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1 Introduction

Several key aspects of asset market data pose a serious challenge to economic models.1 It

is difficult to justify the 6% equity premium and the low risk-free rate (see Mehra and

Prescott (1985), Weil (1989), and Hansen and Jagannathan (1991)). The literature on

variance bounds highlights the difficulty in justifying the market volatility of 19% per annum

(see Shiller (1981) and LeRoy and Porter (1981)). The conditional variance of the market

return, as shown by Bollerslev, Engle, and Wooldridge (1988), fluctuates across time and

is very persistent. Price-dividend ratios seem to predict long horizon equity returns (see

Campbell and Shiller (1988b)). In addition, as documented in this paper, realized volatility

of consumption growth rates and price-dividend ratios are significantly negatively correlated

at long leads and lags.

We present a model that helps explain the above features of asset market data. There are

two main ingredients in the model. First, we rely on the standard Epstein and Zin (1989)

preferences, which allow for a separation between the intertemporal elasticity of substitution

(IES) and risk aversion, and consequently permit both parameters to be simultaneously

larger than one. Second, we model consumption and dividend growth rates as containing

(i) a small persistent expected growth rate component, and (ii) fluctuating volatility, which

captures time-varying economic uncertainty. We show that this specification for consumption

and dividends is consistent with observed annual consumption and dividend data. In our

economy, when IES is larger than one, agents demand large equity risk premia because they

fear that a reduction in economic growth prospects or a rise in economic uncertainty will

lower asset prices. Our results show that risks related to varying growth prospects and

fluctuating economic uncertainty can quantitatively justify many of the observed features of

asset market data.

Why is persistence in the growth prospects important? In a partial equilibrium model,

Barsky and DeLong (1993) show that persistence in expected dividend growth rates is an

important source of volatility of price-dividend ratios. In our equilibrium model the degree

of persistence in expected growth rate news affects the volatility of the price-dividend ratio

and also determines the risk premium on the asset. News regarding future expected growth

rates leads to large reactions in the price-dividend ratio and the ex-post equity return; these

reactions positively co-vary with the marginal rate of substitution of the representative agent,

and hence lead to large equity risk premia. The dividend elasticity of asset prices and the

1Notable papers addressing asset market anomalies include Abel (1990), Abel (1999), Bansal and Coleman
(1997), Barberis, Huang, and Santos (2001), Campbell (1996), Campbell and Cochrane (1999), Cecchetti,
Lam, and Mark (1990), Chapman (2002), Constantinides (1990), Constantinides and Duffie (1996), Hansen,
Sargent, and Tallarini (1999), Heaton (1995), Heaton and Lucas (1996), and Kandel and Stambaugh (1991).
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risk premia on assets rise as the degree of permanence of expected dividend growth rates

increases. We formalize this intuition in section 2 with a simple version of the model that

incorporates only fluctuations in growth prospects.

To allow for time-varying risk premia we incorporate changes in the conditional

volatility of future growth rates. Fluctuating economic uncertainty (conditional volatility

of consumption) directly affects price-dividend ratios and a rise in economic uncertainty

leads to a fall in asset prices. In our model, shocks to economic uncertainty carry a positive

risk premium. About half of the volatility of price-dividend ratios in the model can be

attributed to variation in expected growth rates and the remaining to variation in economic

uncertainty. This is distinct from models where growth rates are i.i.d., and consequently, all

the variation in price-dividend ratio is attributed to changing cost of capital.

Our specification for growth rates emphasizes persistent movements in expected growth

rates and fluctuations in economic uncertainty. For these channels to have a significant

quantitative impact on the risk premium and volatility of asset prices, the persistence in

expected growth rate has to be quite large, close to 0.98.2 A pertinent question is whether

this is consistent with growth rate data as observed autocorrelations in realized growth

rates of consumption and dividends are small. Shephard and Harvey (1990) and Barsky

and DeLong (1993) show that in finite samples it is very difficult to distinguish between

a purely i.i.d. process and one which incorporates a small persistent component. While

it is hard to econometrically distinguish between the two alternative processes, the asset

pricing implications across them are very different. We show that our specification for the

consumption and dividend growth rates, which incorporates the persistent component, is

consistent with the growth rate data and helps justify several puzzling aspects of asset

market data.

We provide direct empirical evidence for fluctuating consumption volatility, which

motivates our time-varying economic uncertainty channel. In annual data, price-dividend

ratios are significantly correlated with consumption volatility at long leads and lags. The

variance ratios of realized consumption volatility increase up to 10 years. If residuals

of consumption growth are i.i.d., then the absolute value of these residuals will not be

predictable and the variance ratios will be flat across different horizons.

In terms of preferences, all our results are based on a risk aversion of less than 10 and an

IES that is somewhat larger than 1. There is considerable debate about what are reasonable

magnitudes for these parameters. Mehra and Prescott (1985) argue that risk aversion of 10

and below seems reasonable. As discussed below, our estimates of the IES are consistent

2Barsky and DeLong (1993) choose a value of 1. Our choice ensures that the growth rate process is
stationary.
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with the findings of Hansen and Singleton (1982) and many other authors. In addition, we

show that the presence of fluctuating economic uncertainty leads to a serious downward bias

in estimating the IES when using the regression approach used in Hall (1988). This bias

may help interpret Hall’s small estimates of the IES.

The remainder of the paper is organized as follows. In section 2 we formalize this

intuition and present the economics behind our model. The data and the model’s quantitative

implications are described in section 3. The last section provides concluding comments.

2 An Economic Model for Asset Markets

We consider a representative agent with the Epstein and Zin (1989) - Weil (1989) recursive

preferences. For these preferences, Epstein and Zin (1989) show that the asset pricing

restrictions for gross return Ri,t+1 satisfy

Et[δ
θG

− θ
ψ

t+1R
−(1−θ)
a,t+1 Ri,t+1] = 1, (1)

where Gt+1 is the aggregate gross growth rate of consumption, Ra is the gross return on an

asset paying off aggregate consumption, 0 < δ < 1 is the time discount factor, θ ≡ 1−γ

1− 1
ψ

,

where γ ≥ 0 is the risk-aversion (sensitivity) parameter, and ψ ≥ 0 is the intertemporal

elasticity of substitution. The sign of θ is determined by the magnitudes of the risk aversion

and the elasticity of substitution.3

We distinguish between the unobservable return on a claim to aggregate consumption,

Ra,t+1, and the observable return on the market portfolio Rm,t+1; the latter is the return on

the aggregate dividend claim. As in Campbell (1996), we model aggregate consumption and

aggregate dividends as two separate processes; the agent is implicitly assumed to have access

to labor income.

Although we solve our model numerically, we demonstrate the mechanisms working in

our model via approximate analytical solutions. To derive these solutions for the model we

use the standard approximations utilized in Campbell and Shiller (1988a),

ra,t+1 = κ0 + κ1zt+1 − zt + gt+1, (2)

where lowercase letters refer to logs, so that ra,t+1 = log(Ra,t+1) is the continuous return,

zt = log (Pt/Ct) is the log price-consumption ratio, and κ0 and κ1 are approximating

3In particular, if ψ > 1 and γ > 1 then θ will be negative. Note that when θ = 1, that is γ = (1/ψ),
the above recursive preferences collapse to the standard case of expected utility. Further, when θ = 1 and
in addition γ = 1, we get the standard case of log utility.
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constants that both depend only on the average level of z.4 Analogously, rm,t+1 and zm,t

correspond to the market return and its log price-dividend ratio.

The logarithm of the Intertemporal Marginal Rate of Substitution (IMRS) is

mt+1 = θ log δ − θ

ψ
gt+1 + (θ − 1)ra,t+1.

It follows that the innovation in mt+1 is driven by the innovations in gt+1 and ra,t+1.

Covariation with the innovation in mt+1 determines the risk premium for any asset. When

θ equals one, the above IMRS collapses to the usual case of power utility. To present the

intuition of our model in a simple manner we first discuss the case (Case I) in which there

are fluctuations only in the expected growth rates. Subsequently, we present the complete

model (Case II), which also includes fluctuating economic uncertainty.

