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Abstract

Gibbs–type random probability measures and the exchangeable random partitions they

induce represent an important framework both from a theoretical and applied point of view.

In the present paper, motivated by species sampling problems, we investigate some properties

concerning the conditional distribution of the number of blocks with a certain frequency

generated by Gibbs–type random partitions. The general results are then specialized to three

noteworthy examples yielding completely explicit expressions of their distributions, moments

and asymptotic behaviours. Such expressions can be interpreted as Bayesian nonparametric

estimators of the rare species variety and their performance is tested on some real genomic

data.
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type random partitions; sampling formulae; small blocks; species sampling problems; �–
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1 Introduction

Let X be a complete and separable metric space equipped with the Borel �–algebra X and denote

by P the space of probability distributions defined on (X,X ) with �(P) denoting the Borel

�–algebra of subsets of P. By virtue of de Finetti’s representation theorem, a sequence of X–
valued random elements (X

n

)
n�1, defined on some probability space (⌦,F ,P), is exchangeable

if and only if there exists a probability measure Q on the space of probability distributions

(P,�(P)) such that

P[X1 2 A1, . . . , Xn

2 A
n

] =

Z

P

nY

i=1

P (A
i

)Q(dP ) (1)
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for any A1, . . . , An

in X and n � 1. The probability measure Q directing the exchangeable

sequence (X
n

)
n�1 is also termed de Finetti measure and takes on the interpretation of prior

distribution in Bayesian applications. The representation theorem can be equivalently stated by

saying that, given an exchangeable sequence (X
n

)
n�1, there exists a random probability measure

(r.p.m.) P̃ , defined on (X,X ) and taking values in (P,�(P)), such that

P[X1 2 A1, . . . , Xn

2 A
n

|P̃ ] =
nY

i=1

P̃ (A
i

) (2)

almost surely, for any A1, . . . , An

in X and n � 1. In this paper we will focus attention on

almost surely discrete r.p.m.s, i.e., P̃ is such that P[P̃ 2 P
d

] = 1 with P
d

indicating the set

of discrete probability measures on (X,X ) or, equivalently, (X
n

)
n�1 is directed by a de Finetti

measure Q that is concentrated on P
d

. An almost surely discrete r.p.m. (without fixed atoms)

can always be written as

P̃ =
X

i�1

p̃
i

�
X̂

i

(3)

for some sequences (X̂
i

)
i�1 and (p̃

i

)
i�1 of, respectively, X–valued random locations and non–

negative random weights such that P[
P

i�1 p̃i = 1] = 1 almost surely.

In the following we will assume that the two sequences in (3) are independent. These

specifications imply that a sample (X1, . . . , Xn

) from the exchangeable sequence generates a

random partition ⇧
n

of the set of integers N
n

:= {1, . . . , n}, in the sense that any i 6= j belongs

to the same partition set if and only if X
i

= X
j

. The random number of partition sets in ⇧
n

is denoted as K
n

with respective frequencies N1, . . . , NK

n

. Accordingly, the sequence (X
n

)
n�1

associated to a r.p.m. P̃ as in (3) induces an exchangeable random partition ⇧ = (⇧
n

)
n�1 of the

set of natural numbers N. The distribution of ⇧ is characterized by the sequence of distributions

{p(n)
k

: 1  k  n, n � 1} such that

p(n)
k

(n) = P[K
n

= k, N = n], (4)

with N = (N1, . . . , NK

n

) and n = (n1, . . . , n
k

). Hence, (4) identifies, for any n � 1, the

probability distribution of the random partition ⇧
n

of N
n

and is known as exchangeable partition

probability function (EPPF), a concept introduced by J. Pitman [21] as a major development

of earlier results on exchangeable random partitions due to J.F.C. Kingman (see, e.g., [15, 16]).

It is worth noting that EPPFs can be defined either by starting from an exchangeable sequence

associated to a discrete r.p.m. and looking at the induced partitions or by defining directly the

partition distribution. In the latter case, the distribution of the random partitions ⇧
n

must

satisfy certain consistency conditions and a symmetry property that guarantees exchangeability.

A comprehensive account on exchangeable random partitions can be found in [23] together with

an overview of the numerous application areas and relevant references.
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1.1 Gibbs–type r.p.m.s and partitions

We now recall the definition of a general class of r.p.m.s and of the exchangeable random par-

titions they induce together with some of distinguished special cases. This important class,

introduced and thoroughly studied in [10], is characterized by the fact that its members in-

duce exchangeable random partitions admitting EPPFs with product form, a feature which

is crucial for guaranteeing mathematical tractability. Before introducing the definition, set

D
n,j

:= {(n1, . . . , nj

) 2 {1, . . . , n}j :
P

j

i=1 ni

= n} and denote by (a)
q

= �(a+ q)/�(a) the q–th

ascending factorial of a.

Definition 1.1 Let (X
n

)
n�1 be an exchangeable sequence associated to an almost surely discrete

r.p.m. (3) for which locations (X̂
i

)
i�1 and weights (p̃

i

)
i�1 are independent. Then the r.p.m. P̃

and the induced exchangeable random partition are said of Gibbs–type if, for any n � 1, 1 
j  n and (n1, . . . , nj

) 2 D
n,j

the corresponding EPPF can be represented as follows

p(n)
j

(n1, . . . , nj

) = V
n,j

jY

i=1

(1� �)
n

i

�1, (5)

for � 2 (�1, 1) and a set of non-negative weights {V
n,j

: n � 1, 1  j  n} satisfying the recur-

sion V
n,j

= V
n+1,j+1 + (n� �j)V

n+1,j with V1,1 = 1.

Hence, a Gibbs–type random partition is completely specified by the choice of � < 1 and the

weights V
n,j

’s. The role of � is crucial since it determines the clustering structure as well as the

asymptotic behaviour of Gibbs–type models. As for the latter aspect, for any n � 1 define

c
n

(�) := 1(�1,0)(�) + log(n)1{0}(�) + n� 1(0,1)(�).

Then, for any Gibbs–type r.p.m. there exists a strictly positive and almost surely finite random

variable S
�

, usually termed �–diversity, such that

K
n

c
n

(�)
a.s.�! S

�

, (6)

for n ! +1. See [22, Section 6.1] for details. Finally, it is worth recalling that the solutions

of the backward recursions defining the V
n,j

’s form a convex set whose extreme points are

determined in [10, Theorem 12] providing a complete characterization of Gibbs–type models

according to the values of � they assume. In the next subsection we concisely point out three

important explicit special cases to be dealt with also in the sequel.

1.2 Examples

We will illustrate three noteworthy examples of Gibbs–type r.p.m.s that correspond to di↵erent

choices of � and the V
n,j

’s in Definition 1.1. The first one is the Dirichlet process [9], which
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corresponds to a Gibbs–type r.p.m. characterized by � = 0 and V
n,j

= ✓j/(✓)
n

with ✓ > 0. The

implied EPPF coincides with

p(n)
j

(n1, . . . , nj

) =
✓j

(✓)
n

jY

i=1

(n
i

� 1)! (7)

and is well–known in Population Genetics as the Ewens model. See [6] and references therein.

The most interesting special case for our purposes is a generalization of (7) that has been

provided by J. Pitman in [21]. It corresponds to the exchangeable random partition generated

by the two–parameter Poisson–Dirichlet process, which coincides with a Gibbs–type r.p.m. with

� 2 (0, 1) and, for any ✓ > ��, V
n,j

=
Q

j�1
i=0 (✓ + i�)/(✓)

n

. The EPPF turns out to be

p(n)
j

(n1, . . . , nj

) =

Q
j�1
i=0 (✓ + i�)

(✓)
n

jY

i=1

(1� �)
n

i

�1. (8)

Clearly, the Ewens model (7) is recovered from (8) by letting � ! 0. The r.p.m. and the

partition distribution associated to (8) will be equivalently termed PD(�, ✓) process or Pitman

model.

Finally, another notable example of Gibbs–type r.p.m. has been recently provided in [11]. It

is characterized by � = �1 and weights of the form

V
n,j

= (�)
n�j

Q
j�1
i=1 (i

2 � �i+ ⇣)
Q

n�1
i=1 (i

2 + �i+ ⇣)
, (9)

where ⇣ and � are chosen such that � � 0 and i2 � �i+ ⇣ > 0 for all i � 1. In the sequel we will

term both the r.p.m. and the induced exchangeable random partition as Gnedin model.

1.3 Aims and outline of the paper

The main applied motivation of the present study is related to species sampling problems.

