du− 0−Du = 0.

In consequence, by Proposition 4, v is a martingale.

This result rephrases Dynkin’s formula for Markov processes. See, e.g., Protter (2004).

In particular, it ensures that, for all t ∈ [0, T ] and τ ∈ [t, T ],

Et [u(τ)] = u(t) + Et
[∫ τ

t
Du(s)ds

]
.

In case X is a Markov process and u(t) = f (Xt) for all t ∈ [0, T ], the martingality

of v implied by Corollary 15 guarantees that the weak time-derivative of u coincides with

the extended infinitesimal generator of f . In fact, the extended infinitesimal generator of a

measurable function f of Xt is a measurable function g such that g (Xt) is integrable over

time and the process v defined, for all t ∈ [0, T ], by

v(t) = f (Xt)− f (X0)−
∫ t

0
g (Xτ ) dτ

is a martingale (see Revuz and Yor (1999)). We summarize this observation in a proper

statement.

Corollary 16. Let Xt be a Markov process. Let u ∈ W be such that, for every t ∈ [0, T ],

u(t) = f (Xt). Then, Du is the extended infinitesimal generator of f .

Proof. By Corollary 15, the process v defined by

v(t) = u(t)− u(0)−
∫ t

0
Du(τ)dτ

is a martingale. Therefore, Du satisfies the definition of extended infinitesimal generator of

f .
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Up to minor adjustments, the extended infinitesimal generator has been used by Hansen

and Scheinkman (2009) for the analysis of pricing operators. In fact, the extended infinites-

imal generator keeps the most relevant features of the infinitesimal generator (in particular

the nullity for martingales) but it does not require the Feller property of the underlying

process.

To recap, the weak time-derivative is a general instrument that allows the differentiation

of adapted processes and it nicely compares with both the infinitesimal generator and the

extended infinitesimal generator. First, the infinitesimal generator applies to Feller processes

and its extended version involves Markov processes, while the weak time-derivative is defined

for a wide class of special semimartingales. Note, moreover, that the weak time-derivative

mostly relies on measure theoretical assumptions, while the infinitesimal generator requires

more restrictive topological assumptions.

3 No arbitrage pricing

We consider a continuous-time market over the time window [0, T ] with N risky assets,

whose prices are collected in the vectorial process X, where Xt =
[
X

(1)
t , . . . , X

(N)
t

]′
. A

risk-free security with price B such that Bt = ert for all t ∈ [0, T ] is also traded. Following

for instance Björk (2004), for any t ∈ [0, T ] we define the vector of relative asset prices

Zt = Xt/Bt. We then consider as environment the filtered probability space (Ω,F ,F, P ),

where F = {Ft}t∈[0,T ] is the filtration generated by Z and P is the physical probability.

We assume that our price system satisfies the no free lunch with vanishing risk (NFLVR)

condition and that relative asset prices Z are semimartingales. The dynamics of these

processes are, indeed, compatible with NFLVR restrictions, as explained by Delbaen and

Schachermayer (1994).

A portfolio strategy is given by any adapted (N + 1)-dimensional process ϑ and its

discounted value process is V ϑ defined by

V ϑ
t = ϑ

(0)
t +

N∑
i=1

ϑ
(i)
t Z

(i)
t , t ∈ [0, T ].

All portfolios under consideration are supposed to be admissible, namely there is w > 0

such that ∫ t

0

N∑
i=1

ϑ
(i)
t dZ

(i)
t > −w

for all t ∈ [0, T ], and self-financing, i.e.

dV ϑ
t =

N∑
i=1

ϑ
(i)
t dZ

(i)
t , t ∈ [0, T ].
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According to the First Fundamental Theorem of Asset Pricing of Delbaen and Schacher-

mayer (1998), NFLVR ensures that there exists a probability measure Q equivalent to P

such that Z is a sigma-martingale. In other words, Z is the martingale transform of some

martingale via an integrable predictable process (see Émery (1980)). Moreover, the measure

Q does not need to be unique.

Remark. We assume that at least one of the measures Q inferred by Delbaen and Schacher-

mayer (1998) is an equivalent martingale measure, i.e. it makes Z a martingale process.

From now on we consider one of these risk-neutral measures Q for the valuation of

securities in the market. In particular, we move to the filtered probability space (Ω,F ,F, Q).

Integrability conditions, expectations and convergences are computed with respect to Q.

Since relative prices are martingales under Q, each Z(i) belongs to W. In the following,

we look for discounted price processes of attainable payoffs in this space of special semi-

martingales. Moreover, any process u belongs to W if and only if u/B belongs to W, a

fact that will be apparent from the proofs of Proposition 17 and Theorem 18. Therefore,

we concentrate directly on (non-discounted) payoff prices in W. In general, special semi-

martingale prices are compatible with no free lunch conditions, as in Föllmer and Schweizer

(1991) and Ansel and Stricker (1992), and they are included in the generic semimartingales

required by Delbaen and Schachermayer (1994) and Delbaen and Schachermayer (1998).

We consider a payoff hT in L1 (FT ) associated, for instance, with a traded European

derivative. We want to determine a price process π for hT in W, which is consistent with

our arbitrage-free market, namely π/B is a martingale under Q.

Proposition 17. Let Q be an equivalent martingale measure for Z and let π ∈ W. The

following are equivalent:

(i) π is a no arbitrage price process;

(ii) D (π/B) = 0;

(iii) Dπ = rπ.

Proof. We first prove (i)⇔ (ii) and then (ii)⇔ (iii).

(i)⇔ (ii) π is a no arbitrage price process if and only if π/B is a martingale under Q. By

Proposition 4, this is equivalent to claim that the weak time-derivative of π/B is null.
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(ii)⇔ (iii) For any t ∈ [0, T ], π(t)/Bt = e−rtπ(t). For any At ∈ Ft and ϕ ∈ C1
c ([t, T ],R),∫ T

t
EQ [Dπ (τ) 1At ] e

−rτϕ(τ)dτ = −
∫ T

t
EQ [π (τ) 1At ]

(
e−rtϕ(t)

)′
(τ)dτ

= −
∫ T

t
EQ [π (τ) 1At ] e

−rτϕ′(τ)dτ

+

∫ T

t
EQ [π (τ) 1At ] e

−rτrϕ(τ)dτ,

namely ∫ T

t
EQ
[
e−rτ (Dπ (τ)− rπ (τ))1At

]
ϕ(τ)dτ

= −
∫ T

t
EQ
[
e−rτπ (τ) 1At

]
ϕ′(τ)dτ.