2.1 Case I: Fluctuating Expected Growth Rates Only

We first solve for the consumption return ra,t+1, as this determines the pricing kernel

and consequently risk premia on the market portfolio, rm,t+1, as well as all other assets.

To do so we first specify the dynamics for consumption and dividend growth rates. We

model consumption and dividend growth rates, gt+1 and gd,t+1, respectively, as containing a

small persistent predictable component xt, which determines the conditional expectation of

consumption growth,

xt+1 = ρxt + ϕeσet+1

gt+1 = µ + xt + σηt+1 (3)

gd,t+1 = µd + φxt + ϕdσut+1

et+1, ut+1, ηt+1 ∼ N.i.i.d.(0, 1)

with all three shocks, et+1, ut+1 and ηt+1, mutually independent. The above growth rate

dynamics are also utilized by Campbell (1999), Cecchetti, Lam, and Mark (1993), and

Wachter (2002) to model consumption growth rate. φ > 1 and ϕd > 1 are two additional

parameters that allow us to calibrate the overall volatility of dividends (which in the data

is significantly larger than that of consumption) and its correlation with consumption. The

parameter φ can be interpreted, as in Abel (1999), as the leverage ratio on expected

4Note that κ1 = exp(z̄)/(1 + exp(z̄)). κ1 is approximately 0.997, which is consistent with the magnitude
of z̄ in our sample and with magnitudes used in Campbell and Shiller (1988a).
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consumption growth.5 It is straightforward to allow the three shocks to be correlated;

however, to maintain parsimony in the number of parameters we have assumed they are

independent.

The parameter ρ determines the persistence of the expected growth rate process. First,

note that when ϕe = 0, the processes gt and gd,t+1 are i.i.d. Second, if et+1 = ηt+1, the

process for consumption is the ARMA(1,1) used in Bansal and Yaron (2000). Additionally,

if ϕe = ρ, then consumption growth is an AR(1) process, as in Mehra and Prescott (1985).

Since g and gd are exogenous processes, a solution for the log price-consumption ratio

zt and the log price-dividend ratio zm,t leads to a complete characterization of the returns

ra,t+1 and rm,t+1 (using equation (2)). The relevant state variable for deriving the solution

for zt and zm,t is the expected growth rate of consumption xt. Exploiting the Euler equation

(1), the solution for the log price-consumption zt has the form zt = A0 +A1xt. An analogous

expression holds for the log price-dividend ratio zm,t. Details of both derivations are provided

in the Appendix.

The solution coefficients for the effect of expected growth rate xt on the price-consumption

ratio, A1, and the price-dividend ratio, A1,m, respectively, are

A1 =
1− 1

ψ

1− κ1ρ
A1,m =

φ− 1
ψ

1− κ1,mρ
. (4)

It immediately follows that A1 is positive if IES, ψ, is greater than one. In this case the

intertemporal substitution effect dominates the wealth effect. In response to higher expected

growth (higher expected rates of return), agents buy more assets, and consequently the

wealth to consumption ratio rises. In the standard power utility model, the need to have

risk aversion larger than one also implies that ψ < 1, and hence A1 is negative. Consequently,

the wealth effect dominates the substitution effect.6 In addition, note that A1,m > A1 when

φ > 1; consequently, expected growth rate news leads to a larger reaction in the price of the

dividend claim than in the price of the consumption claim.

Substituting the equilibrium return for ra,t+1 into the IMRS, it is straightforward to show

5Note that we have modelled the growth rates of consumption (nondurables plus services) and dividends.
In our model, as with many papers in the literature (e.g., Campbell and Cochrane (1999)), consumption and
dividends are not cointegrated. It is an empirical question if these series (and possibly labor income) are
cointegrated or not. We do not explore these empirical and any ensuing theoretical issues in this paper.

6An alternative interpretation with the power utility model is that higher expected growth rates increase
the risk-free rate to an extent that discounting dominates the effects of higher expected growth rates. This
leads to a fall in asset prices.
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that the innovation to the pricing kernel is (see equation (15) in the Appendix)

mt+1 − Et(mt+1) = [− θ

ψ
+ θ − 1]σηt+1 − (1− θ)[κ1(1− 1

ψ
)

ϕe

1− κ1ρ
]σet+1

= λm,ησηt+1 − λm,eσet+1. (5)

λm,e and λm,η capture the pricing kernel’s exposure to the expected growth rate and the

independent consumption shocks, ηt+1. The key observation is that the exposure to expected

growth rate shocks λm,e rises as the permanence parameter ρ rises. The conditional volatility

of the pricing kernel is constant, as all risk sources have constant conditional variances.

As asset returns and the pricing kernel in this model economy are conditionally log-

normal, the continuous risk premium on any asset i is Et[ri,t+1− rf,t] = −covt(mt+1, ri,t+1)−
0.5σ2

ri,t
. Given the solutions for A1 and A1,m, it is straightforward to derive the equity

premium on the market portfolio (see section 5.1.3 in the Appendix),

E(rm,t+1 − rf,t) = βm,eλm,eσ
2 − 0.5V ar(rm,t), (6)

where βm,e ≡ [κ1,m(φ − 1
ψ
) ϕe

1−κ1,mρ
] and V art(rm,t+1) = [β2

m,e + ϕ2
d]σ

2. The exposure of the

market return to expected growth rate news is βm,e, and the price of expected growth risk

is determined by λm,e. The expressions for these parameters reveal that a rise in ρ increases

both βm,e and λm,e. Consequently, the risk premium on the asset also increases with ρ.

Similarly, the volatility of the market return also increases with ρ (see equation (23) in the

Appendix).

Because of our assumption of a constant σ, the conditional risk premium on the market

portfolio in (6) is constant, and so is its conditional volatility. Hence, the ratio of the two,

namely the Sharpe ratio, is also constant. In order to address issues that pertain to time-

varying risk premia and predictability of risk premia, we augment our model in the next

section and introduce time-varying economic uncertainty.
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2.2 Case II: Incorporating Fluctuating Economic Uncertainty

We model fluctuating economic uncertainty as time-varying volatility of consumption growth.

The dynamics for the system (3) that incorporate stochastic volatility are:

xt+1 = ρxt + ϕeσtet+1

gt+1 = µ + xt + σtηt+1 (7)

gd,t+1 = µd + φxt + ϕdσtut+1

σ2
t+1 = σ2 + ν1(σ

2
t − σ2) + σwwt+1

et+1, ut+1, ηt+1, wt+1 ∼ N.i.i.d.(0, 1),

where σt+1 represents the time-varying economic uncertainty incorporated in consumption

growth rate and σ2 is its unconditional mean. To maintain parsimony, we assume that the

shocks are uncorrelated, and allow for only one source of economic uncertainty to affect

consumption and dividends.

The relevant state variables in solving for the equilibrium price-consumption (and price-

dividend) ratio are now xt and σ2
t . Thus, the approximate solution for the price-consumption

ratio is zt = A0 + A1xt + A2σ
2
t . The solution for A1 is unchanged (equation (4)). The

solution coefficient A2 for measuring the sensitivity of price-consumption ratios to volatility

fluctuations is

A2 =
0.5[(θ − θ

ψ
)2 + (θA1κ1ϕe)

2]

θ(1− κ1ν1)
. (8)

An analogous coefficient for the price-dividend ratio, A2,m, is derived in the Appendix and

has a similar form. Two features of this model specification are noteworthy. First, if IES and

risk aversion are larger than one, then θ is negative, and a rise in volatility lowers the price-

consumption ratio. Similarly, an increase in economic uncertainty raises risk premia and

lowers the market price-dividend ratio. Second, an increase in the permanence of volatility

shocks, that is ν1, magnifies the effects of volatility shocks on valuation ratios, as changes in

economic uncertainty are perceived as being long lasting.

As the price-consumption ratio is affected by volatility shocks, so is the return ra,t+1.