Indeed, in many applications that arise, e.g., in population genetics, ecology and genomics, a

population is a composition of individuals (e.g., animals, plants or genes) of di↵erent species: the

X̂
i

’s and the p̃
i

’s in (3) can then be seen as species labels and species proportions, respectively.

In most cases one is interested in the p̃
i

’s or in some functionals of them: this naturally leads to

work with the random partitions induced by an exchangeable sequence. The number of distinct

partition blocks K
n

takes on the interpretation of the number of di↵erent species detected in

the observed sample (X1, . . . , Xn

) and the N
j

’s are the species frequencies. Given the relevance

and intuitiveness of such an applied framework, throughout the paper we will often resort to

the species metaphor even if the tools we will introduce and the results we will achieve are of

interest beyond the species sampling framework.
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Our first goal consists in analyzing certain distributional properties of Gibbs–type r.p.m.s.

Specifically, we are interested in determining the probability distribution of the number of par-

tition blocks having a certain size or frequency. In other words, given an exchangeable sequence

(X
n

)
n�1 as in (1) associated to a Gibbs–type r.p.m., we investigate distributional properties of:

(i) the number of species with frequency l in a sample of size n, namely, M
l,n

=
P

K

n

i=1 1{l}(Ni

);

(ii) the number of species M
l,n+m

=
P

K

n+m

i=1 1{l}(Ni

) with frequency l in an enlarged sample of

size n+m, for m � 0, conditionally on the species composition detected within a n–size sample

(X1, . . . , Xn

). Note that the latter problem is considerably more challenging since it requires to

account for the allocation of (X
n+1, . . . , Xn+m

) between “old” and “new” species together with

the sequential modification of their frequencies, conditional on (X1, . . . , Xn

).

Solving problem (ii) is also the key for achieving our second goal, namely the derivation of

estimators for rare species variety, where rare species are identified as those with a frequency

not greater than a specific abundance threshold ⌧ . This is of great importance in numerous

applied settings. For example, in ecology conservation of biodiversity is a fundamental theme

and it can be formalized in terms of the number of species whose frequency is greater than a

specified threshold. Indeed, any form of management on a sustained basis requires a certain

number of su�ciently abundant species (the so–called breeding stock). We shall address the

issue be relying on a Bayesian nonparametric approach: the de Finetti measure associated to a

Gibbs–type r.p.m. represents the nonparametric prior distribution and relying on the conditional

(or posterior) distributions in (ii) one derives the desired estimators as conditional (or posterior)

expected values. Bayesian estimators for overall species variety, namely the estimation of the

distinct species (regardless of the respective frequencies), have been introduced and discussed

in [17, 19, 20, 8]. Further contributions at the interface between Bayesian Nonparametrics and

Gibbs–type random partitions can be found in [12, 13, 18]. None of the existing work provides

estimators for the number of species with specific abundance. Here we fill in this important

gap and, besides providing general results valid for the whole family of Gibbs–type r.p.m.s,

we specialize them to the three examples outlined in Subsection 1.2. This leads to explicit

expressions that are of immediate use in applications.

The paper is structured as follows. Section 2 provides distributional results on the uncondi-

tional structure of M
l,n

and the conditional structure of M
l,n+m

, given the species composition

detected in a sample of size n, for general Gibbs–type r.p.m.s together with the corresponding

estimators. Section 3 focuses on the three special cases of the Dirichlet process, and the models

of Gnedin and of Pitman. In particular, for these special cases we also provide asymptotic results

concerning the conditional distribution of M
l,n+m

, given the species composition detected in a

sample of size n, as the size of the additional sample m increases. The framework for genomic
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applications, including platforms under which such estimation problems arise, is presented in

Section 4, where the methodology is also tested on real genomic data. In Section 5 the proofs

of the results of Sections 2 and 3 and some useful techniques are described.

2 Distribution of cluster frequencies

2.1 Probability distribution of M
l,n

We start our analysis of distributional properties of Gibbs–type random partitions by focusing

on the unconditional distribution of the number of blocks with a certain size l, M
l,n

. The blocks

with relatively low frequency are typically referred to as small blocks (see e.g. [25]), which, in

terms species sampling, will represent the rare species.

First note that a simple change of variable in the EPPF (5) yields the probability distribution

of M
n

:= (M1,n, . . . ,Mn,n

). Specifically, the so–called Gibbs–type sampling formula determines

the probability distribution of M
n

and it corresponds to

P[M
n

= (m1, . . . ,mn

)] = V
n,j

n!
nY

i=1

✓
(1� �)

i�1

i!

◆
m

i 1

m
i

!
, (10)

for any (m1, . . . ,mn

) 2 {0, 1, . . .}n such that
P

n

i=1 imi

= n and
P

n

i=1mi

= j. The next

proposition provides explicit expressions for the r–th factorial moments of M
l,n

in terms of

generalized factorial coe�cients C (n, k;�). Recall that, for any n � 1 and k  n, C (n, k;�) is

defined as (�t)
n

=
P

n

k=0 C (n, k;�)(t)
k

for � 2 R and, moreover, is computable as C (n, k;�) =

(1/k!)
P

k

j=0(�1)j
�
k

j

�
(��j)

n

with the proviso C (0, 0;�) = 1, C (n, 0;�) = 0 for any n > 0 and

C (n, k;�) = 0 for any k > n. For an exhaustive account on generalized factorial coe�cients the

reader is referred to [4].

Proposition 2.1 Let (X
n

)
n�1 be an exchangeable sequence associated to a Gibbs–type r.p.m.

Then, for any l = 1, . . . , n and r � 1,

E
⇥
(M

l,n

)[r]
⇤
=

✓
(1� �)

l�1

l!

◆
r

(n)[lr]

nX

j=1

V
n,j

C (n� rl, j � r;�)

�j�r

, (11)

where (a)[q] = a(a� 1) · · · (a� q + 1) for any q � 1.

By using standard arguments involving probability generating functions, one can use the factorial

moments (11) for determining the probability distribution of M
l,n

. This will be illustrated for

the three examples in Section 3. The asymptotic behaviour of M
l,n

, as n ! 1, is determined

in [23, Lemma 3.11]: if P̃ is a Gibbs–type r.p.m. with � 2 (0, 1), then for any l � 1

M
l,n

n�

d�! �(1� �)
l�1

l!
S
�

, (12)
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as n ! +1, where S
�

is the �–diversity defined in (6). Some recent interesting developments

on the asymptotic behaviour of the random variable M
l,n

associated to a generic exchangeable

random partition are provided in [25].

2.2 Conditional formulae

Unlike the study of unconditional properties of Gibbs–type random partitions, that are the focus

of a well–established literature with plenty of results, the investigation of conditional properties

for this family of partitions has been only recently started in [20] and many issues are still to

be addressed. We are going to focus on determining the distribution of M
l,n+m

conditional on

the number of distinct species K
n

, and on their respective frequencies N1, . . . , NK

n

, recorded in

the sample (X1, . . . , Xn

). This will also serve as a tool for predicting the value of the number

of distinct species that will appear l times in the enlarged sample (X1, . . . , Xn+m

), given the

observed sample (X1, . . . , Xn

).

Let X⇤
1 , . . . , X

⇤
K

n

denote the labels identifying the K
n

distinct species detected in the sample

(X1, . . . , Xn

). One can, then, define

L(n)
m

:=
mX

i=1

K

nY

j=1

1{X⇤
j

}c(Xn+i

) = card({X
n+1, . . . , Xn+m

} \ {X⇤
1 , . . . , X

⇤
K

n

}c)

as the number of observations from the additional sample of size m that do not coincide with

any of the K
n

distinct species in the basic sample. Correspondingly X⇤
K

n

+1, . . . , X
⇤
K

n

+K

(n)
m

are

the labels identifying the additional K(n)
m

= K
n+m

�K
n

distinct species generated by these L(n)
m

observations. Then we can define

S
K

n

+i

:=
mX

j=1

1{X⇤
K

n

+i

}(Xn+j

), S
q

:=
mX

j=1

1{X⇤
q

}(Xn+j

)

for i = 1, . . . ,K(n)
m

and q = 1, . . . ,K
n

, where one obviously has
P

K

(n)
m

i=1 S
K

n

+i

= L(n)
m

. For our

purposes, it is useful to resort to the decomposition M
l,n+m

= O
l,m

+N
l,m

where

O
l,m

:=
K

nX

q=1

1{l}(Nq

+ S
q

) N
l,m

:=
K

(n)
mX

i=1

1{l}(SK

n

+i

) (13)

for any l = 1, . . . , n+m. It is apparent that O
l,m

= 0 for any l > n+m and N
l,m

= 0 for any

l > m. Hence, O
l,m

is the number of distinct species, among the K
n

detected in the basic sample

(X1, . . . , Xn

), that have frequency l in the enlarged sample of size n+m. Analogously N
l,m

is the

number of additional distinct species, generated by L(n)
m

observations in (X
n+1, . . . , Xn+m

), with

7



frequency l in the enlarged sample. For notational convenience we introduce random variables

O(n)
l,m

and N (n)
l,m

that are defined in distribution as follows

P[O(n)
l,m

= x] = P[O
l,m

= x |K
n

= j, N = n]

P[N (n)
l,m

= y] = P[N
l,m

= y |K
n

= j, N = n]

for any 1  j  n, n 2 D
n,j

and n,m � 1. Moreover, we set C
j,r

as the space of all vectors

c

(r) = (c1, . . . , cr) 2 {1, . . . , j}r such that c
i

6= c
`

for any i 6= ` and max1ij

n
c

i

 l. Finally

I
�

⇣
l,m, r,n, c(r)

⌘

:= r!

