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Abstract

This paper develops a model of interactive beliefs and knowledge which I
call an information correspondence. The information correspondence assigns
multiple information sets at each state. It reduces to a standard possibility
correspondence when it assigns a unique information set at each state. This
generalization allows one to analyze an agent who fails to believe the conjunc-
tion of her own beliefs or a tautology. While a possibility correspondence may
not be able to represent probabilistic beliefs, this generalization enables one
to study qualitative and probabilistic beliefs in a unified manner. The model
also generalizes, in a mathematical sense, a knowledge representation in math-
ematical psychology known as a surmise function. The paper bridges seemingly
different knowledge and belief representations in economics and mathematical
psychology. The paper also connects the information correspondence model to
knowledge and belief representations in computer science, logic, and philosophy.
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1 Introduction

Representations of beliefs and knowledge have been objects of study in such diverse
disciplines as computer science and artificial intelligence, economics and game theory,
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logic and philosophy, and psychology, to name a few. This paper provides a model of
interactive beliefs and knowledge, which I call an information correspondence model,
with the following two objectives. First, the information correspondence model gen-
eralizes a possibility correspondence model in economics and game theory with the
following two features: (i) agents’ logical reasoning ability is less demanding in a still
tractable manner; and (ii) agents’ qualitative and probabilistic beliefs are examined in
a unified way. Second, this paper bridges, in a mathematical sense, seemingly different
knowledge-belief representations between economics and mathematical psychology.

An information correspondence model, as in a possibility correspondence model
(e.g., Aumann (1976, 1999), Dekel and Gul (1997), Geanakoplos (1989), and Morris
(1996)), has the following three ingredients. The first is a set Ω of states of the
world. Each state ω ∈ Ω is supposed to be a complete description of the world in
question. Second, each agent reasons about some aspects of the underlying states.
Each property of the state space is represented as an event, which is a subset E
of the state space Ω. Thus, the second ingredient is the collection of events, which
determines the objects of agents’ beliefs. Third, each agent has her information
correspondence I. It associates, with each state, possibly multiple information sets
available at that state. The agent believes an event at a state if the event is implied
by some information set at that state. If the information correspondence assigns a
single information set at each state, then it reduces to the possibility correspondence.

An agent whose beliefs are represented by an information correspondence, un-
like a possibility correspondence, may fail to believe the conjunction of events that
she believes or a tautology. The information correspondence model is a tractable
generalization of a possibility correspondence model that dispenses with such logical
sophistication. To obtain tractability, the only requirement of the model is logical
monotonicity: an agent believes logical consequences of her own beliefs. The informa-
tion correspondence approach, by assuming logical monotonicity, enables the analysts
to represent agents’ beliefs without specifying the entire collection of events that an
agent believes at each state.

The relaxation of agents’ conjunction and necessitation properties, which are con-
ceptually at odd with real human reasoning, technically allows the analysts to study
both qualitative and probabilistic beliefs under the umbrella of the information corre-
spondence approach. For example, in a dynamic game, while agents have knowledge
about past observations, they form probabilistic beliefs about their opponents’ future
behaviors (see, for example, Dekel and Gul (1997) for the importance of capturing
both knowledge and probabilistic beliefs). If an agent exhibits the arbitrary conjunc-
tion property (i.e., she believes an arbitrary conjunction of her beliefs) rendered by
a possibility correspondence, such belief may not be an event (e.g., in a probabilistic
framework where the collection of events forms a σ-algebra, such belief may not be
measurable). As I will provide an example, such arbitrary conjunction property may
indeed be at odd with probabilistic reasoning because, for example, the agent may
not assign probability one to the arbitrary conjunction of events that she believes
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with probability one. Thus, a possibility correspondence model cannot necessarily
represent probabilistic beliefs. In contrast, the information correspondence approach
can accommodate various forms of monotonic probabilistic beliefs such as standard
countably-additive beliefs, finitely-additive beliefs, and even non-additive beliefs.

The paper then characterizes logical and introspective properties of beliefs. I
complete the discussion of the information correspondence approach by demonstrat-
ing the generality of the model. For given logical and introspective properties of
agents’ monotonic beliefs, I demonstrate the equivalence between the information
correspondence approach and the belief operator approach where an agent’s belief
operator maps each event E to the event that she believes E.

The second objective of this paper is to connect an information correspondence
model to the knowledge representation in mathematical psychology known as a “sur-
mise system” in the “knowledge space theory” developed by Doignon and Falmagne
(1985, 1999, 2016); Falmagne and Doignon (2011).1 This paper aims to link seem-
ingly different (for their respective aims) knowledge representations in economics and
mathematical psychology from a unified mathematical point of view.2

To make the connection, I introduce a “surmise system” while keeping the same
notations. Since I give two different interpretations to each mathematical object, I
attach the quotation mark in referring to the mathematical-psychology literature. The
literature studies the knowledge of an agent (e.g., a high school student) regarding
subsets of Ω, which consists of “questions” or “items.” Thus, the ambient set Ω
represents the entire body of knowledge in question (e.g., high-school algebra). While
I make the formal connection in the sequel, a “surmise function” is a mapping I which
associates, with each “question” ω, the collection of possibly multiple sets of “items”
with the following interpretation: each set of such “items” serves as a possible set of
prerequisites for the “question” ω. Thus, if the agent has mastered the “question”
ω, then she must have mastered all the “questions” in at least one of the members of
I(ω). Multiplicity of members of I(ω) means multiple ways to master the “question”
ω. Thus, the “surmise function” I encodes all possible (thus not necessarily unique)
ways to making inferences at each state.3 This paper shows that an agent’s belief
described by a “surmise function” is knowledge that exhibits positive introspection

1Doignon and Falmagne (1985) is the pioneering paper on the subject, and Doignon and Falmagne
(2016) is a recent survey article. Doignon and Falmagne (1999) is the first survey book, while
Falmagne and Doignon (2011) is an enriched edition of it. See also the references therein.

2Fukuda (2018) represents an agent’s truthful knowledge by a set algebra (a collection of events)
such as a σ-algebra or a topology in terms of the agent’s logical and introspective reasoning ability.
The set algebra, in a particular setting, turns out to correspond to the “knowledge states” in Doignon
and Falmagne (1985, 1999, 2016); Falmagne and Doignon (2011).

3In light of inferences, Shin (1993) identifies the notion of knowledge with logical provability. An
agent knows an event when she can prove it from her “basic knowledge” through use of propositional
logic. Within the framework of this paper, an agent believes an event E at a state ω if she can “prove”
(in terms of set inclusion) E from one of her information set F ∈ I(ω) (which could be incorrect in
that ω ̸∈ F ). In Shin (1993), such provable knowledge is characterized by a (reflexive and transitive)
possibility correspondence.
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(if she knows a set of “questions” then she knows that she knows it) and necessitation
(the agent knows a tautology).

The motivation behind bridging these two different knowledge and belief repre-
sentations comes from the observation that the two knowledge models in economics
and mathematical psychology, which I demonstrate are firmly related, have evolved
in quite different ways. On the one hand, one feature that is not seen in interactive
epistemology in economics and game theory is the development of empirical assess-
ments of an agent’s beliefs and knowledge based on the formal model. The math-
ematical psychology literature (see, Doignon and Falmagne (2016); Falmagne and
Doignon (2011) for surveys) has been attempting at constructing and testing a for-
mal knowledge representation in practical contexts. A particular case of “knowledge
space theory” referred to as “learning space theory” has developed the assessments
of students’ knowledge about their academic subjects. For example, the web-based
system called ALEKS (“Assessment of LEarning in Knowledge Spaces”) has been
used by “millions of students in schools and colleges, and by home schooled students”
(Doignon and Falmagne, 2016).