Consequently, the pricing kernel (IMRS) is also affected by volatility shocks. Specifically,

the innovation in the pricing kernel is now:

mt+1 − Et(mt+1) = λm,ησtηt+1 − λm,eσtet+1 − λm,wσwwt+1, (9)

where λm,w ≡ (1− θ)A2κ1, while λm,η and λm,e are defined in equation (5). This expression
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is similar to the earlier model (see equation (5)) save for the inclusion of wt+1: shocks to

consumption volatility. In the special case of power utility, where θ = 1, these volatility

innovations are not reflected in the innovation of the pricing kernel, as λm,w equals zero.7

The equation for the equity premium will now have two sources of systematic risk. The

first, as before, relates to fluctuations in expected consumption growth, and the second to

fluctuations in consumption volatility. The equity premium in the presence of time-varying

economic uncertainty is

Et(rm,t+1 − rf,t) = βm,eλm,eσ
2
t + βm,wλm,wσ2

w − 0.5V art(rm,t+1), (10)

where βm,w ≡ κ1,mA2,m and V art(rm,t+1) = {β2
m,eσ

2
t + ϕ2

dσ
2
t + β2

m,wσ2
w}.

The market compensation for stochastic volatility risk in consumption is determined

by λm,w. The risk premium on the market portfolio is time-varying as σt fluctuates. The

ratio of the conditional risk premium to the conditional volatility of the market portfolio

fluctuates with σt, and hence the Sharpe ratio is time-varying. The maximal Sharpe ratio

in this model economy, which approximately equals the conditional volatility of the pricing

kernel innovation (equation (9)), also varies with σt.
8 This means that during periods of

high economic uncertainty, risk premia will rise. For further discussion on the specialization

of the risk premia under expected utility see Bansal and Yaron (2000).

The first-order effects on the level of the risk-free rate (see equation (24) in the Appendix)

are the rate of time preference and the average consumption growth rate, divided by the

IES. Increasing the IES keeps the level low. In addition, the variance of the risk-free rate

is primarily determined by the volatility of expected consumption growth rate and the IES.

Increasing the IES lowers the volatility of the risk-free rate.

3 Data and Model Implications

To derive asset market implications of the model described in (7), we calibrate the model at

the monthly frequency such that its time-aggregated annual growth rates of consumption and

dividends match salient features of their annual counterparts in the data, and at the same

time allow the model to reproduce many observed asset pricing features. As in Campbell and

Cochrane (1999), Kandel and Stambaugh (1991), and many others, we calibrate the model.

7Recall that in our specification the conditional volatility and expected growth rate processes are
independent. With power utility, the volatility shocks will not be reflected in the innovations of the
IMRS. With Epstein and Zin (1989) preferences, in spite of this independence, volatility shocks influence
the innovations in the pricing IMRS.

8As in Campbell and Cochrane (1999), given the normality of the growth rate dynamics, the maximal
Sharpe ratio is simply given by the standard deviation of the log pricing kernel.
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Further, as in these papers the decision interval of the agent is assumed to be monthly, but

the targeted data to be matched are at an annual frequency.9

Our choices of the time series and preference parameters are designed to simultaneously

match observed growth rate data and asset market data. In order to isolate the economic

effects of persistent expected growth rates from those of fluctuating economic uncertainty,

we report our results first for Case I where fluctuating economic uncertainty has been shut

off (σw is set to zero), and then consider the model specification where both channels are

operational.

3.1 Persistent Expected Growth

In Table 1 we display the time series properties of the model given in (3). The specific

parameters are given below the table. In spite of a persistent growth component, the model’s

implied time series properties are largely consistent with the data.

Barsky and DeLong (1993) rely on a persistence parameter ρ equal to one. We calibrate

ρ at 0.979, this ensures that expected consumption growth rates are stationary and permits

the possibility of large dividend elasticity of equity prices and equity risk premia. Our

choice of ϕe and σ is motivated to ensure that we match the unconditional variance and the

autocorrelation function of annual consumption growth. The standard deviation of the one-

step ahead innovation in consumption, that is σ, equals 0.0078. This parameter configuration

implies that the predictable variation in monthly consumption growth, i.e., the R2, is only

4.4%. Our choice of φ is very similar to that in Abel (1999) and captures the “levered”

nature of dividends. The standard deviation of the monthly innovation in dividends, ϕdσ,

is 0.0351. This parameter configuration allows us to match the unconditional variance of

dividend growth and its annual correlation with consumption.

9The evidence regarding the model is based on numerical solutions using standard polynomial-based
projection methods discussed in Judd (1998). The numerical results are quite close to those based on the
approximate analytical solutions.
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Table 1 : Annualized Time-Averaged Growth Rates

Data Model

Variable Estimate S.E. Mean 95% 5% P-val Pop

σ(g) 2.93 (0.69) 2.72 3.80 2.01 0.37 2.88

AC(1) 0.49 (0.14) 0.48 0.65 0.21 0.53 0.53

AC(2) 0.15 (0.22) 0.23 0.50 -0.17 0.70 0.27

AC(5) -0.08 (0.10) 0.13 0.46 -0.13 0.93 0.09

AC(10) 0.05 (0.09) 0.01 0.32 -0.24 0.80 0.01

V R(2) 1.61 (0.34) 1.47 1.69 1.22 0.17 1.53

V R(5) 2.01 (1.23) 2.26 3.78 0.79 0.63 2.36

V R(10) 1.57 (2.07) 3.00 6.51 0.76 0.77 2.96

σ(gd) 11.49 (1.98) 10.96 15.47 7.79 0.43 11.27

AC(1) 0.21 (0.13) 0.33 0.57 0.09 0.53 0.39

corr(g, gd) 0.55 (0.34) 0.31 0.60 -0.03 0.07 0.35

The model parameters are based on the process given in equation (3). The parameters are µ = µd = 0.0015,

ρ = 0.979, σ = 0.0078, φ = 3, ϕe = 0.044, and ϕd = 4.5. The statistics for the data are based on annual

observations from 1929 to 1998. Consumption is real non-durables and services (BEA); dividends are from

the CRSP value weighted return. AC(j) is the jth autocorrelation and V R(j) is the jth variance ratio.

Standard errors are Newey and West (1987) corrected using 10 lags. The statistics for the model are based

on 1000 simulations each with 840 time-aggregated monthly observations. The mean displays the mean across

the simulations. The 95% and 5% columns display the estimated percentiles of the simulated distribution.

The P-val column denotes the number of times in the simulation the parameter of interest was larger than

the corresponding estimate in the data. The Pop column refers to population value.

Since our model emphasizes the long horizon implications of the predictable component

xt, we first demonstrate that our proposed process for consumption is consistent with

annual consumption data along a variety of dimensions. We use BEA data on real per

capita annual consumption growth of non-durables and services for the period 1929 to

1998. This is the longest single data source of consumption data. Dividends and the value-

weighted market return data are taken from CRSP. All nominal quantities are deflated using

the CPI. To facilitate comparisons between the model, which is calibrated to a monthly

decision interval, and the annual data, we time aggregate our monthly model and report

its annual statistics. As there is considerable evidence of small sample biases in estimating

autoregression coefficients and variance ratios (see Hurwicz (1950) and Ansley and Newbold
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(1980)) we report statistics based on 1000 Monte-Carlo experiments each with 840 monthly

observations — each experiment corresponding to the 70 annual observations available in

our data set. Increasing the size of the Monte-Carlo makes little difference to the results.

The annualized real per-capita consumption growth mean is 1.8% and its standard

deviation is about 2.9%. Note that this volatility is somewhat lower for our sample than

for the period considered in Mehra and Prescott (1985), Kandel and Stambaugh (1991),

and Abel (1999). Table 1 shows that, in the data, consumption growth has a large first

autocorrelation coefficient and a small second-order one. The standard errors in the data for

these autocorrelations are sizeable. An alternative way to view the long horizon properties of

the model is to use variance ratios which are themselves determined by the autocorrelations

(see Cochrane (1988)). In the data the variance ratios first rise significantly and at about 7

years out start to decline. The standard errors on these variance ratios, not surprisingly, are

quite substantial.

The mean (across simulations) of the model’s implied first autocorrelation is similar to

that in the data. The second and tenth autocorrelations are within one standard error of

the data. The fifth autocorrelation is just about two standard errors of the data. The

empirical distribution of these estimates across the simulations as depicted by the 5th and

95th percentiles is wide and contains the point estimates from the data. The model’s variance

ratios mimic the pattern in the data. The point estimates are slightly larger than the data,

but they are well within one standard error of the data. The point estimates from the data

are clearly contained in the 5% confidence interval based on the empirical distribution of the

simulated variance ratios. The unconditional volatility of consumption and dividend growth

closely matches that in the data. In addition, the correlation of dividends with consumption

of about 0.3 is somewhat lower, but within one standard error of its estimate in the data.