✓
m

l � n
c1 , . . . , l � n

c

r

,m� l + |nc(r) |

◆
rY

i=1

(n
c

i

� �)
l�n

c

i

,

where |nc(r) | :=
P

r

i=1 nc

i

. The next result provides an explicit expression for the r–th factorial

moments ofO(n)
l,m

in terms of noncentral generalized factorial coe�cients defined by C (n, k; �,�) :=

(�t � �)
n

=
P

n

k=0 C (n, k;�, �)(t)
k

with �, � 2 R. Recall also the definition C (n, k;�, �) =

(1/k!)
P

k

j=0(�1)j
�
k

j

�
(��j � �)

n

with the proviso C (0, 0;�, �) = 1, C (n, 0;�) = (��)
n

for any

n > 0 and C (n, k;�, �) = 0 for any k > n.

Theorem 2.1 Let (X
n

)
n�1 be an exchangeable sequence associated to a Gibbs–type r.p.m. Then,

for any l = 1, . . . , n+m, r � 1 and n 2 D
n,j

E
h
(O(n)

l,m

)[r]
i
=

X

c(r)2C
j,r

I
�

⇣
l,m, r,n, c(r)

⌘

⇥
mX

k=0

V
n+m,j+k

V
n,j

C (m� rl + |nc(r) |, k;�,�n+ |nc(r) |+ (j � r)�)

�k

. (14)

It is worth observing that the moments in (14), for any r � 1, characterize the distribution

of O(n)
l,m

. Such a distribution is interpretable as the posterior probability distribution, given the

observations (X1, . . . , Xn

), of the number of distinct species that (i) appear with frequency l

in a sample of size n + m; (ii) had been already detected within (X1, . . . , Xn

). Therefore we

will refer to O(n)
l,m

as the number of “old” species with frequency l. The Bayesian nonparametric

estimator, under a quadratic loss function, coincides with the expected value of O(n)
l,m

and is

easily recovered from (14).

Corollary 2.1 Let (X
n

)
n�1 be an exchangeable sequence associated to a Gibbs–type r.p.m. Con-

ditionally on a sample (X1, . . . , Xn

), the expected number of “old” distinct species that appear

with frequency l, for any l = 1, . . . , n+m, in a sample of size n+m is given by

8



Ô(n)
l,m

:= E[O(n)
l,m

] =
lX

t=1

✓
m

l � t

◆
m

t

(t� �)
l�t

⇥
mX

k=0

V
n+m,j+k

V
n,j

C (m� (l � t), k;�,�n+ t+ (j � r)�)

�k

, (15)

with m
t

� 0 being the number of distinct species with frequency t observed in the basic sample,

namely m
t

=
P

K

n

i=1 1{t}(Ni

). Moreover, (K
n

,M1,n, . . . ,M
l,n

) is su�cient for predicting O(n)
l,m

over the whole sample of size n+m.

An analogous result of Theorem 2.1 can be established for N (n)
l,m

. Indeed, if we set

J
�

(l,m, r) :=

✓
m

l, . . . , l,m� rl

◆
[(1� �)

l�1]
r

one can show the following theorem.

Theorem 2.2 Let (X
n

)
n�1 be an exchangeable sequence associated to a Gibbs–type r.p.m. Then,

for any l = 1, . . . ,m and r � 1

E
h
(N (n)

l,m

)[r]
i
= J

�

(l,m, r)
m�rlX

k=0

V
n+m,j+k+r

V
n,j

C (m� rl, k;�,�n+ j�)

�k

. (16)

Hence, (16) characterizes the probability distribution of N (n)
l,m

. This can be seen as the posterior

probability distribution, conditional on the observations (X1, . . . , Xn

), of the number of distinct

species that (i) appear with frequency l in a sample of size n+m; (ii) do not coincide with any of

the K
n

distinct species already detected within (X1, . . . , Xn

). For this reason N (n)
l,m

is referred to

as the number of “new” species with frequency l. Thus, the Bayesian nonparametric estimator,

under a quadratic loss function, is easily recovered from (16).

Corollary 2.2 Let (X
n

)
n�1 be an exchangeable sequence associated to a Gibbs–type r.p.m. Con-

ditionally on a sample (X1, . . . , Xn

), the expected number of “new” distinct species that appear

with frequency l, for any l = 1, . . . ,m, in a sample of size n+m is given by

N̂ (n)
l,m

:= E[N (n)
l,m

] =

✓
m

l

◆
(1� �)

l�1

lX

k=0

V
n+m,j+k+1

V
n,j

C (m� l, k;�,�n+ j�)

�k

. (17)

Hence, K
n

is su�cient for predicting N (n)
l,m

.

Remark 2.1 According to the definition of the random variable N (n)
l,m

, one has

Ê(n)
m

:= E[K(n)
m

|K
n

= j,N = n] =
mX

l=1

N̂ (n)
l,m

(18)

9



providing an alternative derivation of the Bayesian nonparametric estimator for the number

of “new” distinct species derived in [20]. A detailed discussion of the estimator (18) and its

relevance in genomics can be found in [19].

At this point we turn our attention to characterizing the following random variable

M (n)
l,m

d
= O(n)

l,m

+N (n)
l,m

(19)

whose probability distribution coincides with the distribution of the number M
l,n+m

of clusters

of size l featured by (X1, . . . , Xn+m

) conditional on the basic sample (X1, . . . , Xn

). In particular,

if we set

H
�

(l,m, r, t,n, c(t))

:= t!

✓
m

l, · · · , l, l � n
c1 , . . . , l � n

c

t

,m� rl + |nc(t) |

◆

⇥ [(1� �)
l�1]

r�t

tY

i=1

(n
c

i

� �)
l�n

c

i

an analogous result ot Theorem 2.1 and Theorem 2.2 can be established for M (n)
l,m

.

Theorem 2.3 Let (X
n

)
n�1 be an exchangeable sequence associated to a Gibbs–type r.p.m. Then,

for any l = 1, . . . ,m+ n and r � 1

E

⇣
M (n)

l,m

⌘

[r]

�
=

rX

t=0

✓
r

t

◆ X

c(t)2C
j,t

H
�

(l,m, r, t,n, c(t)) (20)

⇥
m�rl+|n

c(t)
|X

k=0

V
n+m,j+k+r�t

V
n,j

C (m� rl + |nc(t) |, k;�,�n+ |nc(t) |+ (j � t)�)

�k

.

Hence (20) characterizes the probability distribution of M (n)
l,m

. Such a probability distribution

is interpreted as the posterior probability distribution, given the observation (X1, . . . , Xn

), of

the number of distinct species that appear with frequency l in a sample of size n + m. Thus,

the Bayesian nonparametric estimator, under a quadratic loss function, is easily recovered from

(20). Clearly, according to (19), this also corresponds to the sum of the estimators in (15) and

(17).

3 Illustrations

We now apply the general results of Section 2 and specialize them to some noteworthy examples

of Gibbs–type models. We will devote particular attention to the two–parameter Poisson–

10



Dirichlet process since it is particularly suited for species sampling applications in general [17]

and for genomic applications in particular, as will be seen in Section 4.

3.1 The Dirichlet process

Denote the signless Stirling number of the first kind by |s(n, k)| and recall that lim
�!0 ��k C (n, k,�) =

|s(n, k)| for any n � 1 and 1  k  n. Now, let P̃ be a Dirichlet process with parameter ✓ and

considering the form of the V
n,j

weights and Theorem 2.1, one readily obtains

E
⇥
(M

l,n

)[r]
⇤
=

(n)[rl]
lr (✓)

n

n�rl+rX

j=1

✓j |s(n� rl, j � r)| =
(n)[rl]
lr (✓)

n

(✓)[n�rl].