As a result, the weak time-derivative of e−rtπ (t) is such that

D
(
e−rtπ (t)

)
= e−rt (Dπ (t)− rπ (t)) .

Therefore, the weak time-derivative of π/B is null if and only if Dπ = rπ.

In fact, Proposition 17 may be re-read as a characterization of equivalent martingale

measures. Specifically, Q is an equivalent martingale measure if and only if it is equivalent

to P and, employed in the weak time-derivative, it ensures that Dπ = rπ for all asset

prices π in the market. Intuitively, this property is reminiscent of the outcome of Girsanov

Theorem in Black-Scholes model (illustrated in Subsection 3.1), which makes the drift of

the stock price proportional to r under Q.

When the price process is deterministic, point (iii) constitutes the usual differential

equation solved by the price of a riskless bond. In particular, the bond price satisfies the

boundary problem {
dB
dt (t) = rB(t) t ∈ [0, T )
B(T ) = erT

where the classical time-derivative is employed. In words, with continuous compounding,

the rate of change of B(t) is proportional to B(t) and the coefficient of proportionality

coincides with r.

Proposition 17, in fact, establishes a differential relation which is satisfied by the no

arbitrage pricing function π of any risky payoff. For instance, in the case of a European

derivative, we formulate the boundary problem{
Dπ (t) = rπ (t) t ∈ [0, T )
π (T ) = hT

(6)
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where hT ∈ L1 (FT ).

The financial interpretation of the problem is straightforward once we recall that Dπ is

an adapted process and that the filtration F is right-continuous. In fact, for any t ∈ [0, T ],

the infinitesimal variation Dπ (t) is known at time t and so the no arbitrage condition

imposes that Dπ instantaneously behaves as the deterministic bond. The riskiness of π

locally becomes immaterial. In other words, the rate of change of π (t) must be proportional

to π (t) as it is for the riskless asset price. Equivalently, instantaneous returns of hT , i.e.

Dπ/π, coincide with the risk-free rate r when arbitrages are forbidden.

We now show that there exists a unique solution of Problem (6) that coincides with the

risk-neutral valuation formula of a payoff at time T under the measure Q.

Theorem 18. There exists a unique solution π of Problem (6) in W and, for every t in

[0, T ]

π (t) = e−r(T−t)EQt [hT ] . (7)

Proof. • EXISTENCE

In order to show that π ∈ W, we prove that π belongs to V and that it is weakly

time-differentiable.

First, for all τ ∈ [0, T ], π(τ) ∈ L1 (Fτ ) because

EQ [|π (τ)|] = e−r(T−τ)EQ
[∣∣EQτ [hT ]

∣∣] 6 e−r(T−τ)EQ [|hT |] ,

which is finite since hT ∈ L1 (FT ). In addition,∫ T

0
EQ [|π (τ)|] dτ 6

∫ T

0
e−r(T−τ)EQ [|hT |] dτ

=

(∫ T

0
e−r(T−τ)dτ

)
EQ [|hT |] ,

which is finite, too.

As for the L1-continuity, we check that, for any t ∈ [0, T ), EQ [|π(τ)− π(t)|] tends to
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zero as τ −→ t+. We have

EQ [|π(τ)− π(t)|] = EQ
[∣∣∣e−r(T−τ)EQτ [hT ]− e−r(T−t)EQt [hT ]

∣∣∣]
= e−r(T−t)EQ

[∣∣∣e−r(t−τ)EQτ [hT ]− EQt [hT ]
∣∣∣]

6 e−r(T−t)
{
EQ
[∣∣∣e−r(t−τ)EQτ [hT ]− EQτ [hT ]

∣∣∣]
+ EQ

[∣∣∣EQτ [hT ]− EQt [hT ]
∣∣∣]}

6 e−r(T−t)
{ ∣∣∣e−r(t−τ) − 1

∣∣∣EQ [|hT |]

+ EQ
[∣∣∣EQτ [hT ]− EQt [hT ]

∣∣∣]}.
In the last expression, both addends go to zero as τ approaches t from the right. In

particular, the convergence of the second one is ensured by Lévy’s Downward Theorem,

which guarantees that

EQτ [hT ]
L1

−−→ EQ
t+

[hT ] = EQt [hT ] τ −→ t+.

Similarly, when τ −→ T−,

EQ [|π(τ)− hT |] 6
{ ∣∣∣e−r(T−τ) − 1

∣∣∣EQ [|hT |] + EQ
[∣∣EQτ [hT ]− hT

∣∣]}.
Here, the convergence of the second term is due to Lévy’s Upward Theorem:

EQτ [hT ]
L1

−−→ EQ
T− [hT ] = EQT [hT ] = hT τ −→ T−.

Therefore π belongs to V.

Now we look for the weak time-derivative of π. We consider any At ∈ Ft and ϕ ∈
C1
c ([t, T ],R). Since indicator functions 1At are Fτ -measurable for all τ ∈ [t, T ], we have

−
∫ T

t
EQ [π (τ) 1At ]ϕ

′(τ)dτ = −
∫ T

t
EQ
[
e−r(T−τ)EQτ [hT ] 1At

]
ϕ′(τ)dτ

= −
∫ T

t
e−r(T−τ)EQ [hT1At ]ϕ

′(τ)dτ

= −EQ [hT1At ]

∫ T

t
e−r(T−τ)ϕ′(τ)dτ

= EQ [hT1At ]

∫ T

t
re−r(T−τ)ϕ(τ)dτ

=

∫ T

t
rEQ

[
e−r(T−τ)hT1At

]
ϕ(τ)dτ

=

∫ T

t
EQ [rπ (τ) 1At ]ϕ(τ)dτ.
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Therefore, the candidate weak time-derivative of π is rπ. Since rπ belongs to V, rπ is

effectively the weak time-derivative of π:

Dπ = rπ.

Of course, π(T ) = hT and so π ∈ W solves Problem (6).

• UNIQUENESS

Let π1, π2 ∈ W be two solutions of Problem (6), that is

Dπi = rπi i = 1, 2,

with the boundary condition πi (T ) = hT . By defining z = π1 − π2 ∈ W, we have that

Dz = rz

and z (T ) = 0. As in the proof of Proposition 17, the weak time-derivative of e−rtz (t) is

e−rt (Dz (t)− rz (t)) .

However this process is null. Therefore, e−rtz (t) has null weak time-derivative. Conse-

quently, by Proposition 4, e−rtz (t) defines a martingale and so, for any t ∈ [0, T ] and

τ ∈ [t, T ]

EQt [z (τ)] = er(τ−t)z (t) .