This lower correlation is a conservative estimate, and increasing it helps the model generate

a higher risk premium. Overall, Table 1 shows that allowing for a persistent predictable

component produces consumption and dividend moments that are largely consistent with

the data.

It is often argued that consumption growth is close to being i.i.d. As shown in Table 1

the consumption dynamics, which contain a persistent but small predictable component, are

also largely consistent with the data. This evidence is consistent with Shephard and Harvey

(1990) and Barsky and DeLong (1993) who show that in finite samples discrimination across

the i.i.d. growth rate model and the one considered above is extremely difficult. While

the financial market data are hard to interpret from the perspective of the i.i.d. dynamics,

they are, as shown below, interpretable from the perspective of the growth rate dynamics

considered above.
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Before we discuss the asset pricing implications we highlight two additional issues related

to the data. First, data for consumption, dividends, and asset returns pertain to the long

sample from 1929. Clearly moments of these data will differ across sub-samples. Our choice

of the long sample is similar to Mehra and Prescott (1985), Kandel and Stambaugh (1991),

and Abel (1999) and is motivated to keep the estimation error on the moments small. The

annual autocorrelations of consumption growth for our model are well within standard error

bounds even when compared to those in the post-war annual consumption data.10 Second,

our dividend model is calibrated to cash dividends; this is similar to that used by many

earlier studies. While it is common to use cash dividends, this measure of dividends may

mismeasure total payouts, as it ignores other forms of payments made by corporations.

Given the difficulties in accurately measuring total payouts of corporations and to maintain

comparability with earlier work we have focused on cash dividends as well. Jagannathan,

McGrattan, and Scherbina (2000) provide evidence pertaining to the issue of dividends, and

show that alternative measures of dividends have even higher volatility.

3.1.1 Case I: Asset Pricing Implications

In Table 2 we display the asset pricing implications of the model for a variety of risk aversion

and IES configurations. In panel A, we use the time series parameters from Table 1. In Panel

B we increase φ, the dividend leverage parameter, to 3.5, and in Panel C we analyze the

implications of an i.i.d. process. The table intentionally concentrates on a relatively narrow

set of asset pricing moments, namely the mean risk-free rate, equity premium, the market

and risk-free rate volatility, and the volatility of the log price-dividend ratio. These moments

are the main focus of many asset pricing models. In section 3.3 we discuss additional model

implications.

10The first autocorrelations for annual consumption growth in 1951-1999 and 1961-1999 are 0.38 and
0.44, respectively – hence the consumption growth autocorrelations vary with samples. Based on Table 1,
both estimates are well within the model-based 5% confidence interval for the first autocorrelation. We
have focused on annual data (consumption and dividends) to avoid dealing with seasonalities and other
measurement problems discussed in Wilcox (1992).
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Table 2 : Asset Pricing Implications – Case I

γ ψ E(Rm −Rf ) E(Rf ) σ(Rm) σ(Rf ) σ(p− d)

Panel A: φ = 3.0, ρ = 0.979

7.5 0.5 0.55 4.80 13.11 1.17 0.07

7.5 1.5 2.71 1.61 16.21 0.39 0.16

10.0 0.5 1.19 4.89 13.11 1.17 0.07

10.0 1.5 4.20 1.34 16.21 0.39 0.16

Panel B: φ = 3.5, ρ = 0.979

7.5 0.5 1.11 4.80 14.17 1.17 0.10

7.5 1.5 3.29 1.61 18.23 0.39 0.19

10.0 0.5 2.07 4.89 14.17 1.17 0.10

10.0 1.5 5.10 1.34 18.23 0.39 0.19

Panel C: φ = 3.0, ρ = ϕe = 0

7.5 0.5 -0.74 4.02 12.15 0.00 0.00

7.5 1.5 -0.74 1.93 12.15 0.00 0.00

10.0 0.5 -0.74 3.75 12.15 0.00 0.00

10.0 1.5 -0.74 1.78 12.15 0.00 0.00

All entries are based on δ = 0.998 and the parameter configuration given in Table 1.

Our choice of parameters attempts to take economic considerations into account. In

particular δ < 1, and the risk aversion parameter γ is either 7.5 or 10. Mehra and Prescott

(1985) argue that a reasonable upper bound for risk aversion is around 10. In this sense, our

choice for risk aversion is reasonable. The magnitude for IES that we focus on is 1.5. Hansen

and Singleton (1982) and Attanasio and Webber (1989) estimate the IES to be well in excess

of 1.5. More recently, Vissing-Jorgensen (2002) and Guvenen (2001) also argue that the IES

is well over one. However, Hall (1988) and Campbell (1999) estimate the IES to be well

below one. Their results are based on a model without fluctuating economic uncertainty. In

section 3.3.4, we show that ignoring the effects of time-varying consumption volatility leads

to a serious downward bias in the estimates of the IES. To highlight the role of IES, we

choose one value of IES less than one (IES= 0.5) and another larger than one (IES=1.5).

Table 2 shows that the model with persistent expected growth is able to generate sizeable

risk premia, market volatility, and fluctuations in price-dividend ratios. Larger risk aversion

clearly increases the equity premium; changing risk aversion mainly affects this dimension of

the model. To qualitatively match key features of the data it is important for the IES to be
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larger than one. Lowering the IES lowers A1,m, the dividend elasticity of asset prices, and

the risk premia on the asset. As IES rises the volatility of the price-dividend ratio and asset

returns rise along with A1,m. At very low values of the IES, A1,m can become negative which

would imply that a rise in dividends’ growth rate expectations will lower asset prices (see

the discussion in section 2). In addition, note that if the leverage parameter φ is increased, it

increases the riskiness of dividends, and A1,m rises. The price-dividend ratio becomes more

volatile, and the equity premium rises.

As discussed earlier we assumed that ut, et, and ηt are independent. To give a sense of

how the results change if we allow for correlations in the various shocks, consider the case

with IES at 1.5 and risk aversion of 10. When we assume that the correlation between ut

and ηt is 0.25 and all other innovations are set at zero, then the equity premium rises to

5.02%. If the correlation between ut and et is assumed to be 0.25, then the equity premium

and the market return volatility rise to 5.21% and 17.22% respectively. There are virtually

no other changes. As stated earlier, in Table 2, we have made the conservative assumption

of zero correlations to maintain parsimony in the parameters that we have to calibrate.

It is also interesting to consider the case where consumption and dividend growth rates

are assumed to be i.i.d., that is ϕe = 0. In this case, the equity premium for the market

is Et(rm,t+1 − rf,t) = γcov(gt+1, gd,t+1) − 0.5V ar(rm,t+1). In our baseline model, dividend

innovations are independent of consumption innovations, hence, with i.i.d. growth rates

cov(gt+1, gd,t+1) equals zero, and the market equity premium is −0.5V ar(rm,t+1); this explains

the negative equity premium in the i.i.d. case reported in Panel C of Table 2. If we

assume that the correlation between monthly consumption and dividend growth is 0.25,

then the equity premium is 0.08% per annum. This is similar to the evidence documented in

Weil (1989) and Mehra and Prescott (1985). For comparable IES and risk-aversion values,

shifting from the persistent growth rate process to i.i.d. growth rates lowers the volatility

of the equity returns. In all, this evidence highlights the fact that although the time-series

dynamics of the model with small persistent expected growth are difficult to distinguish from

a pure i.i.d. model, its asset pricing implications are vastly different than those of the i.i.d.

model. In what follows we use the parameters in Panel A, with an IES of 1.5 as our preferred

configuration, and display the implications of adding fluctuating economic uncertainty.

3.2 Fluctuating Economic Uncertainty

Before displaying the asset pricing implications of adding fluctuating economic uncertainty

we first briefly discuss evidence for the presence of fluctuating economic uncertainty.

Panel A of Table 3 documents that the variance ratios of the absolute value of residuals

14



from regressing current consumption growth on five lags increase gradually out to 10 years.