Using the classical sieve formula one easily shows the following, which appears to be new even

in the case of Ewens partitions with the exception of the case l = 1 obtained in [7].

Proposition 3.1 If (X
n

)
n�1 is an exchangeable sequence associated to a Dirichlet process with

parameter ✓ > 0, then, for any n � 1 and l = 1, . . . , n, the distribution of M
l,n

is of the form

P[M
l,n

= m
l

] =
n!

m
l

!(✓)
n

✓ml

lml

[n/l]�m

lX

t=0

(�1)t(✓)[n�m

l

�tl]

(n�m
l

l � tl)!

✓t

lt
. (21)

On the basis of the result stated in Proposition 3.1, one can derive the asymptotic behaviour of

M
l,n

, namely that, for any l � 1

M
l,n

d�! W
l

, (22)

as n ! +1, where W
l

is a random variable distributed according to a Poisson distribution with

parameter ✓/l. The limit result (22) is known in the literature and has been originally obtained

in [1, 3]. See also [2] and references therein.

Turning attention to the conditional case, one can easily derive the following results. Theo-

rem 2.1 provides an expression for the probability distribution of O(n)
l,m

, i.e.

P
h
O(n)

l,m

= m
l

i

=
m�m

lX

t=0

(�1)t
✓
m

l

+ t

t

◆ X

c(ml

+t)2C
j,m

l

+t

m!
Q

m

l

+t

i=1 (l � n
c

i

)!(m� ⌫
t

)!

⇥
m

l

+tY

i=1

(n
c

i

)
l�n

c

i

⇣
✓ + n�

P
m

l

+t

i=1 n
c

i

⌘

m�⌫

t

(✓ + n)
m

,

11



where we set ⌫
t

=
P

m

l

+t

i=1 (l � n
c

i

). Analogously, Theorem 2.2 provides an expression for the

probability distribution of N (n)
l,m

, i.e.

P
h
N (n)

l,m

= m
l

i
=

✓ml

tml

m�m

lX

t=0

✓
�✓

l

◆
t m!

t!m
l

!(m� lm
l

� lt)!

(✓ + n)
m�lm

l

�lt

(✓ + n)
m

.

Similarly, according to Corollary 2.1 and Corollary 2.2, and using the limiting result for non–

central generalized factorial coe�cients

lim
�!0

C (n, k;�, �)

�k

=
nX

i=k

✓
n

i

◆
|s(i, k)|(��)

n�i

,

the Bayesian estimators of the number of “old” and of “new” species of size l generated by

(X1, . . . , Xn+m

), conditional on (X1, . . . , Xn

), are given by

Ô(n)
l,m

=
lX

t=1

✓
m

l � t

◆
m

t

(t)
l�t

(✓ + n� t)
m�(l�t)

(✓ + n)
m

(23)

and

N̂ (n)
l,m

= (l � 1)!

✓
m

l

◆
✓

(✓ + n+m� l)
l

. (24)

In particular, from (23) and (24) the Bayesian estimator of the number of clusters of size l over

an enlarged sample of size n+m, conditional on the partition structure of the n observed data,

is given in the following proposition.

Proposition 3.2 If (X
n

)
n�1 is an exchangeable sequence associated to a Dirichlet process with

parameter ✓, then

M̂ (n)
l,m

=

✓
m

l

◆
✓ (l � 1)!

(✓ + n+m� l)
l

+
lX

t=1

✓
m

l � t

◆
m

t

(t)
l�t

(✓ + n� t)
m�l+t

(✓ + n)
m

for any l 2 {1, . . . , n+m}.

Finally, by combining (16) and (20) a simple limiting argument leads to show that, as

m ! +1 and for any l � 1, N (n)
l,m

d�! W (n)
l

and

M (n)
l,m

d�! W (n)
l

, (25)

where W (n)
l

is a random variable distributed according to a Poisson distribution with parameter

(✓ + n)/l. Clearly, (25) reduces to (22) in the unconditional case corresponding to n = 0.

12



3.2 The two–parameter Poisson–Dirichlet process

The Pitman model with parameters (�, ✓) in (8), or PD(�, ✓) process, stands out for its analytical

tractability and for its modeling flexibility. In particular, within the species sampling context,

the presence of the additional parameter � 2 (0, 1), w.r.t. the simple Dirichlet model, allows

to model more e↵ectively both the clustering structure featured by the X
i

’s and the growth

rate of K
n

. Therefore, given its importance, we devote special attention to this process. A

few additional asymptotic results that complement, for the specific case we are analyzing, those

recalled in Section 2 for general Gibbs–type r.p.m.s are of particular interest.

3.2.1 Distributional results

Let us first state a result concerning the unconditional distribution of M
l,n

, namely the number

of clusters with frequency l in a sample of size n.

Proposition 3.3 Let (X
n

)
n�1 be an exchangeable sequence associated to a PD(�, ✓) process

with � 2 (0, 1) and ✓ > ��. Then,

P[M
l,n

= m
l

] =
n�m

lX

t=0

(�1)t
n!

t!m
l

!(n� lm
l

� lt)!
�m

l

+t

✓
✓

�

◆

m

l

+t

⇥
✓
(1� �)

l�1

l!

◆
m

l

+t (✓ + (m
l

+ t)�)
n�lm

l

�lt

(✓)
n

. (26)

Hence, (26) provides the marginal distribution of the Pitman sampling formula (10), corre-

sponding to V
n,j

= �j(✓/�)
j

/(✓)
n

, and, to the authors’ knowledge, it is not explicitly reported

in the literature.

Turning attention to the conditional case, one can easily derive the following results.

Proposition 3.4 Let (X
n

)
n�1 be an exchangeable sequence associated to a PD(�, ✓) process

with � 2 (0, 1) and ✓ > ��. Then,

P
h
O(n)

l,m

= m
l

i
=

m�m

lX

t=0

(�1)t
✓
m

l

+ t

t

◆

⇥
X

c(ml

+t)2C
j,m

l

+t

✓
m

l � n
c1 , . . . , l � n

c

m

l

+t

,
P

m

l

+t

i=1 (l � n
c

i

)

◆
m

l

+tY

i=1

(n
c

i

� �)
l�n

c

i

⇥

⇣
✓ + n�

P
m

l

+t

i=1 n
c

i

+ (m
l

+ t)�
⌘

m�
P

m

l

+t

i=1 (l�n

c

i

)

(✓ + n)
m

(27)

for any l 2 {1, . . . , n} and m
l

2 {1, . . . , n} such that m
l

l  n.

13



From (27) one can deduce a completely explicit expression for the Bayesian estimator of the

number of “old” species with frequency l in the whole sample X1, . . . , Xn+m

, namely

Ô(n)
l,m

= E[O(n)
l,m

] =
lX

t=1

✓
m

l � t

◆
m

t

(t� �)
l�t

(✓ + n� t+ �)
m�(l�t)

(✓ + n)
m

, (28)

which can be readily used in applications as will be shown in Section 4. In a similar fashion it

is possible to deduce the distribution of the number of “new” species that will appear l times

in (X
n+1, . . . , Xn+m

) conditional on the observations (X1, . . . , Xn

). Indeed one can show the

following

Proposition 3.5 Let (X
n

)
n�1 be an exchangeable sequence associated to a PD(�, ✓) process

with � 2 (0, 1) and ✓ > ��. Then,

P[N (n)
l,m

= m
l

] =
m�m

lX

t=0

(�1)t
✓

m

t,m
l

,m� lm
l

� lt

◆
m

l

+t�1Y

i=0

(✓ + j� + i�) (29)

⇥
✓
(1� �)

l�1

l!

◆
m

l

+t (✓ + n+ (m
l

+ t)�)
m�l(m

l

+t)

(✓ + n)
m

,

for any n � 1, j = 1, . . . , n, l � 1 and m
l

� 1 such that m
l

l  m.

Remark 3.1 One can alternatively prove (29) by relying on the so–called quasi–conjugacy

property of the two–parameter Poisson–Dirichlet process, a concept introduced in [20]. Indeed,

it su�ces to marginalize an updated Pitman sampling formula and (29) easily follows. Moreover,

if n = j = 0 in (29) one recovers the marginal distribution of M
l,n

as described in (26) and, if

one additionally sets � = 0, the distribution of M
l,n

corresponding to the Ewens partition in

(21) is obtained.