On the other hand, the economics literature has provided features that have
not been developed in mathematical psychology. One is consideration of interac-
tive higher-order beliefs, i.e., an agent’s belief about other agents’ beliefs. Another is
unawareness: an agent is unaware of an event in that she does not know it and she
does not know that she does not know it; or the agent is unaware of an event in that
she lacks the conception that determines the event.4

This paper is also closely related to knowledge and belief representations referred
to as monotone neighborhood systems in computer science, logic, and philosophy (e.g.,
Chellas (1980), Fagin et al. (2003), and Pacuit (2017)) and related models of limited
reasoning in computer science. A neighborhood system (also called a Montague-
Scott structure) is a mapping that associates, with each state of the world, the entire
collection of events that an agent believes. A monotone neighborhood system is a
neighborhood system such that the agent’s belief is logically monotonic. An informa-
tion correspondence is a “generator” of a monotone neighborhood system, and thus it
can describe an agent’s beliefs without specifying the entire collection of events that
she believes at each state. A monotone neighborhood system is considered to be an
information correspondence.

In economics and game theory, such papers as Heifetz (1996, 1999) and Lismont
and Mongin (1994a,b) use monotone neighborhood systems to represent notions of
common belief and common knowledge (e.g., Aumann (1976) and Friedell (1969)).
This paper instead formalizes logical and introspective properties of individual agents’
beliefs and knowledge. I also briefly discuss how to introduce notions of common belief
and common knowledge into the framework of this paper. Salonen (2009) studies a

4Pioneering papers on unawareness include Fagin and Halpern (1987) and Modica and Rustichini
(1994, 1999). Some recent models include Heifetz, Meier, and Schipper (2006, 2013). See Schipper
(2015) for a survey.
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canonical syntactical interactive belief representation by capturing each agent’s beliefs
as a collection of propositions that she believes.

Monotone neighborhood systems and models of limited reasoning have been stud-
ied in computer science, logic, and philosophy. The closest paper in this literature is
the logic of local reasoning (or the “society-of-minds”) approach by Fagin and Halpern
(1987).5 They study a “boundedly rational” agent who fails to believe (or know) the
conjunctions of her own belief (or knowledge). The agent is endowed with a collec-
tion of multiple information sets at each state, and she focuses on one information set
possible at each time. While an information correspondence is regarded as a purely
semantic counterpart of their model, I demonstrate that it can capture probabilistic
beliefs by defining it on an appropriate set algebraic structure. This paper takes one
step further to characterize various logical and introspective properties. This paper
also connects it to the mathematical psychology literature.

The paper is organized as follows. Section 2.1 formally defines information corre-
spondences. It also demonstrates that information correspondences generalize possi-
bility correspondences. Section 2.2 provides examples of information correspondences
that cannot be captured by possibility correspondences. Section 2.3 analyzes logical
and introspective properties of information correspondences. Section 2.4 studies the
equivalence among an information correspondence and alternative knowledge and be-
lief representations in economics and mathematical psychology. Section 3 provides
concluding remarks. Proofs are relegated to Appendix A.

2 An Information Correspondence

I represent agents’ beliefs (knowledge if it is truthful) on a state space (Ω,D), where
Ω is a set of states of the world and where D is a collection of events, i.e., subsets
of states. To formally define the state space (Ω,D), I provide the following technical
preliminaries on set algebras. Fix a set Ω. Denote by P(Ω) the power set of Ω.

Letting κ be an infinite cardinal, a collection D of subsets of Ω (i.e., D ⊆ P(Ω)) is
a κ-complete algebra (on Ω) if D is closed under complementation and under arbitrary
union (and intersection) of any sub-collection with cardinality less than κ. Following
the conventions,

∪
∅ := ∅ ∈ D and

∩
∅ := Ω ∈ D. For instance, an ℵ0-complete

algebra is an algebra of sets where ℵ0 is the least infinite cardinal. An ℵ1-complete
algebra is a σ-algebra, where ℵ1 is the least uncountable cardinal.6 A subset D of
P(Ω) is an (∞-)complete algebra (on Ω) if D is closed under complementation and is
closed under arbitrary union (and intersection). Denote the complement of E ∈ P(Ω)
by Ec or ¬E.

5Thijsse (1993) (see also Thijsse (1992, Chapter 6.6)) calls their model a cluster model. Also,
Fagin et al. (2003, Chapter 9.6) and Meyer and Hoek (1995, Chapter 2.9) study this approach.

6Technically, as mentioned by Meier (2006, Remark 1), it is with no loss of generality to consider
κ-complete algebras for infinite regular cardinals. Note that ℵ0 and ℵ1 are regular.
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This general definition of a state space allows one to simultaneously introduce
both qualitative and probabilistic beliefs on a state space. This also enables one to
study various kinds of probabilistic beliefs.7 Also, the specification of κ determines the
“depths” of agents’ reasoning. For example, if the analysts suppose an ℵ0-complete
algebra (i.e., an algebra), then agents can reason about their finite depths of reasoning
of such a form as, Alice believes that Bob believes that an event E obtains. On an ℵ1-
complete algebra (i.e., a σ-algebra), agents can reason about their countable depths
of reasoning of such a form as, Alice and Bob believe E, they believe that they believe
E, and so forth ad infinitum.

Now, I provide a formal definition of a state space, in which I represent agents’
beliefs (or knowledge). Henceforth, κ refers to either an infinite cardinal or κ = ∞.
A (κ-)state space is a pair (Ω,D) where Ω is a set of states of the world and where
D is a κ-complete algebra on Ω. Each element E of D is an event.

2.1 Definition of an Information Correspondence

I represent each agent’s belief (or knowledge) on a state space by an information
correspondence. For ease of exposition, unless otherwise stated, I restrict attention
to a single agent. The information correspondence retains the spirit of a possibility
correspondence in the sense that the agent’s belief is logically entailed from her infor-
mation. The agent is a logical reasoner in that she believes any logical consequence
of her own belief. Thus, the only requirement is logical monotonicity, and I dispense
with the conjunction and necessitation properties endemic in possibility correspon-
dences. The agent may believe events E and F without believing the conjunction
E ∩ F . She may fail to believe a tautology Ω.

The information correspondence I associates, with each state ω, a collection of
events I(ω) ∈ P(D) that can be a source of beliefs at the state ω in the following
sense: the agent believes an event E at the state ω if there is an event F ∈ I(ω) which
is included in E. Each element of I(ω) can be understood as a piece of information
available to the agent at state ω. Call E an information set at ω if E ∈ I(ω).

The information correspondence is a mapping I : Ω → P(D) satisfying a certain
regularity condition. To define the regularity condition, for any Γ ∈ P(D), define

↑ Γ := {E ∈ D | there is F ∈ Γ with F ⊆ E}.

If Γ is the agent’s information (at a particular state) then E ∈↑ Γ means that E is
entailed from some information F ∈ Γ. I often call Γ an information collection in
the sense that it is a collection of information sets. Note that ↑ Γ is closed under
monotonicity (precisely, set inclusion) in that ↑↑ Γ ⊆↑ Γ.

7For example, Meier (2008) studies knowledge and σ-additive probabilistic beliefs on a σ-algebra.
Meier (2006) studies a canonical representation of agent’s finitely-additive probabilistic beliefs on a
κ-complete algebra.
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Formally, an information correspondence on a state space (Ω,D) is a mapping
I : Ω → P(D) which satisfies the regularity condition that, for each E ∈ D,

BI(E) := {ω ∈ Ω | E ∈↑ I(ω)} ∈ D. (1)

The event BI(E) is interpreted as the set of states at which the agent has information
to support E. Thus, BI(E) is the event that (i.e., the set of states at which) the agent
believes E. Define the belief operator BI : D → D derived from I through Equation
(1). The regularity condition of I grantees that BI is a well-defined operator. Higher-
order beliefs are generated through iterating the belief operator.