This suggests slow-moving predictable variation in this measure of realized volatility. Note

that if realized volatility were i.i.d. these variance-ratios would be flat.11

Table 3 : Properties of Consumption’s Realized Volatility

Horizon Panel A: Variance Ratios Panel B: Predicting |εga,t+j|
V R(j) S.E. B(j) S.E. R2

2 0.95 (0.38) -0.11 (0.04) 0.06

5 1.26 (1.09) -0.10 (0.05) 0.04

10 1.75 (2.46) -0.08 (0.08) 0.03

The entries in Panel A are the variance ratios for |εga,t|, which is the absolute value of the residual from
regressing ga

t =
∑5

j=1 Ajg
a
t−j + εga,t, and ga

t denotes annual consumption growth rate.

Panel B provides regression results of |εga,t+j | = α + B(j)(pt − dt) + vt+j , and j indicates the forecast

horizon in years. The statistics are based on annual observations from 1929 to 1998 of real non-durables and

services consumption (BEA). The price-dividend ratio is based on CRSP value weighted return. Standard

errors are Newey and West (1987) corrected using 10 lags.

In Panel B of Table 3 we provide evidence that future realized consumption volatility is

predicted by current price-dividend ratios. The current price-dividend ratio predicts future

realized volatility with negative coefficients, with robust t-statistics around 2 and R2s around

5% (for horizons of up to 5 years). If consumption volatility were not time-varying, the

slope coefficient on the price-dividend ratio would be zero. As suggested by our theoretical

model, this evidence indicates that information regarding persistent fluctuations in economic

uncertainty is contained in asset prices. Overall, the evidence in Table 3 lends support to the

view that the conditional volatility of consumption is time-varying. Bansal, Khatchatrian,

and Yaron (2002) document the evidence in favor of time-varying consumption volatility

more extensively and show that this evidence holds up quite well across different samples

and economies.

Given the evidence above, a large value of ν1, the parameter governing the persistence of

conditional volatility, allows the model to capture the slow-moving fluctuations in economic

uncertainty. In Table 4 we provide the asset pricing implications based on the system (7)

when in addition to the parameters given in Table 1 we activate the volatility parameters

(given below the table). It is important to note that the time-series properties displayed in

Table 1 are virtually unaltered once we introduce the fluctuations in economic uncertainty.

11Also note that it is difficult to detect high-frequency GARCH effects once the data is time aggregated
(see Nelson (1991), Drost and Nijman (1993)).
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Table 4 provides statistics for the asset market data and for the model which incorporates

fluctuating economic uncertainty (i.e., Case II). Columns 2 and 3 provide the statistics and

their respective standard errors for our data sample. Columns 4 and 5 provide the model’s

corresponding statistics for risk aversion of 7.5 and 10 respectively. In this table IES is

always set at 1.5 and φ is set at 3.

Table 4 : Asset Pricing Implications – Case II

Data Model

Variable Estimate S.E. γ = 7.5 γ = 10

Returns

E[rm − rf ] 6.33 (2.15) 4.01 6.84

E[rf ] 0.86 (0.42) 1.44 0.93

σ(rm) 19.42 (3.07) 17.81 18.65

σ(rf ) 0.97 (0.28) 0.44 0.57

Price Dividend

E[exp(p− d)] 26.56 (2.53) 25.02 19.98

σ(p− d) 0.29 (0.04) 0.18 0.21

AC1(p− d) 0.81 (0.09) 0.80 0.82

AC2(p− d) 0.64 (0.15) 0.65 0.67

Model entries are population values based on the process in (7). In addition to the parameter values given

in Table 1, the parameters of the stochastic volatility process are ν1 = 0.987 and σw = 0.23 × 10−5. The

predictable variation of realized volatility is 5.5%. Standard errors are Newey and West (1987) corrected

using 10 lags.

Column 5 of Table 4 shows that with γ = 10 the model generates an equity premium

that is comparable to that in the data.12 The mean of the risk-free rate, and the volatilities

of the market return and of the risk-free rate, are by and large consistent with the data.

The model essentially duplicates the volatility and persistence of observed log price-dividend

ratio. Comparing columns 4 and 5 provides sensitivity of the results to the level of risk-

aversion. Not surprisingly, higher risk aversion increases the equity premium and aligns the

model closer to the data. A comparison of Table 4 with Table 2 shows that when risk aversion

is 10 the equity risk premium is about 2.5% higher – this additional premium reflects the

premium associated with fluctuating economic uncertainty as derived in equation (10). One

12To derive analytical expressions we have assumed that the volatility process is conditionally normal.
When we solve the model numerically we ensure that the volatility is positive by replacing negative
realizations with a very small number. This happens for about 5% of the realizations; hence, the possibility
that volatility in equation (7) can become negative is primarily a technical issue.
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could, as discussed earlier, modify the above model and also include correlation between the

different shocks. The inclusion of these correlations as documented above typically helps to

increase the equity premium. Hence, it would seem that these correlations would help the

model generate the same equity premium with a lower risk-aversion parameter.

Weil (1989) and Kandel and Stambaugh (1991) also explore the implications of the

Epstein and Zin (1989) preferences for asset market data. However, these papers find

it difficult to quantitatively explain the aforementioned asset market features at our

configuration of preference parameters. Why, then, do we succeed in capturing these

asset market features with Epstein and Zin (1989) preferences? Weil (1989) uses i.i.d.

consumption growth rates. As discussed earlier, with i.i.d. consumption and dividend

growth rates the risks associated with fluctuating expected growth and economic uncertainty

are absent. Consequently, the model has great difficulty in explaining the asset market data.

Kandel and Stambaugh (1991) consider a model in which there is predictable variation

in consumption growth rates and volatility. However, at our preference parameters, the

persistence in the expected growth and conditional volatility in their specification is not large

enough to permit significant response of asset prices to news regarding expected consumption

growth and volatility. In addition, Kandel and Stambaugh (1991) primarily focus on the case

in which the IES is close to zero. At very low values of IES, λm,e and βm,e are negative (see

equations (5), (6)). This may still imply a sizeable equity premium. However, a parameter

configuration with an IES less than one and a moderate level of risk aversion (for example

10 or less) leads to high levels of the risk-free rate and/or its volatility. In contrast, our IES,

which is greater than one, ensures that the level and volatility of the risk-free rate are low

and comparable to those in the data. Hence, with moderate levels of risk aversion, both the

high persistence and an IES greater than one are important in order to capture key aspects

of asset market data.

3.3 Additional Asset Pricing Implications

As noted earlier, in the model where we shut off fluctuating economic uncertainty (Case

I), both risk premia and Sharpe ratios are constant – hence, this simple specification

cannot address issues regarding predictability of risk premia. The model which incorporates

fluctuating economic uncertainty (Case II) does permit risk premia to fluctuate. Henceforth,

we focus entirely on this model specification with the parameter configuration stated in Table

4 with γ = 10.
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3.3.1 Variability of the Pricing Kernel

The maximal Sharpe ratio, as shown in Hansen and Jagannathan (1991), is determined by

the conditional volatility of the pricing kernel. This maximal Sharpe ratio for our model is

the volatility of the pricing kernel innovation defined in equation (9). In Table 5, we quantify

the contributions of different shocks to the variance of the pricing kernel innovations (see

equation (9)). The maximal annualized Sharpe ratio for our model economy is 0.73, which is

quite large. The maximal Sharpe ratio with i.i.d. growth rates is γσ and with our parameter

configuration its annualized value equals 0.27. Consequently, the Epstein and Zin preferences

and the departure from i.i.d. growth rates are responsible for this larger maximal Sharpe

ratio. Additionally, for our model the maximal Sharpe ratio exceeds that of the market

return, which is 0.33. The sources of risk in order of importance are shocks to the expected

growth rate (i.e., et+1), followed by that of fluctuating economic uncertainty (i.e., wt+1).

While the variance of these shocks in themselves is small, their effects on the pricing kernel

get magnified because of the long-lasting nature of these shocks (see discussion in section 2).

Finally, the variance of high-frequency consumption news, ηt+1, is relatively large, but this

risk source contributes little to the pricing kernel variability, as this shock is not long-lasting.