The Bayesian estimator for the number of “new” species with frequency l over the enlarged

sample n+m coincides with

N̂ (n)
l,m

= E[N (n)
l,m

] =

✓
m

l

◆
(1� �)

l�1(✓ + j�)
(✓ + n+ �)

m�l

(✓ + n)
m

(30)

for any l 2 {1, . . . ,m}. Having determined Ô(n)
l,m

and N̂ (n)
l,m

, one finds out that a Bayesian estima-

tor of the total number of species with frequency l among (X1, . . . , Xn+m

), given (X1, . . . , Xn

),

is given by

Proposition 3.6 If (X
n

)
n�1 is an exchangeable sequence with P̃ in (2) being the PD(�, ✓)

process, for any l = 1, . . . , n+m,

M̂ (n)
l,m

=
lX

t=1

✓
m

l � t

◆
m

t

(i� �)
l�t

(✓ + n� t+ �)
m�(l�t)

(✓ + n)
m

(31)
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+

✓
m

l

◆
(1� �)

l�1(✓ + j�)
(✓ + n+ �)

m�l

(✓ + n)
m

.

Of course, Theorem 2.3 allows a direct evaluation of M̂ (n)
l,m

above and yields moments of any

order r � 1 of M (n)
l,m

.

3.2.2 Asymptotics

We now study the asymptotic behaviour of M (n)
l,m

and N (n)
l,m

, as m ! 1. However, before

proceeding, let us first recall a well–known result concerning the asymptotics of M
l,n

as n

increases. To this end, let f
�

be the density function of a positive �–stable random variable and

Y
q

, for any q � 0, a positive random variable with density function

f
Y

q

(y) =
�(q� + 1)

��(q + 1)
yq�1/��1f

�

⇣
y�1/�

⌘
.

Then, for any l � 1
M

l,n

n�

d�!
�(1� �)(l�1)

l!
Y
✓/�

,

as n ! +1. See [23] for details. We now provide a new result concerning the limiting behaviour

in the conditional case and, specifically, of M (n)
l,m

and of N (n)
l,m

as m ! 1. It will be shown that

they converge in distribution to the same random element that still depends on Y
q

for a suitable

choice of q.

Theorem 3.1 Let (X
n

)
n�1 be an exchangeable sequence associated to a PD(�, ✓) process. For

any 1  j  n and l � 1, one has

N (n)
l,m

m�

d�! �(1� �)
l�1

l!
Z
n,j

(32)

as m ! +1, where Z
n,j

d

= B
j+✓/�,n/��j

Y(✓+n)/� and B
j+✓/�,n/��j

is a beta random variable

with parameters (j + ✓/�, n/� � j) independent of Y(✓+n)/�. Moreover

M (n)
l,m

m�

d�! �(1� �)
l�1

l!
Z
n,j

(33)

as m ! +1.

The limit in (32) and (33) implies that K
n

is asymptotically su�cient for predicting the

conditional number of distinct species with frequency l to be generated by the additional sample

(X
n+1, . . . , Xn+m

) as its size m increases. Such a limit involves the beta–tilted random variable

Z
n,j

, originally introduced in [8] by investigating the asymptotic behaviour of the conditional

15



number of “new” distinct species K(n)
m

generated by the additional sample as its size m increases.

Specifically,

K(n)
m

m�

! Z
n,j

,

almost surely, as m ! +1. It is worth noting that beta–tilted random variables of similar

type have been recently object of a thorough investigation in [14] in the context of the so–called

Lamperti–type laws.

Remark 3.2 Note that from (32) and (33) one obtains the unconditional result of [23] by

setting n = j = 0. Moreover, one recovers a result in [8], which states that, conditional on

(X1, . . . , Xn

), m�� K(n)
m

d! Z
n,j

, as m ! 1. Indeed, K(n)
m

=
P

L

(n)
m

l=1 N (n)
l,m

and L(n)
m

diverges as

m ! +1: hence the limit in distribution for K(n)
m

can be deduced from (32) upon noting that
P

l�1(l!)
�1�(1� �)

l�1 = 1.

3.3 The Gnedin model

Consider now the Gnedin model (9) with parameters ⇣ = 0 and � 2 [0, 1). The corresponding

random partition is representable as a mixture partitions of the type (8), however with param-

eters (�1,), each of which generates a partition with a finite number of blocks . The mixing

distribution for the total number of blocks is p() = � (1� �)
�1/!x.

Proposition 3.7 Let (X
n

)
n�1 be an exchangeable sequence associated to the Gnedin model with

parameters (0, �). Then

E
h
(M

l,n

)[r]

i
= 1{rl}(n)

r! l (�)
rl�r

(1� �)
r�1

(1 + �)
rl�1

+ 1{rl+1,...}(n)
n(�)

rl�r

(1� �)
r

(1 + �)
n�1

n�rl�1X

k=0

✓
n� rl � 1

k

◆

⇥ (r + k)!

(1 + k)!
(� + rl � r)

n�rl�1�k

(r + 1� �)
k

. (34)

From (34) one can determine the probability distribution of M
l,n

. Indeed, if n/l 62 N, then

P[M
l,n

= m
l

] =
1{1,...,n}(lml

) n

m
l

!(1 + �)
n�1

[n/l]X

r=m

l

(�1)r�m

l

(r �m
l

)!
(�)

rl+r

(1� �)
r

⇥
n�rl�1X

k=0

✓
n� rl � 1

k

◆
(r + k)!

(1 + k)!
(� + rl + r)

n�rl�1�k

(r + 1� �)
k

.

On the other hand, if n/l 2 N, then
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P[M
l,n

= m
l

] =
1{1,...,n}(lml

) n

m
l

!(1 + �)
n�1

(
(�1)

n

l

�m

l

�
n

l

� 1
�
!(�)

n�n

l

(1� �)n

l

�1�
n

l

�m
l

�
!

+

n

l

�1X

r=m

l

(�1)r�m

l

(r �m
l

)!
(�)

rl+r

(1� �)
r

⇥
n�rl�1X

k=0

✓
n� rl � 1

k

◆
(r + k)!

(1 + k)!
(� + rl + r)

n�rl�1�k

(r + 1� �)
k

)
.

Moreover, for any l � 1

M
l,n

d�! 0, (35)

as n ! +1. Note that the limiting result in (35) is not surprising since a Gnedin r.p.m. induces

a random partition of N into an almost surely finite number of blocks even though with infinite

expectation [11].

As for the posterior distribution of the number of clusters of size l, we now use the general

results outlined in Section 2 to provide some explicit forms for the distribution of O(n)
l,m

and N (n)
l,m

.

Proposition 3.8 Let (X
n

)
n�1 be an exchangeable sequence associated to the Gnedin model with

parameters ⇣ = 0 and � 2 [0, 1). Then,

P
h
O(n)

l,m

= m
l

i
=
1{1,...,n}(lml

)m!(m+ n+ j � r � rl � 1)!

(n)
m

(� + n)
m

⇥
[n/l]X

r=m

l

(�1)r�m

l

✓
r

m
l

◆ X

c(r)2C
j,r

1

(m� rl + |nc(r) |)!

rY

i=1

(n
c

i

� �)
l�n

c

i

(l � n
c

i

)!

⇥
m�rl+|n

c(r)
|X

k=0

✓
m� rl + |nc(r) |

k

◆
(j)

k

(� + n� j)
m�k

(n� |nc(r) |+ j � r � 1 + k)!
.

Moreover

P
h
N (n)

l,m

= m
l

i
=
1{1,...,m}(lml

)m!

(n)
m

(� + n)
m

[n/l]X

r=m

l

(�1)r�m

l

(m� rl + n+ j)!

(r �m
l

)!(m� rl)!

⇥
m�rlX

k=0

✓
m� rl

k

◆
(� + n� j)

m�r�k

(j)
k+r

(j � �)
k+r

(n+ j + k)!
.

One can further deduce the conditional expected values of O(n)
l,m

and of N (n)
l,m

which take on

the following forms

Ô(n)
l,m

=
1

(n)
m

(� + n)
m

lX

t=1

m
t

✓
m

l � t

◆
(t+ 1)

l�t

(m+ n+ j � l � 2)!
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⇥
m�l+tX

k=0

✓
m� l + t

k

◆
(� + n� j)

m�k

(j)
k

(n+ j � t� 2 + k)!

N̂ (n)
l,m

=
m!(1 + �)

n�1 (n+ j)
m�l

(n)
m

(� + n)
m

m�lX

k=0

✓
m� l

k

◆
(j)

k

(j � �)
k+1

(n+ j)
k

.