I make four remarks on the belief operator BI . First, observe that ↑ I(ω) is
exactly the collection of events that the agent believes at ω. Put differently, ↑ I(ω) =
{E ∈ D | ω ∈ BI(E)}, that is, E ∈↑ I(ω) if and only if (hereafter, often abbreviated
as iff) ω ∈ BI(E). Also, ↑ I itself is an information correspondence.

Second, on a related point, the mapping ↑ I : Ω → P(D) coincides with a
monotone neighborhood system. A neighborhood system assigns, with each state,
the collection of events that the agent believes. A neighborhood system is monotone
when the agent’s belief is monotonic (i.e., if the agent believes E and if E implies
F then she believes F ). Thus, the information correspondence I is identified as a
monotone neighborhood system iff I =↑ I.

Third, the agent considers an event E possible at a state ω if she does not believe
Ec at ω. Denote by LI the agent’s possibility operator (i.e., LI(E) = (¬BI)(E

c) ∈ D
for all E ∈ D).8 The event that the agent considers E possible is

LI(E) = {ω ∈ Ω | F ∩ E ̸= ∅ for all F ∈ I(ω)}. (2)

The agent considers E possible at ω when her information set at ω is always not
inconsistent with E. Section 2.4.2 connects the possibility operator to a closure
operator in Doignon and Falmagne (1985, 1999); Falmagne and Doignon (2011).

Fourth, if I is singleton-valued (i.e., if I(·) = {P (·)}) then it reduces to the
possibility correspondence P : Ω → D such (i) that each information/possibility set
P (ω) is an event and (ii) that I satisfies the regularity condition (i.e., {ω ∈ Ω |
P (ω) ⊆ E} ∈ D for each E ∈ D).9

More generally, I introduce the condition under which I is identified with a pos-
sibility correspondence. Namely, I satisfies the Kripke property if each I(ω) con-
tains a minimum element, i.e., there is P (ω) ∈ I(ω) such that P (ω) ⊆ E for all

8First, possibility (or compatibility) is often considered to be the dual of knowledge or belief (e.g.,
Hintikka (1962) and Fagin et al. (2003)). Second, in the literature on unawareness, the interpretation
of possibility could be problematic if the lack of knowledge of Ec (thus the possibility of E) comes
from the unawareness of (the negation of) E (Modica and Rustichini, 1999).

9The regularity condition requires the belief operator induced by the possibility correspondence
P to be well defined. In other words, the belief operator is not well defined if a given possibility
correspondence fails the regularity condition. See Samet (2010) for examples of an ℵ0-state space
(Ω,D) in which a partitional possibility correspondence P : Ω → P(Ω) (i.e., a partition cell P (ω)
may not be an event) does not induce a well-defined knowledge operator from D into itself.
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E ∈ I(ω). If I satisfies the Kripke property, then the agent’s beliefs are represented
by I(·) = {P (·)}, because the collection ↑ I(ω) of events that the agent believes at a
state ω satisfies ↑ I(ω) = {E ∈ D | P (ω) ⊆ E} =↑ {P (ω)}. The following proposi-
tion formalizes this argument in terms of the belief operator, and demonstrates that
an information correspondence is identified as a possibility correspondence under the
Kripke property.

Proposition 1. An information correspondence I : Ω → P(D) satisfies the Kripke
property iff for each ω ∈ Ω, there is P (ω) ∈ I(ω) such that ω ∈ BI(E) iff P (ω) ⊆ E
for all E ∈ D.

To conclude this subsection, I make a connection to a “surmise function” in
Doignon and Falmagne (1985, 1999, 2016); Falmagne and Doignon (2011). They
study the knowledge of an agent regarding subsets of Ω, which consists of “ques-
tions” or “items.” Again, note that I keep the same notations in order to make it
easier to see the connections and that I append the quotation mark to the terminolo-
gies in the mathematical-psychology literature. Table A.1 in Appendix A lists the
correspondence of terminologies.

Doignon and Falmagne (1985, 1999, 2016); Falmagne and Doignon (2011) intro-
duce a “surmise system” (Ω, I) as a way to model an agent’s knowledge. A “surmise
function” is a mapping I : Ω → P(P(Ω)) (i.e., D = P(Ω)) which satisfies certain
logical and introspective properties of knowledge to be discussed in Section 2.3. Each
I(ω) is interpreted as encoding all possible (not necessarily unique) ways of inferring
a correct response to the “question” ω. Put differently, if the agent is capable of solv-
ing the “question” ω, then there exists E ∈ I(ω) such that she is capable of solving
all the “questions” in E. Such E (each member of I(ω)) is referred to as a “clause”
(a “background” or a “foundation”) for the “question” ω.

2.2 Examples of Information Correspondences

I provide two examples of an information correspondence that cannot be reduced
to a possibility correspondence. The first example demonstrates that one can dis-
pense with the agent’s conjunctive ability (i.e., the agent believes the conjunction
of what she believes) by having multiple information sets while one can dispense
with the necessitation property (i.e., the agent believes a tautology) by allowing the
information correspondence to be empty-valued. The second demonstrates that an
information correspondence can capture both qualitative and quantitative beliefs in
a unified manner.

In the first example, let (Ω,D) = ({ω1, ω2, ω3},P(Ω)). Let I : Ω → P(D) be
such that I(ω1) = {{ω1, ω2}, {ω1, ω3}} and I(ω2) = I(ω3) = ∅. The agent believes
{ω1, ω2} and {ω1, ω3} at state ω1 but shes does not believe {ω1, ω2} ∩ {ω1, ω3} at
that state. The failure of the conjunction property comes from multiple information
sets which are not closed under intersection. At state ω2 or ω3, she does not believe
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anything at all, and thus BI(Ω) = {ω1}. Necessitation fails because the information
correspondence is empty-valued at some states.10 Generally,

BI(E) =

{
{ω1} if E ∈ {{ω1, ω2}, {ω1, ω3},Ω}
∅ otherwise

. (3)

Section 2.3 characterizes logical and introspective properties of beliefs.
The second example demonstrates that an information correspondence, unlike a

possibility correspondence, can capture probabilistic beliefs. Consider a measurable
space (Ω,D) = ([0, 1],B[0,1]), where B[0,1] is the Borel σ-algebra on [0, 1]. Suppose
that the agent’s beliefs are dictated by the Lebesgue measure µ on ([0, 1],B[0,1]) at
every state. I first show that her probability-one belief is not induced by a possibility
correspondence model. Suppose to the contrary that her probability-one belief is
induced by a possibility correspondence P : Ω → P(Ω): she believes an event E ∈ D
with probability one at a state ω iff P (ω) ⊆ E. Here, I simply do not impose the
assumption that each P (ω) is measurable (i.e., an event). For each event Er :=
Ω \ {r} ∈ D with r ∈ Ω, the agent assigns probability-one belief to Er at each ω.
Thus, P (ω) ⊆ Er for all r ∈ Ω. Since it implies P (ω) = ∅, her probability-one
belief operator B : D → D satisfies B(·) = Ω, that is, she assigns probability one
to any event. This is impossible. Since the agent assigns probability one to each
event Er, one can generally assert that she assigns probability one to any countable
intersection. Thus, this contradiction comes from the arbitrary conjunction rendered
by the possibility correspondence.

Next, I construct an information correspondence that can capture the agent’s
probability-one belief. Let I : Ω → P(D) be such that I(ω) := {E ∈ D | µ(E) = 1}
for each ω ∈ Ω. This is an information correspondence because, for any E ∈ D,

BI(E) =

{
∅ if µ(E) ∈ [0, 1)

Ω if µ(E) = 1
.