Table 5 : Decomposing the Variance of the Pricing Kernel

Relative Variance of Shocks

Volatility of Independent Expected Fluctuating Economic

Pricing Kernel Consumption Growth Rate Uncertainty

0.73 14% 47% 39%

Entries are the relative variance of different shocks to the variance of the pricing kernel. The volatility of

the maximal Sharpe ratio is annualized in order to make it comparable to the Sharpe ratio on annualized

returns.

3.3.2 Predictability

Dividend yields seem to predict multi-horizon returns. A rise in the current dividend yield

predicts a rise in future expected returns. Our model performs quite well in capturing this

feature of the data. However, it is important to recognize that these predictability results

are quite sensitive to changing samples, estimation techniques, and data sets (see Hodrick

(1992), Goyal and Welch (1999), and Ang and Bekaert (2001)). Further, most dimensions

of the evidence related to predictability (be it growth rates or returns) are estimated with
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considerable sampling error. This in conjunction with the rather high persistence in the

price-dividend ratio suggests that considerable caution should be exercised in interpreting

the evidence regarding predictability based on price-dividend ratios.

In Panel A of Table 6 we report the predictability regressions of future excess returns for

horizons of 1, 3, and 5 years for our sample data. In Column 4 we report the corresponding

evidence from the perspective of the model. The model captures the positive relationship

between expected returns and dividend yields. The absolute value of the slope coefficients

and the corresponding R2s rise with the return horizon, as in the data. The predictive slope

coefficients and the R2s in the model are somewhat lower than those in the data; however,

the model’s slope coefficients are within two standard errors of the estimated coefficients in

the data.13

Table 6 : Predictability of Returns, Growth Rates, and Realized Volatility

Panel A: Excess Returns Panel B: Growth Rates Panel C: Volatility

Variable Data S.E. Model Data S.E. Model Data S.E. Model

B(1) -0.08 (0.07) -0.18 0.04 (0.03) 0.06 -8.78 (3.58) -3.74

B(3) -0.37 (0.16) -0.47 0.03 (0.05) 0.12 -8.32 (2.81) -2.54

B(5) -0.66 (0.21) -0.66 0.02 (0.04) 0.15 -8.65 (2.67) -1.56

R2(1) 0.02 (0.04) 0.05 0.13 (0.09) 0.10 0.12 (0.05) 0.14

R2(3) 0.19 (0.13) 0.10 0.02 (0.05) 0.12 0.11 (0.04) 0.08

R2(5) 0.37 (0.15) 0.16 0.01 (0.02) 0.11 0.12 (0.04) 0.05

This table provides predictability regressions of future excess returns, growth rates, and realized volatility of

consumption. The entries in Panel A correspond to regressing re
t+1+re

t+2..+..re
t+j = α(j)+B(j) log(Pt/Dt)+

vt+j , where re
t+1 is the excess return, and j denotes the forecast horizon in years. The entries in Panel

B correspond to regressing ga
t+1 + ga

t+2.. + ..ga
t+j = α(j) + B(j) log(Pt/Dt) + vt+j , and ga is annualized

consumption growth. The entries in Panel C correspond to log(Pt+j/Dt+j) = α(j) + B(j)|εga,t| + vt+j ,

where |εga,t| is the realized volatility of consumption (see details in Table 3). Model parameters are based

on the process in (7), with parameter values given in Table 2. The entries for the model are based on 1000

simulations each with 840 monthly observations that are time aggregated. Standard errors are Newey and

West (1987) corrected using 10 lags.

In Panel B of Table 6 we provide regression results where the dependent variable is the

sum of annual consumption growth rates. In the data it seems that price-dividend ratios

have little predictive power, particularly at longer horizons. The slope coefficients and R2s of

13Consistent with Lettau and Ludvigson (2001), predictability coefficients and R2s based on the wealth-
consumption ratio follow the same pattern and are slightly larger than those based on price-dividend ratios.
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these regressions are quite low in both the data and the model. The R2s are relatively small

in the model for two reasons. First, price-dividend ratios are determined by expected growth

rates, and the variation in expected growth rates is quite small. Recall that the monthly R2

for consumption dynamics is less than 5%. Second, price-dividend ratios are also affected by

independent movements in economic uncertainty, which lowers their ability to predict future

growth rates. Overall, the model, as in the data, suggests that growth rates at long horizons

are not predicted by price-dividend ratios in any economically sizeable manner.14

In Panel C of Table 6 we report how well current realized consumption volatility predicts

future price-dividend ratios. First, note that there is strong evidence in the data for this

relationship. The regression coefficients for predicting future price-dividend ratios with

current volatility for 1, 3 and 5 years are all negative, have robust t-statistics that are well

above 2, and have R2s of about 10%. The model produces similar, albeit in absolute terms

slightly smaller, negative coefficients. The R2s are within two standard errors of the data.

Taken together with the results in Panel B of Table 3, the evidence is consistent with the

economics of the model; fluctuating economic uncertainty, captured via realized consumption

volatility, predicts future price-dividend ratios and is predicted by lagged price-dividend

ratios. The empirical evidence shows that asset markets dislike economic uncertainty – a

feature that our model is capable of reproducing. Bansal, Khatchatrian, and Yaron (2002)

show that this evidence is robust across many samples and frequencies, and is consistently

found in many developed economies.

Some caution should be exercised in interpreting the links between dividend growth

rates and price-dividend ratios. Evidence provided in other papers (see, e.g., Ang and

Bekaert (2001)) shows that alternative measures of cash flows, such as earnings, are sharply

predictable by valuation ratios. Cash dividends, as discussed earlier may not accurately

measure the total payouts to equity holders and hence may distort the link between growth

rates and asset valuations. However, given the practical difficulties in measuring the

appropriate payouts, and to maintain comparability with other papers in the literature we,

like others, continue to use cash dividends. With this caveat in mind, we also explore the

model’s implications by exploring how much of the variation in the price-dividend ratio is

from growth rates and what part is due to variation in expected returns.

In the data, the majority of the variation in price-dividend ratios seems to be due to

variation in expected returns. For our sample the point estimate for the percentage of the

14Our model can be easily modified to further lower the predictability of growth rates. Consider an
augmented model (as in Cecchetti, Lam, and Mark (1993)) that allows for additional predictable movements
in dividend growth rates that are unrelated to consumption. This will not affect the risk-free rate and the
risk premia in the model but will additionally lower the ability of price-dividend ratios to predict future
consumption growth rates.
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variation in price-dividend ratio due to return fluctuations is 108%, with a standard error of

42%, while dividends’ growth rates account for −6%, with a standard error of 31%.15 Our

model produces population estimates that attribute about 52% of the variation in price-

dividend ratios to returns and 54% to fluctuations in expected dividend growth. Note that

the standard errors of the point estimates of this decomposition in the data are very large.

To account for any finite sample biases, we also conducted a Monte Carlo exercise using

simulations from our model of sample sizes comparable to our data. This Monte Carlo

evidence implies that in our model the returns account for about 70% of the variation in price-

dividend ratio, thus aligning the model closer to the data. Given the large sampling variation

in measuring these quantities in the data using cash dividends, and the sharp differences in

predictability implications using alternative cash flow measures makes economic inference

based on this decomposition quite difficult.

Two additional features of the model are worth highlighting. First, in the data the

contemporaneous correlation between equity return and consumption is very small at

the monthly frequency and is about 0.20 at the annual frequency. Our model produces

comparable magnitudes, with correlations of 0.04 and 0.15 for the monthly and annual

frequencies, respectively. Second, the term premium on nominal bonds, the average one-

period excess return on an n-period discount bond, is small. This suggests that the equity

premium in the data is not driven by a large term premium. The term premium (which in

our model is on real bonds) is in fact small and slightly negative. Hence the large equity

premium in the model is not a by-product of a large positive term premium.16 In totality,

the above evidence, in conjunction with the results pertaining to predictability, suggests that

the model is capable of capturing several key aspects of asset markets data.