Letting τ go to T−, we have that

EQt [z (τ)] −→ er(T−t)z(t) pointwise.

In addition, z (τ) converges to z(T ) = 0 in L1(Q) as τ approaches T− and so EQt [z (τ)] tends

to zero in L1(Q). By uniqueness of the L1-limit, we infer that z(t) = 0 for all t ∈ [0, T ].

This proves uniqueness of the solution of Problem (6).

To be coherent with the no arbitrage setting, Q must be an equivalent martingale

measure for the extended market made by the securities with discounted prices Z and π/B.

Therefore, the only possible no arbitrage price process is given by eq. (7) because it satisfies

π (t)

Bt
= EQt

[
hT
BT

]
(8)

for all t ∈ [0, T ]. We refer to π (t) as the no arbitrage pricing function (or risk-neutral

pricing function) of any payoff hT under Q.

The additional value of Theorem 18 with respect to the existing theory consists in the

fact that π belongs to the space W and is characterized by its dynamics Dπ = rπ.
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Suppose now that the interest rate is deterministic but time-dependent. Moreover, r(t)

is assumed to be Lebesgue measurable (over time) and bounded. Then, under additional

technical assumptions, the no arbitrage pricing function

π (t) = e−
∫ T
t r(s)dsEQt [hT ]

is the unique solution of problem{
Dπ (t) = r(t)π (t) t ∈ [0, T )
π (T ) = hT .

We provide a detailed solution of the problem in Section 5, in the more general case of

stochastic interest rates.

3.1 Example: Black-Scholes model

Black and Scholes (1973) model involves a continuous-time financial market with a risk-

less bond with price B and a risky asset with price X. In the filtered probability space

(Ω,F ,F, P ), the filtration F is generated by a P -Wiener process W. The bond and stock

prices follow the dynamics

dBt = rBtdt, dXt = µXtdt+ σXtdW t,

where µ ∈ R is the drift, σ > 0 is the volatility and r ∈ R is the risk-free rate. Girsanov

Theorem ensures that there exists a probability measure Q equivalent to P under which

the discounted stock price process is a martingale. According to the First Fundamental

Theorem of Asset Pricing the market is, then, arbitrage-free. In particular, the dynamics

of the stock price under Q are

dXt = rXtdt+ σXtdWt,

where W is a Q-Wiener process. Hence, in this geometric Brownian motion setting, the

risky security and the bond must share the same drift coefficient given by the interest rate r

in order to exclude any arbitrage possibility (see, e.g., Björk (2004)). Specifically, the stock

price is

Xt = X0e

(
r−σ

2

2

)
t+σWt

and it is included in V. Its integral representation is

Xt = X0 +

∫ t

0
rXsds+

∫ t

0
σXsdWs,
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which individuates a continuous Itô semimartingale. Then, as in Example 8, the weak

time-derivative captures the drift, that is

DXt = rXt.

This relation turns out to be a restatement of the no arbitrage pricing equation of Problem

(6) for the stock price under Q.

As described in the initial part of the section, the no arbitrage price process of a Eu-

ropean derivative with FT -measurable payoff hT is π given by eq. (7). In addition, in

Black-Scholes model π (t) is a deterministic function of t and Xt. Since the discounted price

process
{
e−rtπ (t)

}
t∈[0,T ]

is also a Q-martingale, the drift of π is equal to r, too. This is

the crucial outcome of no arbitrage, which is captured, more in general, by Problem (6),

where no specific price dynamics are assumed. This is also the intuition that drives Cox

and Ross (1976) derivation of Black-Scholes equation, which is based on a hedging strategy

that exploits a locally riskless portfolio.

3.2 Valuation of cashflows

The payoff of a European derivative with maturity T can be seen as a special cashflow

in which there is a unique random payment at time T . Indeed, the no arbitrage theory

described so far generalizes to the pricing of payoff streams.

In particular, we consider an adapted cashflow h such that h : [0, T ] −→ L1 (FT ). We

assume that h is Bochner integrable with respect to a finite measure µ on [0, T ] that weighs

cashflows over time.

Given an equivalent martingale measure Q, the no arbitrage price process π of h is the

expected discounted value of future cashflows under Q, i.e.

π(t) = EQt
[∫ T

t
e−r(m−t)hmµ(dm)

]
(9)

for all t ∈ [0, T ]. For example, if µ is a counting measure, the previous formula evaluates

a finite number or a sequence of future payments. In case µ is absolutely continuous,

we are pricing instead a continuous stream of payoffs. In the next statement we assume

that µ is absolutely continuous with respect to Lebesgue measure on [0, T ] and we write

µ(dm) = pmdm, denoting the Radon-Nikodym derivative by pm.

We also assume that the process h · p belongs to V. Hence, we are able to show that the

risk-neutral pricing formula for cashflows satisfies the differential equation

Dπ(t) = rπ(t)− htpt t ∈ [0, T ],

where Dπ is the weak time-derivative of π under Q.

31



Proposition 19. Let h · p ∈ V and π(t) = EQt
[∫ T
t e−r(m−t)hmpmdm

]
. Then, π belongs to

W and it solves the equation

Dπ(t) = rπ(t)− htpt t ∈ [0, T ].

Proof. We denote µ(dm) = pmdm. We show that π(t) = EQt
[∫ T
t e−r(m−t)hmµ(dm)

]
belongs

to V and it is weakly time-differentiable.

First, for all τ ∈ [0, T ], π(τ) ∈ L1 (Fτ ):

E [|π (τ)|] = EQ
[∣∣∣∣EQτ [∫ T

τ
e−r(m−τ)hmµ(dm)

]∣∣∣∣]
6 EQ

[∫ T

τ
e−r(m−τ) |hm|µ(dm)

]
6 KEQ

[∫ T

τ
|hm|µ(dm)

]
< +∞

with K > 0. The last quantity is finite because h is Bochner integrable with respect to µ.

Similarly, ∫ T

0
EQ [|π (τ)|] dτ 6 TKEQ

[∫ T

0
|hm|µ(dm)

]
< +∞.