If the agent believes an event E with probability one at a state ω, then, since µ(E) = 1,
I have E ∈ I(ω) and thus ω ∈ BI(E). Conversely, if ω ∈ BI(E) then there is
F ∈ I(ω) (i.e., µ(F ) = 1) such that F ⊆ E. Thus, the agent believes E with
probability one at state ω.

More generally, let (Ω,D) be a κ-state space, and let t : Ω×D → [0, 1] be a function
with the following two properties: (i) for each ω ∈ Ω, the mapping t(ω, ·) : D → [0, 1]
is a monotone set function that dictates the agent’s probabilistic beliefs at ω (e.g.,
a non-additive, finitely-additive, or countably-additive probability measure);11 and

10Modica and Rustichini (1994, Section 4) provide an example of a two-states model of unawareness
in which the agent’s knowledge fails Necessitation. Their knowledge operator can be induced from
a simplified version of this example in which ω2 = ω3.

11A pioneering work on non-additive beliefs is Schmeidler (1989). I have already mentioned that
Meier (2006) constructs a canonical interactive finitely-additive-belief structure.
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(ii) {ω ∈ Ω | t(ω,E) ≥ p} ∈ D for all (p, E) ∈ [0, 1] × D. For each state ω,
the set function t(ω, ·) is referred to as the agent’s type at ω, and the mapping
t : Ω × D → [0, 1] is referred to as the agent’s type mapping. For each p ∈ [0, 1], the
agent’s p-belief operator (Friedell, 1969; Monderer and Samet, 1989) Bp : D → D
is defined as Bp(E) := {ω ∈ Ω | t(ω,E) ≥ p} for each E ∈ D. For each p ∈
[0, 1], define the mapping Ip : Ω → P(D) by Ip(ω) := {E ∈ D | t(ω,E) ≥ p} for
each ω ∈ Ω. The mapping Ip is an information correspondence because BIp(E) :=
{ω ∈ Ω | E ∈↑ Ip(ω)} = Bp(E) ∈ D for each E ∈ D. Thus, the information
correspondence approach can accommodate both probabilistic and non-probabilistic
beliefs in a unified manner. The information correspondence approach thus enables
one to introduce both qualitative and probabilistic beliefs in, for example, a dynamic
game where agents retain knowledge of past observations and beliefs in future actions.
The information correspondence approach also enables one to study similarities and
differences between qualitative and probabilistic beliefs.

2.3 Properties of an Information Correspondence

This subsection represents logical and introspective properties of beliefs for an infor-
mation correspondence.

2.3.1 Logical Properties

I introduce four logical properties of beliefs. Recall that, in representing probabilistic
beliefs by a set function, the analysts assign, with each state, a set function (usually, a
countably-additive probability measure) µ on an ℵ1-state space (Ω,D) which satisfies
certain logical properties such as µ(∅) = 0 and µ(Ω) = 1.12 With this in mind, I
introduce logical properties of an information collection. An information correspon-
dence I is said to satisfy a given logical property when every I(ω) satisfies the given
logical property.

Hereafter in this subsection, fix a κ-state space (Ω,D). First, an information
collection Γ ∈ P(D) satisfies No-Contradiction if ∅ ̸∈ Γ. In words, Γ does not contain
a contradiction in the form of the empty set. Second, Γ is satisfies Consistency (or it
is serial) if E∩F ̸= ∅ for any E,F ∈ Γ. In words, any pair of information (E,F ) ∈ Γ2

is not contradictory with each other. Consistency implies No-Contradiction. Third,
Γ satisfies Necessitation if Γ ̸= ∅. That is, Γ contains some information, and thus a
tautology is inferred from it. Fourth, Γ satisfies Non-empty λ-Conjunction (where λ
is an infinite cardinal with λ ≤ κ) if, for any F ⊆ Γ with 0 < |F| < λ, there is F ∈ Γ
with F ⊆

∩
F . Intuitively, for any given family of information, the information

12Thus, a type mapping t : (Ω,D) → (∆(Ω),ΣD) is also considered to be a measurable mapping
that associates, with each state ω, a countably-additive probability measure t(ω) on Ω, where ΣD is
the smallest σ-algebra on ∆(Ω) containing {µ ∈ ∆(Ω) | µ(E) ≥ p} for each (p,E) ∈ [0, 1]×D as in
Heifetz and Samet (1998). Remark A.1 in Appendix A formulates an information correspondence
as a (κ-)measurable mapping from a state space into the space of information collections.
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collection Γ is rich enough to have another information implying the conjunction of
the given family. Now, an information correspondence I : Ω → P(D) satisfies a given
logical property if every I(ω) satisfies it.

Recalling that ↑ Γ corresponds to the collection of events that the agent believes
by making inferences from Γ, I formalize the logical properties in terms of ↑ Γ instead
of the primitive Γ. As a consequence, the proposition below demonstrates that each
logical property of an information correspondence I embodies the intended definition
of the logical property of the belief operator BI .

Proposition 2. Let Γ be an information collection, and let I : Ω → P(D) be an
information correspondence.

1. (a) Γ satisfies No-Contradiction iff ↑ Γ satisfies it.

(b) I satisfies No-Contradiction iff ↑ I satisfies it iff BI(∅) = ∅.

2. (a) Γ satisfies Consistency iff ↑ Γ satisfies it iff Ec ̸∈↑ Γ for any E ∈↑ Γ.

(b) I satisfies Consistency iff ↑ I satisfies it iff BI(E) ⊆ (¬BI)(E
c) for all

E ∈ D.

3. (a) Γ satisfies Necessitation iff ↑ Γ satisfies it iff Ω ∈↑ Γ.

(b) I satisfies Necessitation iff ↑ I satisfies it iff BI(Ω) = Ω.

4. (a) Γ satisfies Non-empty λ-Conjunction iff ↑ Γ satisfies it iff ↑ Γ is closed
under non-empty λ-intersection:

∩
F ∈↑ Γ for any F ∈ P(↑ Γ) \ {∅} with

|F| < λ.

(b) I satisfies Non-empty λ-Conjunction iff ↑ I satisfies it iff
∩

F∈F BI(F ) ⊆
BI (

∩
F) for any F ∈ P(D) \ {∅} with |F| < λ.

Proposition 2 establishes the following three points. First, Proposition 2 restates
the properties of the information collection Γ in terms of ↑ Γ. For (1a), a contra-
diction is logically entailed from the information collection if and only if it contains
a contradiction. For (2a), Γ satisfies Consistency if and only if an event E and its
negation Ec are not logically entailed at the same time. For (3a), Γ satisfies Necessi-
tation if and only if a tautology of the form Ω is logically entailed from Γ. For (4a),
Γ satisfies Non-empty λ-Conjunction if and only if ↑ Γ is closed under non-empty
λ-intersection as stated in the proposition.

Second, on a related point, Proposition 2 shows that the information collection Γ
satisfies a given logical property if and only if the information collection ↑ Γ satisfies it.
Thus, the information correspondence I satisfies a given logical property if and only if
the information correspondence ↑ I satisfies it. In other words, the logical properties
are preserved under the operation of taking “↑.” This implies that the four logical
properties of an information correspondence I are defined in a way such that the
properties only depend on ↑ I. That is, if two information correspondences I and I ′
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induce the same beliefs in that ↑ I =↑ I ′, then the information correspondences I
and I ′ share the same logical properties.