As in previous examples, these quantities can, then, be used in order to provide a Bayesian

estimator M̂ (n)
l,m

= Ô(n)
l,m

+ N̂ (n)
l,m

of the number of species of size l over the enlarged sample of size

n+m, conditional on the sample (X1, . . . , Xn

).

Finally, by combining Theorems 2.2 and 2.3 with the specific weights (9) it can be easily

verified that for any l � 1

N (n)
l,m

d�! 0 M (n)
l,m

d�! 0,

as m ! +1. As in the unconditional case, these limits are not surprising due to the almost

sure finiteness of the number of blocks of a random partition induced by the Gnedin model.

4 Genomic applications

A Bayesian nonparametric model (2), with P̃ being a Gibbs–type r.p.m. with � > 0, is particu-

larly suited for inferential problems with a large unknown number of species given it postulates

an infinite number of species. These usually occur in genomic applications, such as the analysis

of Expressed Sequence Tags (EST), Cap Analysis Gene Expression (CAGE) or Serial Analysis

of Gene Expression (SAGE). See, e.g., [26, 19, 5]. The typical situation is as follows: a sample of

size n sequenced from a genomic library is available and one would like to make predictions, over

an enlarged sample of size n+m and conditionally on the observed sample, of certain quantities

of interest. The most obvious quantity is the number of distinct species to be observed in the

enlarged sample, which represents a measure of the overall genes variety. The resulting Bayesian

nonparametric estimators proposed in [17, 20] have already been integrated into the web server

RichEst c� [5]. However estimators for the overall genes variety are certainly useful but necessar-

ily need to be complemented by an e↵ective analysis of the so–called “rare genes variety” (see

e.g. [26]). Therefore, from an applied perspective it is important to devise estimators of the

number of genes that appear only once, the so–called unigenes or, more generally, of the number

of genes that are observed with frequency less than or equal to a specific abundance threshold

⌧ . The results deduced in the present paper perfectly fit these needs. Indeed, conditional on an

observed sample of size n, the quantity M̂ (n)
1,m = E[M (n)

l,m

] is a Bayesian estimator of the number

of genes that will appear only once in a sample of size n+m and can be easily determined from
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Theorem 2.3. In a similar fashion, having fixed a threshold ⌧ ,

M̂ (n)
⌧

=
⌧X

l=1

M̂ (n)
l,m

(36)

is a Bayesian estimator of the rare genes variety, namely the number of species appearing with

frequency less than ⌧ in a sample of size n+m.

Having laid out the framework and described the estimators to be used, we now test the

proposed methodology on some real genomic data. To this end we deal with a widely used

EST dataset obtained by sequencing a tomato–flower cDNA library (made from 0-3 mm buds

of tomato flowers) from the Institute for Genomic Research Tomato Gene Index with library

identifier T1526 [24]. The observed sample consists of n = 2586 ESTs with j = 1825 unique

genes, whose frequencies can be summarized by

m
i,2586 = 1434, 253, 71, 33, 11, 6, 2, 3, 1, 2, 2, 1, 1, 1, 2, 1, 1

with i 2 {1, 2, . . . , 14} [ {16, 23, 27}, which means that we are observing 1434 genes which

appear once, 253 genes which appear twice, etc.

As for the specific model (2) we adopt, P̃ is a PD(�, ✓) process. The reason we rely on

such a specification is two–fold: on the one hand it yields tractable estimators that can be

exactly evaluated and, on the other, it is a very flexible model since it encompasses a wide

range of partitioning structures according as to the value of �. On the basis of our choice of the

nonparametric prior, we only need to specify the parameter vector (�, ✓). This is achieved by

adopting an empirical Bayes procedure [17]: we fix (�, ✓) so to maximize (8) corresponding to

the observed sample (j, n1, . . . , nj

), i.e.

(�̂, ✓̂) = argmax
(�,✓)

Q
j�1
i=1 (✓ + i�)

(✓ + 1)
n�1

jY

i=1

(1� �)
n

i

�1. (37)

The quantities we wish to estimate are N (n)
⌧

=
P

⌧

l=1Nl,m

and O(n)
⌧

=
P

⌧

l=1Ol,m

. These quan-

tities identify the number of distinct genes with abundances not greater than ⌧ or, in genomic

terminology, with expression levels not greater than ⌧ that are present among the “new” genes

detected in the additional sample and the “old” genes observed in the basic sample, respectively.

The overall number of rare distinct genes is easily recovered as M (n)
⌧

= N (n)
⌧

+O(n)
⌧

. The corre-

sponding estimators can be deduced from (28), (30) and (31). In the present genomic context

one can reasonably identify the rare genes as those presenting expression levels less than or equal

to ⌧ = 3, 4, 5, which are the thresholds we employ for our analysis.

We first perform a cross–validation study for assessing the performance of our methodology

when used to predict rare genes abundance. To this end 10 sub–samples of size 1000 have been
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drawn without replacement from the available 2586 EST sample. For each of the sub–samples we

have generated, the corresponding values of (�, ✓) have been fixed according to (37). Predictions

have, then, been performed for an additional sample of size m = 1586, which corresponds to the

remaining observed genes. Table 1 below reports the true and estimated values for the O(n)
⌧

,

N (n)
⌧

and M (n)
⌧

and shows the accurate performance of the proposed estimators. Such a result

is a fortiori appreciable if one considers that predictions are made over an additional sample of

size larger than 1.5 times the observed sample.

N.
⌧ = 3, n = 1000 ⌧ = 4, n = 1000 ⌧ = 5, n = 1000

O(n)
⌧ N (n)

⌧ M (n)
⌧ O(n)

⌧ N (n)
⌧ M (n)

⌧ O(n)
⌧ N (n)

⌧ M (n)
⌧

1
est. 750 1010 1759 777 1014 1791 793 1016 1809

true 767 991 1758 793 998 1791 803 999 1802

2
est. 739 1006 1744 765 1010 1775 781 1011 1792

true 753 1005 1758 785 1006 1791 794 1008 1802

3
est. 730 1003 1733 755 1007 1762 770 1008 1779

true 742 1016 1758 772 1019 1791 783 1019 1802

4
est. 765 1043 1807 789 1047 1836 804 1048 1852

true 772 986 1758 800 991 1791 811 991 1802

5
est. 741 971 1712 771 976 1748 788 978 1766

true 761 997 1758 788 1003 1791 797 1005 1802

6
est. 758 1027 1785 784 1031 1816 800 1033 1833

true 770 988 1758 798 993 1791 809 993 1802

7
est. 739 997 1735 766 1002 1768 783 1003 1786

true 758 1000 1758 787 1004 1791 796 1006 1802

8
est. 734 984 1719 763 989 1752 780 991 1770

true 747 1011 1758 779 1012 1791 790 1012 1802

9
est. 729 969 1698 759 974 1733 777 975 1752

true 747 1011 1758 779 1012 1791 789 1013 1802

10
est. 757 1020 1777 784 1025 1809 800 1026 1826

true 774 984 1758 799 992 1791 807 995 1802

Table 1: Cross–validation study based on sub–samples of size 1000 and prediction on the remaining m = 1586

data. The reported estimated and true quantities are the number of rare genes (i.e. with expression levels less

than or equal to ⌧ , for ⌧ = 3, 4, 5) among the “old” genes (O
(n)
⌧

), the “new” genes (N
(n)
⌧

) and all genes (M
(n)
⌧

).

We now deal with the whole dataset and provide estimates of rare genes abundance after

additional sequencing. To this end, we consider, as possible sizes of the additional sample,

m 2 {250, 500, 750, 1000}. As for the prior specification of (�, ✓) the maximization in (37) leads

to (�̂, ✓̂) = (0.612, 741). The resulting estimates of O(n,j)
⌧

, N (n,j)
⌧

and M (n,j)
⌧

are reported in

Table 2.
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m

⌧ = 3 ⌧ = 4 ⌧ = 5

n = 2586, j = 1825 n = 2586, j = 1825 n = 2586, j = 1825

Ô(n)
⌧ N̂ (n)

⌧ M̂ (n)
⌧ Ô(n)

⌧ N̂ (n)
⌧ M̂ (n)

⌧ Ô(n)
⌧ N̂ (n)

⌧ M̂ (n)
⌧

250 1745 138 1882 1782 138 1920 1798 138 1935

500 1730 272 2002 1773 272 2045 1793 272 2064

750 1715 402 2117 1763 402 2165 1787 403 2189

1000 1700 529 2229 1753 530 2283 1780 530 2310

Table 2: Estimates for an additional sample corresponding to m 2 {250, 500, 750, 1000} given the observed EST

dataset of size n = 2586 with j = 1825 distinct genes: estimates for the number of rare genes (i.e. with expression

levels less than or equal to ⌧ , for ⌧ = 3, 4, 5) among the “old” genes (O
(n)
⌧

), the “new” genes (N
(n)
⌧

) and all genes

(M
(n)
⌧

).