3.3.3 Conditional Volatility of Returns and the Leverage Effect

A large literature documents that market return volatility is very persistent (see, e.g.,

Bollerslev, Engle, and Wooldridge (1988)). This feature of the data is easily reproduced

in our model. The market volatility process, as described in equation (18) in the Appendix,

is a linear affine function of the conditional variance of the consumption growth rate process

σt. As the conditional variance of the consumption growth rate process is an AR(1) process,

15For explicit details of this decomposition see Cochrane (1992). Specifically, these represent the percentage
of var(p− d) accounted for by returns and dividend growth rates: 100 ∗∑15

j=1 Ωj cov(pt−dt,xt+j)
V ar(pt−dt)

, where x =
−r and gd respectively, and Ω = 1/(1 + E(r)).

16The explicit formulas for the real term structure and the term premia are presented in Bansal and
Yaron (2000). The negative real term premia of our model are consistent with the evidence provided in
Evans (1998), who documents that for inflation-indexed bonds in the U.K. (1983-1995) the term premia are
significantly negative (less than −2% at the 1-year horizon), while the term premia for nominal bonds are
very slightly positive.
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it follows that the market volatility inherits this property. Note that the coefficient on the

conditional variance of consumption in the market volatility process is quite large. This

magnifies the conditional variance of the market portfolio relative to consumption volatility.

The persistence in market volatility coincides with the persistence in the consumption

volatility process. In the monthly market return data this persistence parameter is about

0.986 (see Bollerslev, Engle, and Wooldridge (1988)), and in the model it equals ν1, 0.987.

As consumption volatility is high during recessions, this implies that the market volatility

also rises during recessions. Also note that during periods of high consumption volatility

(e.g., recessions), in the model the equity premium also rises. This implication of the model

is consistent with the evidence provided in Fama and French (1989) that risk premia are

countercyclical.

Campbell and Hentschel (1992), Glosten, Jagannathan, and Runkle (1993), and others

document the leverage effect. That is, return innovations are negatively correlated with

innovations in market volatility. The model is capable of reproducing this negative

correlation. The leverage effect arises within the model in spite of the fact that the volatility

innovations are independent of the expected consumption growth process. The key feature

that allows the model to capture this dimension is the Epstein-Zin preferences in which

volatility risk is priced (see the discussion in section 2.2). Using the analytical expressions for

the innovation in the market return (see equation (17) in the Appendix) and the expression

for the innovation in the market volatility, it is straightforward to show that the conditional

covariance

covt((rm,t+1 − Etrm,t+1), vart+1(rm,t+2)− Et[vart+1(rm,t+2)]) = βm,w(β2
m,e + ϕ2

d)σ
2
w

where βm,w ≡ κ1A2,m < 0 as A2,m is negative. The correlation between market return

innovations and market volatility innovations for our model is, −0.32.

An additional issue pertains to the relation between the expected return on the market

portfolio and the market volatility. Glosten, Jagannathan, and Runkle (1993) and Whitelaw

(1994) document that the expected market return and the market volatility are negatively

related. French, Schwert, and Stambaugh (1987) and Campbell and Hentschel (1992)

argue that this relation is likely to be positive. In our model, theoretically, the relation

between expected market return and market volatility is positive and is not consistent

with the negative relation between expected returns and market volatility. Whitelaw (2000)

shows that a standard power utility model with regime shifts in consumption growth can

accommodate the negative relation between expected returns and market volatility. The

unconditional correlation in our model between ex-post excess returns on the market and
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the ex-ante market volatility is a small positive number, 0.04. The model cannot generate the

negative relation between expected returns and market volatility. To do so, we conjecture,

will require significant changes, perhaps along the lines pursued in Whitelaw (2000). This

departure is well outside the scope of this paper, and we leave this exploration for future

work.

3.3.4 Bias in Estimating IES

As in Hall (1988), the IES is typically measured by the slope coefficient from regressing

date t + 1 consumption growth rate on the date t risk-free rate. This projection would

indeed recover the IES if no fluctuating uncertainty affected the risk-free rate. However,

the risk-free rate in our model fluctuates as a result of both changing expected growth rate

and independent fluctuations in the volatility of consumption. Thus, the above projection

is misspecified and creates a downward bias. This bias is quite significant, as inside our

model, where the value of IES is set at 1.5, Hall’s (1988) regression would estimate the IES

parameter to be 0.62. Our model is a simple one, and there may be alternative instrumental

variable approaches to undo this bias. However, we view this result of the downward bias

as suggestive of the difficulties in accurately pinning down the IES. As discussed in section

3.1, several papers report an estimated IES that is well over one. This evidence, along with

the potential downward bias in estimating IES, makes our choice of an IES larger than one

quite reasonable.

4 Conclusions

In this paper we explore the idea that news about growth rates and economic uncertainty

continuously alters perceptions regarding long-term expected growth rates and economic

uncertainty, and that this feature is important for explaining various asset market

phenomena. If news about consumption and dividends has a non-trivial impact on long-

term expected growth rates or economic uncertainty, then asset prices will be fairly sensitive

to small growth rate and economic uncertainty shocks. Anderson, Hansen, and Sargent

(2002) utilize features of our growth rate dynamics for motivating economic models that

incorporate robust control.

We provide empirical support for the view that the observed aggregate consumption-

dividend growth process contains a small persistent expected growth rate and conditional

volatility component. We document that the interaction between such growth rate dynamics,

in conjunction with Epstein and Zin (1989)-Weil (1989) preferences, can indeed explain many

outstanding asset market puzzles. In particular, we show that such a model is capable of

23



justifying the observed magnitudes of the equity premium, the low risk-free rate, and the

volatility of market return, dividend-yield, and the risk-free rate. In addition, the model is

also capable of justifying the predictive relation between dividend yields and returns, and

the well documented GARCH-type stochastic volatility in ex-post equity returns. In our

model approximately half of the variability in equity prices is due to fluctuation in expected

growth rates, and the remainder is due to fluctuations in costs of capital.
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5 Appendix

The consumption and dividend process given in (7) is

gt+1 = µ + xt + σtηt+1

xt+1 = ρxt + ϕeσtet+1

σ2
t+1 = σ2 + ν1(σ2

t − σ2) + σwwt+1

gd,t+1 = µd + φxt + ϕdσtut+1 (11)
wt+1, et+1, ut+1, ηt+1 ∼ N.i.i.d.(0, 1).

The IMRS (Intertemporal Marginal Rate of Substitution) for this economy is given by

ln Mt+1 = θ ln δ − θ

ψ
gt+1 + (θ − 1)ra,t+1.

We derive asset prices using this IMRS and the standard asset pricing condition Et[Mt+1Ri,t+1] = 1, so that

Et[exp(θ ln δ − θ

ψ
gt+1 + (θ − 1)ra,t+1 + ri,t+)] = 1 (12)

for any asset ri,t+1 ≡ log(Ri,t+1). We first start by solving the special case where ri,t+1 is ra,t+1 – the return
on the consumption portfolio, and then solve for market return rm,t+1, and the risk-free rate rf .

5.1 The return on consumption portfolio, Ra

We conjecture that the log price-consumption ratio follows, zt = A0 + A1xt + A2σ
2
t . Armed with the

endogenous variable zt we substitute the approximation ra,t+1 = κ0 + κ1zt+1 − zt + gt+1 into the Euler
equation (12).

Since g, x, and σ2
t are conditionally normal, ra,t+1 and ln Mt+1 are also normal. Exploiting the normality

of ra,t+1 and ln Mt+1, we can write down the Euler equation (12) in terms of the state variables xt and σt.
As the Euler condition has to hold for all values of the state variables, it follows that all terms involving xt

must satisfy the following:

− θ

ψ
xt + θ[κ1A1ρxt −A1xt + xt] = 0.

It immediately follows that

A1 =
1− 1

ψ

1− κ1ρ
,

which is (4) in the main text.