Third, Proposition 2 demonstrates that each logical property of the information
correspondence I captures the intended logical property of the belief operator BI .
Henceforth, BI is said to satisfy a given logical property (e.g., No-Contradiction) if
I satisfies it. As an example, the belief operator defined in Equation (3) satisfies No-
Contradiction and Consistency but fails Necessitation and Non-empty λ-Conjunction
(for any λ). For (1b), No-Contradiction means that there is no state at which the
agent believes a contradiction in the form of ∅. For (2b), Consistency means that if
the agent believes E, then she does not believe its negation Ec. Consistency implies
No-Contradiction because BI(∅) ⊆ BI(E)∩BI(E

c) by monotonicity of BI . For (3b),
Necessitation means that the agent always believes a tautology in the form of Ω.
Since BI is monotonic, BI satisfies Necessitation iff BI(BI(Ω)) = Ω. That is, the
agent always believes a tautology if and only if she always believes that she believes a
tautology. For (4b), Non-empty λ-Conjunction means that if the agent believes each
of a non-empty collection of events with cardinality less than λ, then she believes
its conjunction. Under Non-empty ℵ0- (i.e., Finite) Conjunction, Consistency and
No-Contradiction are equivalent.

2.3.2 Introspective Properties

Next, I introduce the following eight introspective properties of an information cor-
respondence I : Ω → P(D). I study these eight properties after I define all of them
at once. First, I is reflexive (or satisfies Truth Axiom) if, for any (ω,E) ∈ Ω × D,
E ∈ I(ω) implies ω ∈ E. That is, I(ω) ⊆ {E ∈ D | ω ∈ E} for any ω ∈ Ω. In words,
the agent’s information is always correct at each state.

Second, I is secondary reflexive (or satisfies Belief in Correct Belief ) if, for any
(ω,E) ∈ Ω × D, there is F ∈ I(ω) such that if ω′ ∈ F and there is F ′ ∈ I(ω′) with
F ′ ⊆ E, then ω′ ∈ E. Roughly, there is always information indicating that if the
agent believes E then E is true.

Third, I is secondary serial (or satisfies Belief in Consistency) if, for any (ω,E) ∈
Ω × D, there is F ∈ I(ω) such that if ω′ ∈ F and there is F ′ ∈ I(ω′) with F ′ ⊆ E,
then H ∩ E ̸= ∅ for all H ∈ I(ω′). Roughly, there is always information implying
that if the agent believes E then she does not believe the negation Ec.

Fourth, I satisfies Belief in Perfect Reasoning if, for any (ω,E, F ) ∈ Ω×D ×D,
there is G ∈ I(ω) with the following property: if ω′ ∈ G, E ′ ⊆ E for some E ′ ∈ I(ω′),
and if F ′ ⊆ (¬E) ∪ F for some F ′ ∈ I(ω′), then there is G′ ∈ I(ω′) such that
G′ ⊆ F . Roughly, there is always information implying that if the agent believes E
and (¬E) ∪ F then she believes F . The third and fourth properties are studied in
Fagin and Halpern (1987) in their logical framework.

Fifth, I is transitive (or satisfies Positive Introspection) if, for any (ω,E) ∈ Ω×D
with E ∈ I(ω), there is F ∈ I(ω) such that if ω′ ∈ F then there is E ′ ∈ I(ω′) with

12



E ′ ⊆ E. Put differently, for any information E at a state, there is another information
F at the same state (which can possibly be E itself) such that E is always supported
as long as F is true. Transitivity turns out to characterize positive introspection
stating that if the agent believes E then she believes that she believes it.

Sixth, I is Euclidean (or satisfies Negative Introspection) if the following holds. If
(ω,E) ∈ Ω × D satisfies Ec ∩ F ̸= ∅ for all F ∈ I(ω), then there is F ′ ∈ I(ω) such
that if ω′ ∈ F ′ then Ec ∩ F ̸= ∅ for any F ∈ I(ω′). The Euclidean property turns
out to characterize negative introspection stating that if the agent does not believe
E then she believes that she does not believe it. Note that if I is Euclidean then it
satisfies Necessitation as I(ω) = ∅ leads to a contradiction.

Taking contrapositive, the Euclidean property of I is characterized as follows. Let
(ω,E) ∈ Ω×D. If, for any F ∈ I(ω), there are ω′ ∈ F and F ′ ∈ I(ω′) with F ′ ⊆ E,
then there is F ∈ I(ω) with F ⊆ E. This means that if the agent does not believe
that she does not believe an event E, then she believes E.

Seventh, I introduce a property that turns out to be equivalent to the Euclidean
property for reflexive and transitive information correspondences. Namely, I is sym-
metric if the following obtains. Let (ω,E) ∈ Ω × D. If, for any F ∈ I(ω), there are
ω′ ∈ F and F ′ ∈ I(ω′) with F ′ ⊆ E, then ω ∈ E. This condition states that if the
agent does not believe that she does not believe E then E is true. Equivalently, I
is symmetric if and only if, for any (ω,E) ∈ Ω × D with ω ∈ E, there is F ∈ I(ω)
such that ω′ ∈ F implies F ′ ∩ E ̸= ∅ for all F ′ ∈ I(ω′). That is, for any state ω and
event E true at ω, the agent believes that she considers E possible. Note that if I is
symmetric then it satisfies Necessitation as I(ω) = ∅ leads to a contradiction.

Eighth, in order to examine Belief in Perfect Reasoning, I introduce the property
that characterizes the agent’s belief in her conjunction property. Namely, I satisfies
Belief in Non-empty λ-Conjunction if, for any ω ∈ Ω and F ∈ P(D) \ {∅} with
|F| < λ, there is G ∈ I(ω) such that if ω′ ∈ G and F ⊆ I(ω′), then there is
G′ ∈ I(ω′) with G′ ⊆

∩
F . Roughly, there is always information that implies that

her belief satisfies Non-empty λ-Conjunction.
It can be seen that if I satisfies any of Belief in Correct Belief, Belief in Con-

sistency, Belief in Perfect Reasoning, or Belief in Non-empty λ-Conjunction, then it
satisfies Necessitation. Also, if I is Euclidean or symmetric then it satisfies Neces-
sitation. In other words, the failure of Necessitation implies that of each of these
properties. In fact, the information correspondence of the first example in Section
2.2 fails Necessitation. While it satisfies Truth Axiom, it violates all the other seven
introspective properties. Now, I restate the introspective properties.

Proposition 3. Let I : Ω → P(D) be an information correspondence. For each
introspective property, the following are all equivalent.

1. (a) I is reflexive.

(b) ↑ I is reflexive.

(c) BI(E) ⊆ E for all E ∈ D.
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2. (a) I is secondary reflexive.

(b) ↑ I is secondary reflexive. That is, for any (ω,E) ∈ Ω × D, there is
F ∈↑ I(ω) such that if ω′ ∈ F , then E ∈↑ I(ω′) implies ω′ ∈ E.

(c) Ω = BI((¬BI)(E) ∪ E) for any E ∈ D.

3. (a) I is secondary serial.

(b) ↑ I is secondary serial. That is, for any (ω,E) ∈ Ω×D, there is F ∈↑ I(ω)
such that if ω′ ∈ F and E ∈↑ I(ω′), then Ec ̸∈↑ I(ω′).

(c) Ω = BI(¬(BI(E) ∩BI(E
c))) for any E ∈ D.

4. (a) I satisfies Belief in Perfect Reasoning.

(b) ↑ I satisfies Belief in Perfect Reasoning. That is, for any (ω,E, F ) ∈
Ω × D × D, there is G ∈↑ I(ω) such that if ω′ ∈ G, E ∈↑ I(ω′), and if
(¬E) ∪ F ∈↑ I(ω′), then F ∈↑ I(ω′).

(c) BI(¬(BI(E) ∩BI((¬E) ∪ F )) ∪BI(F )) = Ω for any E,F ∈ D.

5. (a) I is transitive.

(b) ↑ I is transitive.

(c) For any ω ∈ Ω, if E ∈↑ I(ω) then {ω′ ∈ Ω | E ∈↑ I(ω′)} ∈↑ I(ω).
(d) BI(·) ⊆ BIBI(·).