5 Proofs

We start by providing a lemma concerning the marginal frequency counts of the partition blocks

induced by Gibbs–type random partition. In addition to the notation introduced in Section 2,

we define the following shortened set notation

A
n,m

(j,n, s, k) := {K
n

= j,N = n, L(n)
m

= s,K(n)
m

= k}

and

A
n

(j,n) := {K
n

= j,N = n}.

for any n = (n1, . . . , nj

) 2 D
n,j

. Further additional notations will be introduced in the proofs

when necessary.

Lemma 5.1 Let (X
n

)
n�1 be an exchangeable sequence associated to a Gibbs–type r.p.m. For

any x 2 {1, . . . , j}, let q(x) = (q1, . . . , qx) with 1  q1 < · · · < q
x

 j and define the vector of

frequency counts Sq(x) := (S
q1 , . . . , Sq

x

). Then,

P[Sq(x) = sq(x) |A
n,m

(j,n, s, k)]

=
(m� s)!

(m� s� |sq(x) |)!

xY

i=1

(n
q

i

� �)
s

q

i

s
q

i

!

⇥
(n� |nq(x) |� (j � x)�)

m�s�|s
q(x)

|

(n� j�)
m�s

(38)

for any vector sq(x) = (s
q1 , . . . , sqx) of non-negative integers such that |sq(x) | =

P
x

i=1 sqi  m�s.

Moreover, for any y 2 {1, . . . , k}, let r(y) = (r1, . . . , ry) with 1  r1 < · · · < r
y

 k and define
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the vector of frequency counts S⇤
r(y) := (S

j+r1 , . . . , Sj+r

y

). Then

P
⇥
S⇤
r(y) = sr(y) |A

n,m

(j,n, s, k)
⇤

=
s!

(s� |sr(y) |)!

yY

i=1

(1� �)
s

j+r

i

s
j+r

i

!

⇥ (k � y)!

k!
�y

C (s� |sr(y) |, k � y;�)

C (s, k;�)
(39)

for any vector sr(y) = (s
j+r1 , . . . , sj+r

y

) of positive integers such that |sr(y) | =
P

y

i=1 sj+r

i

 s.

Moreover, the random variables Sq(x) and S⇤
r(y) are independent, conditionally on (K

n

,N , L(n)
m

,K(n)
m

).

Proof. We start by recalling some useful conditional formulae for Gibbs–type random par-

titions recently obtained in [20]. In particular, from [20, Corollary 1] one has the conditional

probability

P
h
K(n)

m

= k, L(n)
m

= s |A
n

(j,n)
i

=
V
n+m,j+k

V
n,j

✓
m

s

◆
(n� j�)

m�s

C (s, k,�)

�k

. (40)

On the other hand, for any vectors of non-negative integers sq(j) = (s1, . . . , sj) such that |sq(j) | =
m� s, and for any vector of positive integers sr(k) = (s

j+1, . . . , s
j+k

) such that |sr(k) | = s, [20,

Equation (28)] yields the conditional probability

P
h
Sq(j) = sq(j) ,S⇤

r(k) = sr(k) , L(n)
m

= s,K(n)
m

= k |A
n

(j,n)
i

=
V
n+m,j+k

V
n,j

jY

i=1

(n
i

� �)
s

i

kY

`=1

(1� �)
s

j+`

�1. (41)

A combination of (40) and (41) implies that

P
h
Sq(j) = sq(j) ,S⇤

r(k) = sr(k) |A
n,m

(j,n, s, k)
i

=
�k

Q
j

i=1(ni

� �)
s

q

i

�1
Q

k

`=1(1� �)
s

j+r

`

�1�
m

s

�
(n� j�)

m�s

C (s, k,�)
. (42)

Consider now the set I
j,x

:= {1, . . . , j}\{q1, . . . , qx} and the corresponding partition set defined

as follows

D(0)
m�s�s

⇤
,j�x

:=

8
<

:(s
i

, i 2 I
j,x

) : s
i

� 0 and
X

i2I
j,x

s
i

= m� s� s⇤

9
=

; ,
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where we set s⇤ :=
P

x

i=1 sqi . In a similar vein, let us introduce the set I
k,y

:= {1, . . . , k} \
{r1, . . . , ry} and the corresponding partition set defined as follows

D
s�s

⇤⇤
,k�y

:=

8
<

:(s
j+i

, i 2 I
k,y

) : s
j+i

> 0 and
X

i2I
k,y

s
j+i

= s� s⇤⇤

9
=

; ,

where we set s⇤⇤ :=
P

y

i=1 sj+r

i

. By virtue of [4, Equation (2.6.1)] one can write

1

(k � y)!

X

D
s�s

⇤⇤
,k

s!
kY

i=1

(1� �)
s

j+i

�1

s
j+i

!

=
s!

(s� s⇤⇤)!
Q

y

i=1 sri !

C (s� s⇤⇤, k � y,�)

�k�y

(43)

and, by virtue of [20, Lemma (A.1)], one can write

X

D(0)
m�s�s

⇤
,j�x

✓
m� s

s1, . . . , sj

◆
jY

i=1

(1� �)
n

i

+s

i

�1

=
(m� s)!(n⇤ � (j � x)�)

m�s�s

⇤

(m� s� s⇤)!
Q

x

i=1 sqi !

xY

i=1

(1� �)
n

q

i

+s

q

i

�1

Y

`2I
j,x

(1� �)
n

`

�1 (44)

where we set n⇤ :=
P

i2I
j,x

n
i

= n �
P

x

i=1 nq

i

. A simple application of the identities (43) and

(44) to the conditional probability (42) proves both the conditional independence between Sq(x)

and S⇤
r(y) and the two expressions in (38) and (39).

5.1 Proof of Proposition 2.1

For any n � 1 and 1  j  n let M
n,j

be the partition set of N
n

containing all the vectors

m
n

= (m1, . . . ,mn

) 2 {0, 1, . . . , n}n such that
P

n

i=1mi

= j and
P

n

i=1 imi

= n. Hence, resorting

to the probability distribution (10), one obtains for any r � 1

E
⇥
(M

l,n

)[r]
⇤
= n!

nX

j=1

V
n,j

X

m
n

2M
n,j

(m
l

)[r]

nY

i=1

✓
(1� �)

i�1

i!

◆
m

i 1

m
i

!

= n!
nX

j=1

V
n,j

X

m
n

2M
n,j

✓
(1� �)

l�1

l!

◆
m

l 1

(m
l

� r)!

⇥
Y

1i 6=ln

✓
(1� �)

i�1

i!

◆
m

i 1

m
i

!
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= n!

✓
(1� �)

l�1

l!

◆
r

nX

j=1

V
n,j

⇥
X

m
n�rl

2M
n�rl,j�r

n�rlY

i=1

✓
(1� �)

i�1

i!

◆
m

i 1

m
i

!
.

Finally, a direct application of [4, Equation (2.82)] implies the following identity

X

m
n

2M
n�rl,j�r

nY

i=1

✓
(1� �)

i�1

i!