To establish L1-continuity, for any t ∈ [0, T ), consider τ −→ t+. We have

EQ [|π(τ)− π(t)|]

= EQ
[∣∣∣∣∣EQτ

[∫ T

τ
e−r(m−τ)hmµ(dm)

]
− EQt

[∫ T

t
e−r(m−t)hmµ(dm)

] ∣∣∣∣∣
]

6 EQ
[∣∣∣∣∣EQτ

[∫ T

τ
e−r(m−τ)hmµ(dm)

]
− EQτ

[∫ T

t
e−r(m−t)hmµ(dm)

] ∣∣∣∣∣
]

+ EQ
[∣∣∣∣∣EQτ

[∫ T

t
e−r(m−t)hmµ(dm)

]
− EQt

[∫ T

t
e−r(m−t)hmµ(dm)

] ∣∣∣∣∣
]

= EQ
[∣∣∣∣∣e−r(t−τ)EQτ

[∫ T

τ
e−r(m−t)hmµ(dm)

]
− EQτ

[∫ T

t
e−r(m−t)hmµ(dm)

] ∣∣∣∣∣
]

+ EQ
[∣∣∣∣∣EQτ

[∫ T

t
e−r(m−t)hmµ(dm)

]
− EQt

[∫ T

t
e−r(m−t)hmµ(dm)

] ∣∣∣∣∣
]

In the last sum, the second term converges to zero as τ approaches t by Lévy’s Downward
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Theorem. Next, we show that also the first term vanishes:

EQ
[∣∣∣∣∣e−r(t−τ)EQτ

[∫ T

τ
e−r(m−t)hmµ(dm)

]
− EQτ

[∫ T

t
e−r(m−t)hmµ(dm)

] ∣∣∣∣∣
]

6
∣∣∣e−r(t−τ) − 1

∣∣∣EQ [∫ T

τ
e−r(m−t) |hm|µ(dm)

]
+ EQ

[∫ τ

t
e−r(m−t) |hm|µ(dm)

]
6
∣∣∣e−r(t−τ) − 1

∣∣∣EQ [∫ T

t
e−r(m−t) |hm|µ(dm)

]
+ EQ

[∫ τ

t
e−r(m−t) |hm|µ(dm)

]
.

Bochner integrability of h ensures that the last quantities are well-defined and convergent

to zero as τ −→ t+.

As for L1-convergence from the left in T , we consider τ −→ T−. Since π(T ) = 0, we get

EQ [|π(τ)− π(T )|] = EQ
[∣∣∣∣∣e−r(T−τ)EQτ

[∫ T

τ
e−r(m−T )hmµ(dm)

] ∣∣∣∣∣
]

6 e−r(T−τ)EQ
[∫ T

τ
e−r(m−T ) |hm|µ(dm)

]
,

where the last quantity goes to zero as τ tends to T from the left because of Bochner

integrability of h.

In consequence, π belongs to V.

Now we compute the weak time-derivative of π. We consider any At ∈ Ft and any

ϕ ∈ C1
c ([t, T ],R). The indicator functions 1At are Fτ -measurable for all τ ∈ [t, T ] and so

−
∫ T

t
EQ
[
π (τ) 1At

]
ϕ′(τ)dτ

= −
∫ T

t
EQ
[
EQτ
[∫ T

τ
e−r(m−τ)hmµ(dm)

]
1At

]
ϕ′(τ)dτ

= −
∫ T

t
EQ
[∫ T

τ
e−r(m−τ)hm1Atpmdm

]
ϕ′(τ)dτ.

because µ(dm) = pmdm. Since the expectation is a bounded operator, by Lemma 11.45

in Aliprantis and Border (2006) we can exchange it with the integral. Later we apply
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integration by parts:

−
∫ T

t
EQ[π (τ) 1At ]ϕ

′(τ)dτ

= −
∫ T

t

(∫ T

τ
e−r(m−τ)EQ [hmpm1At ] dm

)
ϕ′(τ)dτ

= 0 +

∫ T

t

d

dτ

(∫ T

τ
e−r(m−τ)EQ [hmpm1At ] dm

)
ϕ(τ)dτ

=

∫ T

t

(
0− e−r(τ−τ)EQ [hτpτ1At ] + r

∫ T

τ
e−r(m−τ)EQ [hmpm1At ] dm

)
ϕ(τ)dτ

=

∫ T

t

(
EQ [(−hτpτ ) 1At ] + EQ

[
r

∫ T

τ
e−r(m−τ)hmpm1Atdm

])
ϕ(τ)dτ

=

∫ T

t
EQ
[
(−hτpτ ) 1At + rEQτ

[∫ T

τ
e−r(m−τ)hmµ(dm)

]
1At

]
ϕ(τ)dτ

=

∫ T

t
EQ [(rπ(τ)− hτpτ ) 1At ]ϕ(τ)dτ.

Since both π and h · p belong to V, it follows that π − h · p is included in V. Therefore, the

latter is the weak time-derivative of π:

Dπ (t) = rπ (t)− htpt, t ∈ [0, T ].

Observe that a term analogous to −htpt is added in Feynman-Kac equation when a

stream of dividends is present (see, e.g., Duffie (2010)).

Intuitively, if ht is null except for the time T and µ has mass concentrated in T , we

retrieve as special case the differential equation of Problem (6) about individual payoffs T .

However, a formal claim about this case requires the theory of distributions and it is beyond

the scope of Proposition 19.

4 An operator approach

In this section we define the spaces and operators that allow us to formalize Problem (6)

as an eigenvalue-eigenvector problem.

We first introduce some notation, still in the framework of Section 3. We denote by LT

the Radon-Nikodym derivative of the risk-neutral measure Q with respect to the physical

measure P . Setting Lt = Et [LT ] for all t ∈ [0, T ], we rewrite the no arbitrage price at any

time t as

π(t) = e−r(T−t)Et
[
LT
Lt
hT

]
.

34



We can also restate the martingale property of discounted prices under Q by saying that

the process
{
e−rtLtπ (t)

}
t∈[0,T ]

is a martingale under the physical measure. In addition,

the measure Q induces a stochastic discount factor process S that, at any t ∈ [0, T ], takes

the form St = e−rtLt. See, for instance, Hansen and Richard (1987) and Björk (2004) as

general references on risk-neutral pricing.

The starting point of our derivation is the observation that the no arbitrage pricing

function π is weakly time-differentiable infinitely many times. Indeed, Dπ belongs to V
and it equals the original π except for the multiplicative constant r. Hence, Dπ is weakly

time-differentiable, too. By defining the subspace of W

Z = {infinitely weakly time-differentiable u ∈ V} ,

we have that π ∈ Z. Moreover, the weak time-derivative defines a linear operator D : Z −→
Z that maps any u ∈ Z to Du. Therefore, the differential equation of Problem (6) delivers

the eigenvalue-eigenvector problem

Dπ = rπ, π ∈ Z, (10)

which rephrases the one faced by Hansen and Scheinkman (2009) where, instead of D, the

extended generator of the underlying Markov process is involved. In our setting Marko-

vianity is not required and the no arbitrage pricing function π is an eigenfunction of the

operator D, defined through weak time-derivatives. Moreover, the process
{
e−rtLtπ (t)

}
t

is

a martingale under P .