Similarly, collecting all the σ2
t terms leads to the solution for A2,

θ[κ1ν1A2σ
2
t −A2σ

2
t ] +

1
2
[(θ − θ

ψ
)2 + (θA1κ1ϕe)2]σ2

t = 0,

which implies that

A2 =
0.5[(θ − θ

ψ )2 + (θA1κ1ϕe)2]

θ(1− κ1ν1)
,

the solution given in (8).
Given the solution above for zt it is possible to derive the innovation to the return ra as a function of the
evolution of the state variables and the parameters of the model.

ra,t+1 − Et(ra,t+1) = σtηt+1 + Bσtet+1 + A2κ1σwwt+1, (13)

where B = κ1A1ϕe = κ1
ϕe

1−κ1ρ (1− 1
ψ ). Further it follows that the conditional variance of ra,t+1 is

V art(ra,t+1) = (1 + B2)σ2
t + (A2κ1)2σ2

w. (14)
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5.1.1 IMRSs

Now substituting for ra,t+1 and the dynamics of gt+1, we can re-write the IMRS in terms of the state variables
— referring to this as the pricing kernel. Suppressing all the constants in the pricing kernel,

mt+1 ≡ lnMt+1 = θ ln δ − θ

ψ
gt+1 + (θ − 1)ra,t+1

Et[mt+1] = m0 − xt

ψ
+ A2(κ1ν1 − 1)(θ − 1)σ2

t

mt+1 − Et(mt+1) = (− θ

ψ
+ θ − 1)σtηt+1 + (θ − 1)(A1κ1ϕe)σtet+1 + (θ − 1)A2κ1σwwt+1

= λm,ησtηt+1 − λm,eσtet+1 − λm,wσwwt+1, (15)

where λm,η ≡ [− θ
ψ + (θ− 1)] = −γ, λm,e ≡ (1− θ)B, λm,w ≡ (1− θ)A2κ1, and B and A2 are defined above.

Note that the λs represent the market price of risk for each source of risk, namely ηt+1, et+1, and wt+1.

5.1.2 Risk Premia for ra,t+1

The risk premium for any asset is determined by the conditional covariance between the return and mt+1.
Thus the risk premium for ra,t+1 is equal to Et(ra,t+1−rf,t) = −covt[mt+1−Et(mt+1), ra,t+1−Et(ra,t+1)]−
0.5vart(ra,t+1).

Exploiting the innovations in (13) and (15) it follows that,

Et[ra,t+1 − rf,t] = −λm,ησ2
t + λm,eBσ2

t + κ1A2λm,wσ2
w − 0.5V art(ra,t+1), (16)

where V art(ra,t+1) is defined in equation (14).

5.1.3 Equity Premium and Market Return Volatility

The risk premium for any asset is determined by the conditional covariance between the return and mt+1.
Thus the risk premium for the market portfolio rm,t+1 is equal to Et(rm,t+1 − rf,t) = −covt[mt+1 −
Et(mt+1), rm,t+1 − Et(rm,t+1)]− 0.5vart(rm,t+1).

Equation (15) already provides the innovation in mt+1. We now proceed to derive the innovation in the
market return. The price-dividend ratio for the claim on dividends is zm,t = A0,m + A1,mxt + A2,mσ2

t .
Consequently, the market return is

rm,t+1 = gd,t+1 + κ1,mA1,mxt+1 −A1,mxt + κ1,mA2,mσ2
t+1 −A2,mσ2

t .

Exploiting the Euler condition Et[exp(mt+1 + rm,t+1)] = 1, and collecting all the xt terms, we find that

− x

ψ
+ xκ1,mA1,mρ−A1,mx + φx = 0,

which implies that

A1,m =
φ− 1

ψ

1− κ1,mρ
.

It follows that

rm,t+1 = gd,t+1 + κ1A1,mxt+1 −A1,mxt + κ1,mA2,mσ2
t+1 −A2,mσ2

t

rm,t+1 − Et(rm,t+1) = ϕdσtut+1 + κ1A1,mϕeσtet+1 + κ1A2,mσwwt+1

= ϕdσtut+1 + βm,eσtet+1 + βm,wσwwt+1, (17)

where βm,e ≡ κ1,mA1,mϕe, and βm,w ≡ κ1A2,m.
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It follows that
V art(rm,t+1) = (β2

m,e + ϕ2
d)σ

2
t + β2

m,wσ2
w. (18)

The solution for A2,m follows from exploiting the asset pricing condition,

exp{Et(mt+1) + Et(rm,t+1) + 0.5V art(mt+1 + rm,t+1)} = 1, (19)

and collecting all σt terms. Note that

V art(mt+1 + rm,t+1) = V art[λm,ησtηt+1 − λm,wσwwt+1 − λm,eσtet+1 + βm,eσtet+1 + ϕdσtut+1 + βm,wσwwt+1]
= [λ2

m,η + (−λm,e + βm,e)2 + ϕ2
d]σ

2
t + [−λm,w + βm,w]2σ2

w

where Hm ≡ [λ2
m,η + (−λm,e + βm,e)2 + ϕ2

d]. Now collect all the σ2
t terms in equation (19). Note that σt

appears in Et(rm,t+1) as well as Et(mt+1). This leads to the following restriction,

(θ − 1)A2(κ1ν1 − 1) + A2,m(κ1,mν1 − 1) +
Hm

2
= 0, (20)

which implies that

A2,m =
(1− θ)A2(1− κ1ν1) + 0.5Hm

(1− κ1,mν1)
. (21)

We now derive the expression for the equity premium.

Et(rm,t+1 − rf,t) = βm,eλm,eσ
2
t + βm,wλm,wσ2

w − 0.5V art(rm,t+1), (22)

where V art(rm,t+1) is defined in equation (18).

To derive the unconditional variance of the market return, note that

rm,t+1 − E(rm,t+1) = −xt

ψ
+ βm,eσtet+1 + ϕdσtut+1 + A2,m(ν1κ1,m − 1)[σ2

t − E(σ2
t )] + βm,wσwwt+1

= −xt

ψ
+ βm,eσtet+1 + ϕdσtut+1 + A2,m(ν1κ1 − 1)[σ2

t − E(σ2
t )] + βm,wσwwt+1.

Hence, the unconditional variance is

V ar(rm) =
σ2

x

ψ2
+ [β2

m,e + ϕ2
d]σ

2 + [A2,m(ν1κ1 − 1)]2V ar(σ2
t ) + β2

m,wσ2
w. (23)

The unconditional variance of zm,t, the price dividend ratio for the market portfolio, can be derived as follows

V ar(zm,t) = A2
1,mV ar(xt) + A2

2,mV ar(σ2
t ).

Finally, note that the innovation to the market return volatility follows from equation (17) and is

vart+1(rm,t+2)− Et[vart+1(rm,t+2)] = (β2
m,e + ϕ2

d)σwwt+1

5.2 The Risk-Free Rate and Its Volatility

To derive the risk-free rate, start with (12) and plug in the risk-free rate for ri:

rf,t = −θ log(δ) +
θ

ψ
Et[gt+1] + (1− θ)Etra,t+1 − 1

2
V art[

θ

ψ
gt+1 + (1− θ)ra,t+1],

subtract (1− θ)rf,t from both sides and divide by θ, where it is assumed that θ 6= 0. It then follows that

rf,t = − log(δ) +
1
ψ

Et[gt+1] +
(1− θ)

θ
Et[ra,t+1 − rt]− 1

2θ
V art[

θ

ψ
gt+1 + (1− θ)ra,t+1]. (24)
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To solve the above expression note that V art[ θ
ψ gt+1 + (1− θ)ra,t+1] ≡ V art(mt+1). Thus,

V art(mt+1) = (λ2
m,η + λ2

m,e)σ
2
t + λ2

m,wσ2
w. (25)

Further, if the innovation in the growth rate process is homoskedastic, the above expression simplifies as
σ2

w = 0. The unconditional mean of rf,t is derived by substituting the expression for the risk premium for
ra,t+1 given in (16) and (25) into (24). This substitution yields

E(rf,t) = − log(δ) +
1
ψ

E(g) +
(1− θ)

θ
E[ra,t+1 − rt]− 1

2θ
[(λ2

m,η + λ2
m,e)E[σ2

t ] + λ2
m,wσ2

w],

where note that E[σ2
t ] = V ar(η).

The unconditional variance of rf,t is,

V ar(rf,t) = (
1
ψ

)2V ar(xt) +
{

1− θ

θ
Q1 −Q2

1
2θ

}2

V ar(σ2
t ), (26)

where Q2 = (λ2
m,η + λ2

m,e), and Q1 = (−λm,η + (1 − θ)B2 − 0.5(1 + B2)), where B is defined above. Note
that Q1 determines the time-varying portion of the risk premium on ra,t+1. For all practical purposes the
variance of the risk-free rate is driven by the first term.
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