◆
m

i 1

m
i

!
=

(n)[lr]
n!�j�r

C (n� lr, j � r;�)

and the proof is completed.⇤

5.2 Proof of Theorem 2.1

According to the definition of the random variable O
l,m

in (13), for any r � 1 one can write

E
h⇣

O(n)
l,m

⌘
r

i
=

mX

s=0

sX

k=0

P
h
L(n)
m

= s,K(n)
m

= k |A
n

(j,n)
i

⇥ E
" 

jX

i=1

1
l

(n
i

+ S
i

)

!
r ����An,m

(j,n, s, k)

#
.

It can be easily verified that a repeated application of the binomial expansion implies the fol-

lowing identity

 
jX

i=1

1{l}(ni

+ S
i

)

!
r

=
jX

x=1

r�1X

i1=1

i2�1X

i2=1

· · ·
i

x�2�1X

i

x�1=1

✓
r

i1

◆✓
i1
i2

◆
· · ·
✓
i
x�2

i
x�1

◆

⇥
X

c(x)2C
j,x

xY

t=1

⇣
1{l}(nc

t

+ S
c

t

)
⌘
i

x�t

�i

x�t+1

(45)

provided i0 ⌘ r. Observe that the previous sum can be expressed in terms of Stirling numbers

of the second kind S(n,m); indeed, since m!S(n,m) is the number of ways of distributing n

distinguishable objects into m distinguishable groups, one has

1

m!

n�1X

i1=1

i1�1X

i2=1

· · ·
i

m�2�1X

i

m�1=1

✓
n

i1

◆✓
i1
i2

◆
· · ·
✓
i
m�2

i
m�1

◆
= S(n,m), (46)

for any n � 1 and 1  m  n. In particular, combining the identity (45) with (46) one obtains

E

⇣
O(n)

l,m

⌘
r

����L
(n)
m

= s,K(n)
m

= k

�
=

j^rX

x=1

S(r, x)x!
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⇥
X

c(x)2C
j,x

P [Sc(x) = l1
x

� nc(x) |An,m

(j,n, s, k)] (47)

where we set 1

x

:= (1, . . . , 1) and nc(x) = (n
c1 , . . . , nc

x

). In (47) the bound j ^ r on the sum

over the index x is motivated by the fact that S(r, x) = 0 if x > r. Hence, the identity (47)

combined with (38) yields the following expression

E

⇣
O(n)

l,m

⌘
r

����L
(n)
m

= s,K(n)
m

= k

�
=

j^rX

x=1

S(r, x)x!

⇥
X

c(x)2C
j,x

(m� s)!

(m� s� xl + |nc(x) |)!

xY

i=1

(n
c

i

� �)
l�n

c

i

(l � n
c

i

)!

⇥
(n� |nc(x) |� (j � x)�)

m�s�xl+|n
c(x)

|

(n� j�)
m�s

. (48)

Observe that in (48) the sum over the index x, for x = 1, . . . , j ^ r, is equivalent to a sum over

the index x for x = 1, . . . , r. Indeed, if j > r then the sum over the index x is non–null for

x = 1, . . . , r because S(r, x) = 0 for any x = r + 1, . . . , j; on the other hand, if j < r then

the sum over the index x is non–null for x = 1, . . . , j because the set C
j,x

is empty for any

x = j + 1, . . . , r. Accordingly, resorting to [20, Corollary 1] one can rewrite the expected value

above as

E
h⇣

O(n)
l,m

⌘
r

i
=

mX

s=0

sX

k=0

V
n+m,j+k

V
n,j

✓
m

s

◆
C (s, k;�)

�k

rX

x=1

S(r, x)x!

⇥
X

c(x)2C
j,x

(m� s)!

(m� s� xl + |nc(x) |)!

xY

i=1

(n
c

i

� �)
l�n

c

i

(l � n
c

i

)!

⇥ (n� |nc(x) |� (j � x)�)
m�s�xl+|n

c(x)
|

=
rX

x=1

S(r, x)x!
X

c(x)2C
j,x

m!

(m� xl + |nc(x) |)!

xY

i=1

(n
c

i

� �)
l�n

c

i

(l � n
c

i

)!

⇥
m�xl+|n

c(x)
|X

k=0

V
n+m,j+k

V
n,j

��k

m�xl+|n
c(x)

|X

s=k

✓
m� xl + |nc(x) |

s

◆

⇥ (n� |nc(x) |� (j � x)�)
m�xl+|n

c(x)
|�s

C (s, k;�)

=
rX

x=1

S(r, x)x!
X

c(x)2C
j,x

m!

(m� xl + |nc(x) |)!

xY

i=1

(n
c

i

� �)
l�n

c

i

(l � n
c

i

)!
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⇥
m�xl+|n

c(x)
|X

k=0

V
n+m,j+k

V
n,j

C (m� xl + |nc(x) |, k;�,�n+ |nc(x) |+ (j � x)�)

�k

where the last equality follows from [4, Equation(2.56)]. The proof of (14) is, thus, completed

by using the relation between the r–th moment with the r–th factorial moment. ⇤

5.3 Proof of Theorem 2.2

The proof is along lines similar to the proof of Theorem 2.1. In particular, it can be easily

verified that a repeated application of the binomial expansion implies the following identity

 
kX

i=1

1{l}(Sj+i

)

!
r

=
kX

y=1

r�1X

i1=1

i2�1X

i2=1

· · ·
i

y�2�1X

i

y�1=1

✓
r

i1

◆✓
i1
i2

◆
· · ·
✓
i
y�2

i
y�1

◆

⇥
X

c(y)2C
k,y

yY

t=1

⇣
1{l}(Sj+c

t

)
⌘
i

y�t

�i

y�t+1

.

Hence, according to the definition of the random variable N
l,m

in (13) and by combining the

identity (46) with (39), one has
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where we set 1
y

:= (1, . . . , 1). Hence, (49) combined with (40) leads to the following expression
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.

In (50) note that the sum over the index y, for y = 1, . . . , k, is equivalent to a sum over the index

y for y = 1, . . . , r. Indeed, if k > r then the sum over the index y is non–null for y = 1, . . . , r

because S(r, y) = 0 for any y = r + 1, . . . , k; on the other hand, if k < r then the sum over the

index y in non–null for y = 1, . . . , k because C (s � yl, k � y;�) = 0 for any y = k + 1, . . . , r.

Basing on this, one can rewrite the expected value above as
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The proof of (16) is, thus, completed by using the relation between the r–th moment with the

r–th factorial moment. ⇤

5.4 Proof of Theorem 2.3

The proof follows from conditional independence between the random variables Sq(x) and Sr(y) ,

given (K
n

,N
n

, L(n)
m

,K(n)
m

), as stated in Theorem 2.1. Indeed, according to the definition of the

random variable M
l,m

, for any r � 1 one can write
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and

�
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In particular, by combining (51) with (48) and (49) one has
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.

Using the same arguments applied in the last part of Theorems 2.2 and 2.1, the expression (51)

combined with (40) leads to the following
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The expression in (52) can be further simplified by applying well–known properties of the Stirling

numbers of the second kind. In particular, according to the identity
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✓
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(see [4, Chapter 2]) one can write
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The proof of (20) is, thus, completed by using the relation between the r–th moment with the

r–th factorial moment. ⇤

5.5 Proofs for the Dirichlet process

5.5.1 Proof of Proposition 3.1 and 3.2

The distribution of M
l,n

is determined by its factorial moments as

P[M
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= m
l

] =
1{1,...,n}(ml
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m
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and, from this, (26) easily follows. On the other hand, Proposition 3.2 is a trivial consequence

of (23) and (24). ⇤
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5.6 Proofs for the Pitman model

5.6.1 Proof of Proposition 3.3

This again follows from the application of the sieve formula, as discussed in the proof of Propo-

sition 3.1. ⇤

5.6.2 Proof of Proposition 3.4

From Theorem 2.1 one finds that
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The usual application of the sieve formula yields (27). ⇤

5.6.3 Proof of Proposition 3.5

Follows from Theorem 2.2, along the same lines as in the proof of Proposition 3.4. ⇤

5.6.4 Proof of Theorem 3.1

Our strategy will consist in examining the asymptotic beahviour of the r–th moments of N (n)
l,m

and of M (n)
l,m

, for any r � 1, as m increases. To this end it is worth referring to the following

decomposition that implicitly follows from the proof of Theorem 2.3. Indeed it can be seen that
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where
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By virtue of Stirling’s approximation formula one has, as m ! +1,
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means that a
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! 1, as n ! 1. The term that asymptotically dominates the

right–hand side of the asymptotic equivalence above, as m ! 1, can be bounded by
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Since |nc(j^r) | � 1, one has
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In a similar fashion note that, as m ! 1, the following asymptotic equivalence holds true
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Finally, still as m ! 1,
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and, since |nc(x) | � 1 for any x = 1, . . . , (j ^ i), one has
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for any i = 1, . . . , r � 1. These limiting relations plainly lead to conclude that
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According to [8, Proposition 2], the distribution of the random variable Z
n,j

is uniquely char-

acterized by the moment sequence (E[(Z
n,j

)r])
r�1. Similar arguments lead to determine the

limiting distribution of the random variable N (n)
l,m

/m
�

, as m ! +1. ⇤

5.7 Proofs for the Gnedin model

5.7.1 Proof of Propositions 3.7 and 3.8

The proof of (34) follows from (11) and (9), after noting that C (n, k;�1) = (�1)kn!(n �
1)!/[k!(k � 1)!(n� k)!]. As for the determination of the distributions of O(n)

l,m

and N (n)
l,m

one uses

the fact that C (n, k;�1, �) = (�1)k
�
n���1
n�k

�
n!/k! along with the results stated in Theorems 2.1

and 2.2. ⇤
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