Following Hansen and Scheinkman (2009), we choose a positive payoff hT . The positivity

of hT is related to the requirement of π to be an eigenfunction related to the principal

eigenvalue in Hansen and Scheinkman (2009). Indeed, Hansen and Scheinkman generalize

the Perron-Frobenius theory (see Meyer (2000)) from the finite-state Markov chain setting

to more abstract frameworks.

Then, we define

L̂t = e−rtLt
π (t)

π (0)
,

which still satisfies the martingale property. In addition, the stochastic discount factor St

decomposes as

St = L̂t
π (0)

π (t)
= e−rtL̂t

π̃ (0)

π̃ (t)
,

where we define π̃ (t) = Et [Lt,ThT ]. In the last decomposition −r is referred to as the

growth rate of St, L̂t is the martingale component and π̃ (0) /π̃ (t) is the transient component.

However, the decomposition is not unique.
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This kind of results has proved to be fruitful in the macro-financial literature. For

instance, Alvarez and Jermann (2005) employ the last decomposition to quantify the dy-

namics of stochastic discount factors. Moreover, an application to the study of long-term

risk-return trade-off for the valuation of cash flows is described in Hansen, Heaton, and Li

(2008).

The use of weak time-derivatives allows to extend the applicability of Hansen-Scheinkman

decomposition to a wide class of special semimartingales. The crucial point of the construc-

tion is the identification of martingales through null weak time-derivatives.

4.1 Comparison with the infinitesimal generator

As we saw in Proposition 13, the weak time-derivative provides a way to differentiate ran-

dom processes which generalizes the infinitesimal generator for Feller processes X and the

extended infinitesimal generator for Markov processes. By focusing on the first one, if the

infinitesimal generator of f is null, then the process {f (Xt)}t∈[0,T ] is a martingale, a fact

that parallels Proposition 4. In particular, simple computations show that the no arbitrage

pricing function of eq. (7) satisfies the eigenvalue-eigenvector problem Aπ = rπ. Hence, we

can refer to Aπ = rπ as a strong form eigenvalue-eigenvector problem, while Problem (6),

rewritten as (10), defines a generalized form.

In addition, it holds thatA
(
e−rtπ (t)

)
= 0, hence the discounted price process

{
e−rtπ (t)

}
t∈[0,T ]

is a martingale under Q. By exploiting the terminal condition π (T ) = hT , this fact ensures

that π is the unique solution of the problem in strong form.

In fact, we followed a parallel path of reasoning with weak time-derivatives, but with

relevant differences: the class of processes involved and the continuity required (L1 instead

of uniform topology). An analogous remark is valid for the extended infinitesimal generator.

5 No arbitrage pricing with stochastic interest rates

We provide a refinement of our theory in order to solve the no arbitrage pricing differential

equation when interest rates are stochastic.

In this case we have two sources of randomness described by processes X and r defined

on the probability space (Ω,F , P ) over the time interval [0, T ]. As in Section 3, X is

associated with the N -dimensional process of underlying stock prices. In addition, r is

one-dimensional and represents stochastic instantaneous rates. Here, Bt = e
∫ t
0 r(s)ds for all

t ∈ [0, T ] and normalized prices are defined by Zt = e−
∫ t
0 r(s)dsXt. Hence, we consider the

filtration generated by the pair (Z, r), which we denote by F = {Ft}t∈[0,T ].

In this section we assign a stronger meaning to weak time-differentiability. To distin-
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guish the new definition from that of Section 2 we add r-, which stays for robust. In-

deed, r-weak time-differentiability involves a larger set of test functions than weak time-

differentiability of Definition 1. Specifically, we employ as test functions all adapted pro-

cesses in C1
c ([t, T ], L∞ (FT )). This space is composed of functions ϕ : [0, T ] −→ L∞ (FT )

with compact support that are continuously differentiable in the following sense: for any

t ∈ [0, T ], ϕ(t) =
∫ t

0 ψ(τ)dτ with ψ : [0, T ] −→ L∞ (FT ) adapted, continuous and with

compact support. Hence, r-weak time-differentiability is a stronger requirement than weak

time-differentiability.

Definition 20. Given u ∈ V, we say that u is r-weakly time-differentiable when there exists

w ∈ V such that for every t ∈ [0, T ]∫ T

t
E [w (τ) 1Atϕ(τ)] dτ = −

∫ T

t
E
[
u (τ) 1Atϕ

′(τ)
]
dτ

∀At ∈ Ft, ∀ϕ ∈ C1
c ([t, T ], L∞ (FT )) adapted.

In this case we call w a r-weak time-derivative of u.

Definition 20 is well-posed because the integrals∫ T

t
E
[
u (τ) 1Atϕ

′(τ)
]
dτ and

∫ T

t
E [w (τ) 1Atϕ(τ)] dτ

are finite for any choice of At and ϕ, as required. Indeed, ϕ and ϕ′ are continuous functions

that take values in L∞ (FT ), so their image is bounded.

We finally define the space

Wr = {r-weakly time-differentiable u ∈ V} .

If u is r-weakly time-differentiable, it is also weakly time-differentiable because the test

functions ϕ, that are random processes, may specialize to deterministic functions. This

simple observation allows us to inherit some of the results of Section 2. For instance,

the r-weak time-derivative is still unique. Moreover, if a process u ∈ V is r-weakly time-

differentiable with Du = 0, then it is a martingale.

In our financial application, we assume that instantaneous rates define an adapted pro-

cess r : [0, T ] −→ L∞ (FT ). In addition, we impose that interest rates are uniformly

bounded over time, i.e. there is a positive R̃ such that

|r(t)| 6 R̃ ∀t ∈ [0, T ]

and that they are L2-right-continuous in any t ∈ [0, T ) and L2-left-continuous in T . Progres-

sive measurability (which holds up to modifications) and boundedness ensure the Bochner
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integrability of r. As a result, the Bochner integral
∫ T

0 r(τ)dτ is a well-defined object in

L∞ (FT ).

By following the same line of reasoning of Section 3, from NFLVR we infer the existence

of a sigma-martingale measure Q, which we assume to be an equivalent martingale measure.