6. (a) I is Euclidean.

(b) ↑ I is Euclidean.

(c) If E ̸∈↑ I(ω) for some (ω,E) ∈ Ω × D, then {ω′ ∈ Ω | E ̸∈↑ I(ω′)} ∈↑
I(ω).

(d) (¬BI)(·) ⊆ BI(¬BI)(·).

7. (a) I is symmetric.

(b) ↑ I is symmetric. That is, let (ω,E) ∈ Ω × D, and suppose that, for any
F ∈↑ I(ω), there is ω′ ∈ F with E ∈↑ I(ω′). Then ω ∈ E.

(c) (¬BI)(¬BI)(E) ⊆ E for all E ∈ D.

8. Belief in Perfect Reasoning is equivalent to Belief in Non-empty ℵ0- (i.e., Finite)
Conjunction. Generally, the following are equivalent.

(a) I satisfies Belief in Non-empty λ-Conjunction.

(b) ↑ I satisfies Belief in Non-empty λ-Conjunction. That is, for any ω ∈ Ω
and F ∈ P(D) \ {∅} with |F| < λ, there is G ∈↑ I(ω) such that if ω′ ∈ G
and F ⊆↑ I(ω′), then

∩
F ∈↑ I(ω′).
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(c) BI(¬(
∩

F∈F BI(F ))∪BI(
∩

F)) = Ω for any F ∈ P(D)\{∅} with |F| < λ.

Similarly to Proposition 2, Proposition 3 establishes the following two points.
First, the information correspondence I satisfies a given introspective property if
and only if the information correspondence ↑ I satisfies the given property. Put
differently, the introspective properties are also preserved under the operation of
taking “↑.” Thus, if information correspondences I and I ′ induce the same beliefs in
that ↑ I =↑ I ′, then I and I ′ share the introspective properties.

Second, each introspective property of the information correspondence I captures
the intended introspective property of the belief operator BI . Henceforth, BI is said
to satisfy a given introspective property (e.g., Truth Axiom) if I satisfies it. Truth
Axiom means that if the agent believes (knows) an event at a state then the event
is true at that state. Truth Axiom distinguishes belief and knowledge in that belief
can be false while knowledge has to be true. Belief in Correct Belief means that
the agent always believes that either she does not believe an event E or otherwise
E entails. Likewise, Belief in Consistency means that the agent always believes that
her belief is consistent. Moreover, Belief in Perfect Reasoning states that the agent
always believes that if she believes E and E implies F then she believes F .13

Positive Introspection of BI states that if the agent believes an event then she
believes that she believes it. Negative Introspection states that if the agent does
not believe an event then she believes that she does not believe it. Thijsse (1993)
proves the equivalence of (5c) and (5d) and that of (6c) and (6d). Proposition 3 (5)
and (6) provide the conditions on the primitive I under which the resulting belief
satisfies Positive Introspection and Negative Introspection. I remark that Negative
Introspection and Monotonicity imply Belief in Correct Belief. For any (ω,E) ∈
Ω × D, Negative Introspection implies either E ∈↑ I(ω) or (¬BI)(E) ∈↑ I(ω). In
either case, (¬BI)(E) ∪ E ∈↑ I(ω).

If I is symmetric, then the resulting property on BI is often referred to as the
axiom B in logic (e.g., Chellas (1980)). If I is reflexive and transitive, then I is
symmetric if and only if it is Euclidean. This argument generalizes the equivalence
of the Euclidean property and symmetry for a reflexive and transitive possibility
correspondence to a reflexive and transitive information correspondence. See Remark
A.2 in Appendix for additional details.

Next, observe that under Necessitation, Consistency implies Belief in Consistency.
Likewise, under Necessitation, Truth Axiom and Non-empty λ-Conjunction imply
Belief in Correct Belief and Belief in Non-empty λ-Conjunction, respectively. I provide
an example in Remark A.3 in Appendix A that, while BI violates Consistency, Truth
Axiom, and Non-empty λ-Conjunction, the agent can still believe in these properties.
Thus, not only can the information correspondence capture the agent whose belief

13Fagin and Halpern (1987) study the notion of a narrow-minded agent. Call the agent narrow-
minded if, for any ω ∈ Ω, there is E ∈ I(ω) such that ω′ ∈ E implies I(ω′) = {E}. As in Fagin
and Halpern (1987), this axiom implies Belief in Consistency and Belief in Perfect Reasoning. In
contrast, parts (3) and (4) of Proposition 2 fully characterize these two properties.
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fails Non-empty λ-Conjunction, but also it can capture the very same agent who
believes that her own belief satisfies it.

Next, I remark on the introspective properties of I when I is singleton-valued.
Since the agent’s belief satisfies Monotonicity, Necessitation, and Non-empty κ-Conjunction,
I(·) = {P (·)} satisfies Belief in Perfect Reasoning and Belief in Non-empty λ-
Conjunction. Now, the introspective properties reduce to the standard definition
on the possibility correspondence P . First, I is reflexive iff ω ∈ P (ω) (for all ω ∈ Ω).
Second, I is secondary reflexive iff ω′ ∈ P (ω) implies ω′ ∈ P (ω′). Third, I is sec-
ondary serial iff ω′ ∈ P (ω) implies P (ω′) ̸= ∅. Fourth, I is transitive iff P (ω′) ⊆ P (ω)
for any ω′ ∈ P (ω). Fifth, I is Euclidean iff ω′ ∈ P (ω) implies Ec ∩ P (ω′) ̸= ∅ for
any E ∈ D with Ec ∩ P (ω) ̸= ∅. It can be seen that I is Euclidean iff ω′ ∈ P (ω)
implies P (ω) ⊆ P (ω′). Sixth, I is symmetric if ω ∈ P (ω′) implies ω′ ∈ P (ω). On a
related point, as to logical properties, I is serial iff P (·) ̸= ∅. Also, I satisfies No-
Contradiction iff P (·) ̸= ∅. No-Contradiction and Consistency are equivalent with
each other because I(·) = {P (·)} satisfies Non-empty ℵ0-Conjunction.

To conclude, I discuss the assumptions on a surmise function in Doignon and
Falmagne (1985, 1999, 2016); Falmagne and Doignon (2011). To that end, I introduce
two additional properties of an information correspondence I : Ω → P(D). First, I
is strongly transitive if, for any (ω,E) ∈ Ω×D with E ∈ I(ω), if ω′ ∈ E then there is
E ′ ∈ I(ω′) with E ′ ⊆ E. This is the transitivity condition in Doignon and Falmagne
(1985, Definition 3.5). Second, I satisfies the minimality condition if E = F for
any E,F ∈ I(ω) with E ⊆ F . The idea behind the minimality condition is that, if
E ∈ I(ω) is not minimal in that there is F ∈ I(ω) with F ⊊ E, then E is redundant
in I(ω) in that ↑ I(ω) =↑ (I(ω) \ {E}).

Now, a “surmise function” is a mapping I : Ω → P(P(Ω)) (i.e., D = P(Ω))
satisfying (i) reflexivity, (ii) strong transitivity, (iii) Necessitation, and (iv) minimality.
The agent whose knowledge is represented by a “surmise function” satisfies Truth
Axiom, Positive Introspection, and Necessitation.