Thus, we move to the filtered space (Ω,F ,F, Q). Since now interest rates are stochastic,

under the measure Q the no arbitrage pricing differential equation is{
Dπ (t) = r(t)π (t) t ∈ [0, T )
π (T ) = hT

(11)

where we assume hT ∈ L2 (FT ). Differently from Problem (6), now each r(t) ∈ L∞ (Ft) and

D represents the r-weak time-derivative. We now show the unique solution of this problem

in Wr.

Theorem 21. Under the previous assumptions on r, there exists a unique solution π of

Problem (11) in Wr and, for every t in [0, T ]

π (t) = EQt
[
e−
∫ T
t r(s)dshT

]
. (12)

Proof. • EXISTENCE

In order to show that π ∈ Wr, we prove that π belongs to V and that it is r-weakly

time-differentiable.

First, for all τ ∈ [0, T ], π(τ) ∈ L1 (Fτ ) because r is uniformly bounded. Hence, for some

K > 0,

EQ [|π (τ)|] 6 EQ
[
e−
∫ T
τ r(s)ds |hT |

]
6 KEQ [|hT |]

and the last quantity is finite because hT ∈ L1 (FT ). In addition,∫ T

0
EQ [|π (τ)|] dτ 6 KTEQ [|hT |] ,

which is finite.
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As for L1-continuity, for all t ∈ [0, T ), consider τ −→ t+. Then,

EQ [|π(τ)− π(t)|] = EQ
[∣∣∣EQτ [e− ∫ Tτ r(s)dshT

]
− EQt

[
e−
∫ T
t r(s)dshT

]∣∣∣]
6 EQ

[∣∣∣EQτ [e− ∫ Tτ r(s)dshT

]
− EQτ

[
e−
∫ T
t r(s)dshT

]∣∣∣]
+ EQ

[∣∣∣EQτ [e− ∫ Tt r(s)dshT

]
− EQt

[
e−
∫ T
t r(s)dshT

]∣∣∣]
= EQ

[∣∣∣EQτ [e− ∫ Tt r(s)dshT

(
e−
∫ t
τ r(s)ds − 1

)]∣∣∣]
+ EQ

[∣∣∣EQτ [e− ∫ Tt r(s)dshT

]
− EQt

[
e−
∫ T
t r(s)dshT

]∣∣∣]
6 EQ

[
e−
∫ T
t r(s)ds |hT |

∣∣∣e− ∫ tτ r(s)ds − 1
∣∣∣]

+ EQ
[∣∣∣EQτ [e− ∫ Tt r(s)dshT

]
− EQt

[
e−
∫ T
t r(s)dshT

]∣∣∣]
6 e(T−t)R̃EQ

[
|hT |

∣∣∣e− ∫ tτ r(s)ds − 1
∣∣∣]

+ EQ
[∣∣∣EQτ [e− ∫ Tt r(s)dshT

]
− EQt

[
e−
∫ T
t r(s)dshT

]∣∣∣]
because r is uniformly bounded by R̃. Moreover, we can apply Lagrange’s Theorem to

the continuously differentiable function σ 7−→ e−
∫ t
σ r(s)ds for all σ ∈ [t, τ ]. Hence, we find

t̂ ∈ (t, τ) such that

e−
∫ t
τ r(s)ds − 1 = r

(
t̂
)
e−
∫ t
t̂ r(s)ds(τ − t), (13)

so that ∣∣∣e− ∫ tτ r(s)ds − 1
∣∣∣ =

∣∣r (t̂)∣∣ e− ∫ tt̂ r(s)ds(τ − t).
As a result,

e(T−t)R̃EQ
[
|hT |

∣∣∣e− ∫ tτ r(s)ds − 1
∣∣∣] = e(T−t)R̃EQ

[
|hT |

∣∣r (t̂)∣∣ e− ∫ tt̂ r(s)ds] (τ − t)

6 e(T−t)R̃EQ [|hT |] R̃e(t−t̂)R̃(τ − t).

Consequently,

EQ [|π(τ)− π(t)|] 6 e(T−t̂)R̃EQ [|hT |] (τ − t)R̃

+ EQ
[∣∣∣EQτ [e− ∫ Tt r(s)dshT

]
− EQt

[
e−
∫ T
t r(s)dshT

]∣∣∣] .
In the last expression, both terms tend to zero as τ reaches t+. Specifically, the convergence

of the second one is guaranteed by Lévy’s Downward Theorem.

Now we concentrate on L1-convergence in T from the left and we take τ −→ T−.

Similarly to before, we get

EQ [|π(τ)− π(T )|] 6 e(T−t̂)R̃EQ [|hT |] (T − τ)R̃

+ EQ
[∣∣EQτ [hT ]− hT

∣∣]
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and the convergence of the last term is due to Lévy’s Upward Theorem.

Therefore π belongs to V.

Now we look for the r-weak time-derivative of π. We consider any At ∈ Ft and any

adapted ϕ ∈ C1
c ([t, T ], L∞ (FT )). Recall that indicator functions 1At are Fτ -measurable

for all τ ∈ [t, T ]. Since ϕ′ is adapted too, we deduce that

−
∫ T

t
EQ
[
π (τ)1Atϕ

′(τ)

]
dτ

= −
∫ T

t
EQ
[
EQτ
[
e−
∫ T
τ r(s)dshT

]
1Atϕ

′(τ)
]
dτ

= −
∫ T

t
EQ
[
e−
∫ T
τ r(s)dshT1Atϕ

′(τ)
]
dτ.

e−
∫ T
τ r(s)dsϕ′(τ) is a continuous function of τ ∈ [t, T ], hence it is Bochner integrable. The

expectation is a bounded operator, so Lemma 11.45 in Aliprantis and Border (2006) allows

us to exchange expectation and integral. Therefore,

−
∫ T

t
EQ
[
π (τ) 1Atϕ

′(τ)
]
dτ = −EQ

[
hT1At

∫ T

t
e−
∫ T
τ r(s)dsϕ′(τ)dτ

]
= EQ

[
hT1At

∫ T

t

(
1− e−

∫ T
τ r(s)ds

)
ϕ′(τ)dτ

]
− EQ

[
hT1At

∫ T

t
ϕ′(τ)dτ

]
= EQ

[
hT1At

∫ T

t

(
1− e−

∫ T
τ r(s)ds

)
ϕ′(τ)dτ

]
because ϕ has compact support. Now consider the function u 7−→ r(u)e−

∫ T
u r(s)ds. This

function is Bochner integrable (because r is uniformly bounded) and its Bochner integral

coincides almost surely with the pathwise Lebesgue integral. For any state ω ∈ Ω the

restriction rω of r satisfies:∫ T

τ
rω(u)e−

∫ T
u rω(s)dsdu =

[
e−
∫ T
u rω(s)ds

]T
τ

= 1− e−
∫ T
τ rω(s)ds.

In consequence, the Bochner integral is∫ T

τ
r(u)e−

∫ T
u r(s)dsdu = 1− e−

∫ T
τ r(s)ds.

By exploiting integration by parts (see Craven (1970)), we obtain
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−
∫ T

t
EQ
[
π (τ)1Atϕ

′(τ)

]
dτ

= EQ
[
hT1At

∫ T

t

(∫ T

τ
r(u)e−

∫ T
u r(s)dsdu

)
ϕ′(τ)dτ

]
= EQ

[
hT1At

∫ T

t
r(τ)e−

∫ T
τ r(s)dsϕ(τ)dτ

]
=

∫ T

t
EQ
[
hT1Atr(τ)e−

∫ T
τ r(s)dsϕ(τ)

]
dτ

=

∫ T

t
EQ
[
r(τ)EQτ

[
e−
∫ T
τ r(s)dshT

]
1Atϕ(τ)

]
dτ

=

∫ T

t
EQ [r(τ)π(τ)1Atϕ(τ)] dτ.

Therefore, the candidate r-weak time-derivative of π is rπ and r(t)π(t) belongs to L1 (Ft)
for all t because r is bounded. As for L1-continuity, let τ go to t+ for any t ∈ [0, T ). Then,

EQ
[∣∣∣∣r(τ)π(τ)− r(t)π(t)

∣∣∣∣]
= EQ

[∣∣∣r(τ)EQτ
[
e−
∫ T
τ r(s)dshT

]
− r(t)EQt

[
e−
∫ T
t r(s)dshT

]∣∣∣]
6 EQ

[∣∣∣EQτ [r(τ)e−
∫ T
τ r(s)dshT

]
− EQτ

[
r(t)e−

∫ T
t r(s)dshT

]∣∣∣]
+ EQ

[∣∣∣EQτ [r(t)e− ∫ Tt r(s)dshT

]
− EQt

[
r(t)e−

∫ T
t r(s)dshT

]∣∣∣]
6 EQ

[∣∣∣r(τ)e−
∫ T
τ r(s)dshT − r(t)e−

∫ T
t r(s)dshT

∣∣∣]
+ EQ

[∣∣∣EQτ [r(t)e− ∫ Tt r(s)dshT

]
− EQt

[
r(t)e−

∫ T
t r(s)dshT

]∣∣∣] .
By exploiting the uniform boundedness of r and eq. (13), we find that the first addend in

the last expression satisfies

EQ
[∣∣∣∣r(τ)e−

∫ T
τ r(s)dshT − r(t)e−

∫ T
t r(s)dshT

∣∣∣∣]
= EQ

[
e−
∫ T
t r(s)ds |hT |

∣∣∣r(τ)e−
∫ t
τ r(s)ds − r(t)

∣∣∣]
6 e(T−t)R̃EQ

[
|hT |

∣∣∣r(τ)e−
∫ t
τ r(s)ds − r(t)

∣∣∣]
= e(T−t)R̃EQ

[
|hT |

∣∣∣r(τ) + r(τ)r
(
t̂
)
e−
∫ t
t̂ r(s)ds(τ − t)− r(t)

∣∣∣]
6 e(T−t)R̃EQ [|hT | |r(τ)− r(t)|]

+ e(T−t)R̃EQ
[
|hT |

∣∣r(τ)r
(
t̂
)∣∣ e− ∫ tt̂ r(s)ds] |τ − t|.
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As a result,

EQ
[∣∣∣∣r(τ)π(τ)− r(t)π(t)

∣∣∣∣]
6 e(T−t)R̃ (EQ [h2

T

]) 1
2

(
EQ
[
|r(τ)− r(t)|2

]) 1
2

+ e(T−t̂)R̃R̃2EQ [|hT |] |τ − t|

+ EQ
[∣∣∣EQτ [r(t)e− ∫ Tt r(s)dshT

]
− EQt

[
r(t)e−

∫ T
t r(s)dshT

]∣∣∣] .
As τ approaches t from the right, the first term goes to zero because hT ∈ L2 (FT ) and r is

L2-right-continuous; the second term tends to zero because r is uniformly bounded; the last

term is convergent to zero by Lévy’s Downward Theorem. Therefore, the L1-right-continuity

is proved.

In order to establish L1-left-continuity in T , we observe that, by analogous steps, we

obtain

EQ
[∣∣∣∣r(τ)π(τ)− r(T )π(T )

∣∣∣∣]
6
(
EQ
[
h2
T

]) 1
2

(
EQ
[
|r(τ)− r(T )|2

]) 1
2

+ R̃2EQ [|hT |] |τ − T |,

which goes to zero by L2-left-continuity of r in T .

Hence, rπ belongs to V and it is the r-weak time-derivative of π:

Dπ (t) = r(t)π (t) .

Summing up, we showed that π ∈ Wr and it solves Problem (11).

• UNIQUENESS

Let π1, π2 ∈ Wr be two solutions of Problem (11), that is for every t ∈ [0, T ]

Dπi (t) = r(t)πi (t) i = 1, 2,

with πi (T ) = hT . By defining z = π1 − π2 ∈ Wr, we have that, for every t ∈ [0, T ],

Dz (t) = r(t)z (t)

and z (T ) = 0.

The process r is Bochner integrable over time. Reasoning state by state, we have∫ T

t
rω(s)ds = Rω(T )−Rω(t),

42



where Rω is a primitive of rω. By denoting with R the random variable that collects all

Rω, it follows that the Bochner integral of r is∫ T

t
r(s)ds = R(T )−R(t).

Now we show that the r-weak time-derivative of the process e−R(t)z (t) is

e−R(t) (Dz (t)− r(t)z (t)) .

For any adapted ϕ ∈ C1
c ([t, T ], L∞ (FT )), consider the function

u 7−→ e−R(u)r(u)ϕ(u)− e−R(u)ϕ′(u).

Since r is bounded, this function is Bochner integrable. By reasoning pathwise, it follows

that ∫ T

τ

(
e−R(u)r(u)ϕ(u)− e−R(u)ϕ′(u)

)
du = e−R(τ)ϕ(τ).