Three remarks on strong transitivity are in order. First, for a singleton-valued in-
formation correspondence, transitivity and strong transitivity are equivalent. Second,
while strong transitivity implies transitivity, the converse may not be true. Remark
A.4 in Appendix A provides an example of I which is transitive but not strongly
transitive. Third, Remark A.5 in Appendix A shows that ↑ I may not be strongly
transitive even if I is.14

14Fagin and Halpern (1987) consider the following form of transitivity that implies strong tran-
sitivity: if ω′ ∈ E ∈ I(ω) then E ∈ I(ω′). Thijsse (1993, Example 4) provides an example where
this stronger form of transitivity is not necessary for characterizing Positive Introspection. While
it can be seen that the monotone information correspondence I =↑ I in his example satisfies tran-
sitivity but violates strong transitivity, for future use, I provide examples of reflexive information
correspondences in Remarks A.4 and A.5 in Appendix A. On a related point, Fagin and Halpern
(1987) also consider the following stronger Euclidean property: ω′ ∈ E ∈ I(ω) implies I(ω′) ⊆ I(ω).
Thijsse (1993, Example 5) demonstrates that this stronger Euclidean property does not necessarily
characterize Negative Introspection.
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Finally, I remark on Negative Introspection. While a standard partitional (i.e., re-
flexive, transitive, and Euclidean) possibility correspondence in economics and game
theory, by construction, presupposes Negative Introspection, a “surmise function” in
the “knowledge space theory” (Doignon and Falmagne, 1985, 1999, 2016; Falmagne
and Doignon, 2011) does not presuppose Negative Introspection.15 As Fagin et al.
(2003, Chapter 3) argue that “there is no one “true” notion of knowledge” and that
“the appropriate notion depends on the application,” I believe that the aforemen-
tioned difference between economics and mathematical psychology comes from the
different contexts in which knowledge is analyzed in these distinct fields.

2.4 Equivalence among Knowledge-Belief Representations

The previous subsection showed that BI inherits the logical and introspective prop-
erties of beliefs imposed on a given I. Here, Section 2.4.1 completes the equivalence
between an information correspondence and a monotonic belief operator. This im-
plies that the previous results involving (monotonic) belief operators can be replicated
under the framework of information correspondences. Section 2.4.2 formally studies
a “surmise function” as a reflexive and transitive information correspondence.

I begin with introducing a particular type of events known as self-evident events
in the literature. Letting B be a given belief operator, an event E ∈ D is self-evident
if E ⊆ B(E), i.e., the agent believes E whenever E is true. Denote the collection of
self-evident events by JB := {E ∈ D | E ⊆ B(E)}. If an information correspondence
I is given, then an event E is self-evident (i.e., E ⊆ BI(E)) if and only if for any
ω ∈ E, there is F ∈ I(ω) such that F ⊆ E.16 In Doignon and Falmagne (1985, 1999,
2016); Falmagne and Doignon (2011), a self-evident event turns out to be what they
call a “knowledge state.” The “knowledge state” is interpreted as a set of “questions”
that an agent is capable of solving. The collection of knowledge states is referred to
as the “knowledge structure.”17

15First, while partitional knowledge models are prevalent in economics and game theory, non-
partitional (reflexive and transitive) possibility correspondence models have also been studied. See,
for example, Dekel and Gul (1997), Geanakoplos (1989), Morris (1996), and Shin (1993) for founda-
tions for such non-partitional information processing and characterizations of solution concepts in
games. Also, an agent whose knowledge satisfies Negative Introspection cannot be unaware of any
event in the sense that if she does not know an event then she knows that she does not know it.
See Footnote 4 for unawareness. Second, Negative Introspection has also been investigated in other
fields such as logic and philosophy. For example, Hintikka (1962, Chapter 3.8) rejects it.

16Using self-evidence, one can introduce common belief among a set I of agents. For each agent
i, let Ii be her information correspondence. Following Monderer and Samet (1989), an event E is
common belief among agents I at a state ω if there is an event F self-evident to every i ∈ I such
that ω ∈ F ⊆

∩
i∈I BIi(E). If E is common belief, then everybody believes E, everybody believes

that everybody believes E, and so on ad infinitum. As discussed in Section 1, Heifetz (1996, 1999)
and Lismont and Mongin (1994a,b) study common belief using monotone neighborhood systems.

17Fukuda (2018) shows the one-to-one correspondence between a belief (knowledge) operator sat-
isfying Truth Axiom, Positive Introspection, and Monotonicity and its self-evident collection.
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2.4.1 Information Correspondences and Belief Operators

I define an information correspondence I from a given monotonic belief operator B in
such a way that the induced belief operator BI coincides with the original operator
B. Formally, for a given monotonic belief operator B : D → D, an information
correspondence I : Ω → P(D) is a generator of B (or I induces B) if B = BI .

Generally, a given monotonic belief operator B has multiple generators. Informa-
tion correspondences I and I ′ satisfying ↑ I =↑ I ′ induce the same belief operator
BI = BI′ . As the next proposition shows, the simplest way to find a generator of B
is to consider the information correspondence IB : Ω → P(D) defined by

IB(ω) := {E ∈ D | ω ∈ B(E)} for each ω ∈ Ω. (4)

Henceforth, I define the information correspondence IB induced from a (monotonic)
belief operator B through Equation (4). Since B satisfies Monotonicity, IB =↑ IB and
consequently B = BIB . Moreover, if B has multiple generators, then any generator
I is included in IB in the sense that I(·) ⊆↑ I(·) =↑ IB(·) = IB(·). If the given
monotonic belief operator B satisfies Truth Axiom and Positive Introspection, then
the proposition demonstrates that one can restrict attention to the self-evident events.

Proposition 4. Let (Ω,D) be a κ-state space.

1. If I : Ω → P(D) is an information correspondence, then BI inherits the prop-
erties of beliefs imposed on I and ↑ I(·) =↑ IBI(·). Conversely, if B is a mono-
tonic belief operator, then IB is a generator of B, i.e., B = BIB . Any generator
I of B satisfies the properties of beliefs imposed on B and I(·) ⊆ IB(·).

2. Let B : D → D satisfy Monotonicity, Truth Axiom, and Positive Introspection.
Define IJB

: Ω → P(D) by IJB
(ω) := {E ∈ JB | ω ∈ B(E)} for each ω ∈ Ω.

Then, IJB
is a reflexive and (strongly) transitive information correspondence

that generates B.

Multiplicity of generators can be used to compare agents’ beliefs. For agents i
and j, let Ii and Ij be generators of Bi and Bj, respectively. Then, Bi(·) ⊆ Bj(·)
iff ↑ Ii(·) ⊆↑ Ij(·). This is also equivalent to: for any ω ∈ Ω and E ∈ Ii(ω), there
is F ∈ Ij(ω) such that F ⊆ E. In mathematical psychology, Doignon and Falmagne
(1999, Definition 3.16) call it an “attribution order” (see also Doignon and Falmagne
(1985, Definition 3.3)).

Moreover, Bi(·) ⊆ Bj(·) implies ↑ IBi
(·) ⊆↑ IBj

(·). Also, ↑ Ii(·) ⊆↑ Ij(·) implies
BIi(·) ⊆ BIj(·) through Equation (1). Hence, ↑ Ii(·) ⊆↑ IBj

(·) iff BIi(·) ⊆ Bj(·).
Following Doignon and Falmagne (1985, 1999); Falmagne and Doignon (2011), which
compare different knowledge-belief representations by a Galois connection in order
theory, Remark A.6 in Appendix A formalizes this argument as a Galois connection.

Proposition 4 (1) could also hold for probabilistic beliefs. Samet (2000) provides
the conditions on p-belief operators to induce a type mapping. Meier (2006) and
Zhou (2010) extend the conditions to finitely-additive beliefs.
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2.4.2 Reflexive and Transitive Information Correspondences

I study a “surmise function” as a reflexive and transitive information correspondence
because the “surmise function” I : Ω → P(P(Ω)) is regarded as an information
correspondence on (Ω,P(Ω)) satisfying (i) reflexivity, (ii) strong transitivity, (iii) Ne-
cessitation, and (iv) minimality. Doignon and Falmagne (1999, Theorems 3.10 and
6.25) show a one-to-one correspondence between a “surmise function” and a “gran-
ular” “knowledge structure.”18 Here, I show a general one-to-one correspondence
between a reflexive and (strongly) transitive information correspondence and the col-
lection of self-evident events on a κ-state space by dropping the minimality condition.
Observe also that, by Proposition 3, there is a one-to-one correspondence between
belief (knowledge) operators satisfying Monotonicity, Truth Axiom, and Positive In-
trospection and reflexive and transitive information correspondences.