Hence, e−Rϕ is adapted, it belongs to C1
c ([t, T ], L∞ (FT )) and so we can use it as test

function in the definition of r-weak time-derivative of z:∫ T

t
EQ
[
Dz(τ)1Ate

−R(τ)ϕ(τ)

]
dτ

= −
∫ T

t
EQ
[
z (τ) 1At

(
e−R(τ)ϕ′(τ)− e−R(τ)r(τ)ϕ(τ)

)]
dτ

= −
∫ T

t
EQ
[
z (τ) 1Ate

−R(τ)ϕ′(τ)
]
dτ

+

∫ T

t
EQ
[
z (τ) 1Ate

−R(τ)r(τ)ϕ(τ)
]
dτ

that is ∫ T

t
EQ
[
e−R(τ)

(
Dz (τ)− r(τ)z (τ)

)
1Atϕ(τ)

]
dτ

= −
∫ T

t
EQ
[
e−R(τ)z (τ) 1Atϕ

′(τ)
]
dτ.

This means that the r-weak time-derivative of e−R(t)z (t) is

e−R(t) (Dz (t)− r(t)z (t)) .

However this process is null. Therefore, e−R(t)z (t) has null r-weak time-derivative. Con-

sequently, by following the proof of Proposition 4 for test functions in C1
c ([t, T ], L∞ (FT )),

e−R(t)z(t) constitutes a martingale: for every t ∈ [0, T ] and τ ∈ [t, T ]

EQt
[
e−R(τ)z (τ)

]
= e−R(t)z(t).
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As τ approaches T from the left, EQt
[
e−R(τ)z (τ)

]
goes to zero in L1(Q). Indeed, since

e−R(τ) is bounded,

EQ
[∣∣∣EQt [e−R(τ)z(τ)

]
− 0
∣∣∣] 6 EQ

[
EQt
[
|z(τ)| e−R(τ)

]]
6 CEQ [|z(τ)|]

for some C > 0. However, the last term converges to zero because z(τ) tends to z(T ) = 0

in L1(Q) as τ approaches T−.

By uniqueness of the L1-limit, we infer that e−R(t)z(t) = 0. As a result, z(t) = 0 for all

t ∈ [0, T ] and uniqueness of the solution of Problem (11) is established.

6 Conclusions

We introduced the weak time-derivative, a novel mathematical tool that allows us to differ-

entiate stochastic processes in a more general way than infinitesimal generators. It provides

easy characterizations of martingales and permits to formulate differential equations for

random processes in weak form. Therefore, we expect this instrument to be suitable for

different kinds of differential problems, beyond the ones discussed in this work.

As we described in the paper, a fruitful application of the weak time-derivative involves

the solution of the no arbitrage pricing equation for random payoffs. In particular, the

generalized form that we solve clarifies the central role of interest rates in driving the as-

set prices, with both deterministic and stochastic short-term rates. In addition, constant

interest rates deliver an eigenvalue-eigenvector formulation of the risk-neutral pricing equa-

tion in full agreement with the long-term risk literature. Nevertheless, how to set up the

analogous eigenvalue-eigenvector problem when interest rates are time-varying or stochastic

still remains an open problem. Indeed, the candidate eigenvalue would be a function or a

random process. Moreover, such a formulation should be able to generate a term structure

of interest rates. We leave this question for future research.

Another promising direction of research comes from the analysis of price dynamics

through the lenses of different risk-neutral measures, associated with specific numéraire

changes (see Geman et al (1995)). Indeed, the risk-free rate r is an eigenvalue when the

measure Q is employed. Under a different equivalent martingale measure (as, for instance,

the forward measure in the context of stochastic rates), the first question to answer is

whether a differential equation with the structure of eq. (6) is still valid. A plausible pos-

sibility is that the same dynamics are present, but the driving parameter is not r. Hence,

the second question is the identification of the proper eigenvalue according to the employed

measure. This approach, made possible by the flexibility of weak time-derivatives, opens a
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promising perspective on payoff valuation in various contexts, while remaining within the

boundaries of no arbitrage theory. We will deal with these aspects in future works.

45



A Lemma

Lemma 1. Let f : [t, T ] −→ R.

(i) If f is bounded, nonnegative, with compact support and
∫ T
t f(τ)g(τ)dτ = 0 for any

g ∈ Cc ([t, T ],R), then f = 0 a.e.

(ii) If f is measurable and
∫ T
t f(τ)g(τ)dτ = 0 for any g ∈ Cc ([t, T ],R), then f = 0 a.e.

Proof. (i) If f is strictly positive on a set A with positive measure, consider the indica-
tor function 1A and a sequence {Un}n of continuous positive approximations of 1A,
obtained by convolution with a smooth positive kernel. As Un converges to 1A in L2,

0 6
∫ T

t
f(τ)1A(τ)dτ = lim

n

∫ T

t
f(τ)Un(τ)dτ = 0.

In consequence, f is null a.e.

(ii) Suppose that f is positive with compact support. For any N > 0 consider fN (s) =
min{f(τ), N}. Then

0 6
∫ T

t
fN (τ)g(τ)dτ 6

∫ T

t
f(τ)g(τ)dτ = 0.

Therefore, each fN is null a.e. by (i) and so f is.
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schweizer. In: Annales de l’IHP Probabilités et statistiques, Gauthier-Villars, vol 28,
pp 375–392

Barndorff-Nielsen OE (1997) Normal inverse gaussian distributions and stochastic volatility
modelling. Scandinavian Journal of statistics 24(1):1–13

Björk T (2004) Arbitrage theory in continuous time. Oxford University Press

Black F, Scholes M (1973) The pricing of options and corporate liabilities. The Journal of
Political Economy pp 637–654

46



Brezis H (2010) Functional analysis, Sobolev spaces and partial differential equations.
Springer Science & Business Media

Carr P, Geman H, Madan DB, Yor M (2002) The fine structure of asset returns: An
empirical investigation. The Journal of Business 75(2):305–332

Cox JC, Ross SA (1976) The valuation of options for alternative stochastic processes. Jour-
nal of Financial Economics 3(1-2):145–166

Craven BD (1970) Two properties of bochner integrals. Bulletin of the Australian Mathe-
matical Society 3(03):363–368

Delbaen F, Schachermayer W (1994) A general version of the fundamental theorem of asset
pricing. Mathematische annalen 300(1):463–520

Delbaen F, Schachermayer W (1998) The fundamental theorem of asset pricing for un-
bounded stochastic processes. Mathematische annalen 312(2):215–250

Diestel J, Uhl JJ (1977) Vector measures. 15, American Mathematical Society

Duffie D (2010) Dynamic asset pricing theory. Princeton University Press
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