Proposition 5. Let (Ω,D) be a κ-state space. Let J ∈ P(D) satisfy

{ω ∈ Ω | there is F ∈ J with ω ∈ F ⊆ E} ∈ J for each E ∈ D. (5)

The following mapping IJ : Ω → P(D) is a reflexive and (strongly) transitive infor-
mation correspondence:

IJ (ω) := {E ∈ J | ω ∈ E} for each ω ∈ Ω. (6)

If Ω ∈ J , then IJ (·) ̸= ∅. Conversely, if I : Ω → P(D) is a reflexive and transitive
information correspondence, then JI ∈ P(D) defined below satisfies Condition (5):

JI := {E ∈ D | if ω ∈ E then there is F ∈ I(ω) with F ⊆ E}. (7)

If I(·) ̸= ∅, then Ω ∈ JI. Moreover, starting from J , J = JIJ . Starting from I,
↑ I =↑ IJI .

Doignon and Falmagne (1985, 1999, 2016); Falmagne and Doignon (2011) charac-
terize the collection J of “knowledge states” as a collection of events which are closed
under arbitrary union. In contrast, Proposition 5 requires J to satisfy Condition (5).
Now, the closure under arbitrary union turns out to be equivalent to Condition (5)
if D is an (∞-)complete algebra for the following two observations: (i) on the (∞-
)complete algebra D, the set of states in Condition (5) reduces to

∪
{F ∈ J | F ⊆ E};

and (ii) E =
∪
{F ∈ J | F ⊆ E} for each E ∈ J . Generally, Condition (5) is equiv-

alent to the existence of a maximal event in J that is included in a given event
E ∈ D. Fukuda (2018) and Samet (2010) study this maximality property to obtain
set-algebraic representations of knowledge.

18A “knowledge structure” J is granular (Doignon and Falmagne, 1999, Definition 1.35) if, for any
(ω,E) ∈ Ω×J with ω ∈ E, there is a minimal F ∈ J with ω ∈ F ⊆ E. Doignon and Falmagne (1985,
Theorem 3.7) establish the equivalence between a “surmise function” and a “knowledge structure”
when Ω is finite.
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In Proposition 5, since IJ defined by Equation (6) is strongly transitive and since
strong transitivity implies transitivity, the proposition also establishes the equivalence
between a collection of self-evident events and a reflexive and strongly transitive
information correspondence. An example in Remark A.7 in Appendix A, however,
shows that ↑ IJ may not necessarily be strongly transitive even if IJ is. Thus, strong
transitivity is not necessarily preserved under the operation of taking “↑.” This also
means that the reflexive and transitive information correspondence I :=↑ IJ (i.e.,
I(ω) := {E ∈ D | there is F ∈ J with ω ∈ F ⊆ E}) can also establish the part of
Proposition 5 in place of Equation (6).

Doignon and Falmagne (1999, Theorem 6.25) (and Doignon and Falmagne (1985,
Theorem 3.7)) establish the correspondence between a “surmise function” and a
“knowledge structure” (i.e., a reflexive and transitive information correspondence
and a collection of self-evident events in my context) in terms of a Galois connection.
This amounts to proving: ↑ I(·) ⊆↑ IJ (·) iff JI ⊆ J for each I and J . I demonstrate
in Remark A.8 in Appendix A that the pair of mappings defined through Equations
(6) and (7) forms a Galois connection.

Next, consider a connection between Propositions 4 (2) and 5. If a given mono-
tonic belief operator B satisfies Truth Axiom and Positive Introspection, then the
information correspondence IJB

= {E ∈ JB | ω ∈ B(E)} in Proposition 4 (2) is
indeed equal to IJB

= {E ∈ JB | ω ∈ E} in Proposition 5. Note that it can be seen
that JB satisfies Condition (5).

I remark on the further connections with the “knowledge space theory” of Doignon
and Falmagne (1985, 1999, 2016); Falmagne and Doignon (2011). First, let an infor-
mation correspondence I be I(·) = {P (·)} (singleton-valued). If ω′ ∈ P (ω), then the
agent considers ω′ possible at state ω. Thus, P induces a binary relation also known
as an accessibility (or possibility) relation in computer science, logic, and philosophy
(e.g., Chellas (1980) and Fagin et al. (2003)). Suppose further that P is reflexive
and transitive. In mathematical psychology, if P is reflexive and transitive, then
the reflexive and transitive binary relation induced by P turns out to be a “surmise
(or precedence) relation” (Doignon and Falmagne, 1985, 1999, 2016; Falmagne and
Doignon, 2011). In their context, if ω′ ∈ P (ω), then it can be surmised from a correct
response to “question” ω that a correct response to “question” ω′ is given.

Second, suppose that I is reflexive and transitive. It turns out that the possibility
operator LI : D → D defined in Equation (2) satisfies the following three properties:
(i) E ⊆ F implies LI(E) ⊆ LI(F ); (ii) E ⊆ LI(E); and (iii) LILI(·) ⊆ LI(·). The
operator LI is related to the notion of a closure operator, and a tuple (Ω, {E ∈ D |
LI(E) ⊆ E}) = (Ω, {E ∈ D | Ec ∈ JBI}) is related to the notion of a closure space
(Doignon and Falmagne, 1985, 1999; Falmagne and Doignon, 2011).
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3 Conclusion

This paper developed an information correspondence that represents an agent’s be-
liefs about underlying states of the world. It associates, with each state, a set of
possibly multiple information sets at that state. Conceptually, it can capture beliefs
that may fail the conjunction or necessitation properties. It can also capture both
qualitative and quantitative beliefs (e.g., knowledge and probability-one belief) in a
unified manner. If it has a unique information set at each state, then it reduces to
a possibility correspondence. The paper characterized the logical and introspective
properties of beliefs.

This paper connected seemingly different knowledge-belief representations by demon-
strating that a “surmise function” in mathematical psychology (Doignon and Fal-
magne, 1985, 1999, 2016; Falmagne and Doignon, 2011) can be seen as a particular
information correspondence. This paper thus provided various logical and introspec-
tive properties of a “surmise function.” I hope that this paper spurs further ideas in
both economics and mathematical psychology as discussed in the introduction.

One interesting direction of future study is to explore interactions of knowledge
and probabilistic beliefs, especially belief update on available information. In a stan-
dard possibility correspondence model, an agent’s type at a state is usually the pos-
terior probability measure conditional on the information set at that state. Another
direction is to develop an information correspondence on a generalized state space of
the unawareness structure developed by Heifetz, Meier, and Schipper (2006, 2013). In
their generalized state space model, a state space consists of multiple subspaces, and
a possibility correspondence on such generalized state space can represent an agent’s
unawareness satisfying certain desirable properties.

A Appendix

Proof of Proposition 1. Let I be an information correspondence satisfying the Kripke
property. Fix ω ∈ Ω, and let P (ω) be the minimum element of I(ω). For each
E ∈ D, ω ∈ BI(E) iff P (ω) ⊆ E. Conversely, suppose that, for each ω ∈ Ω, there
is P (ω) ∈ I(ω) such that ω ∈ BI(E) iff P (ω) ⊆ E. Fix ω ∈ Ω. If E ∈ I(ω), then
ω ∈ BI(E) and thus P (ω) ⊆ E. Hence, P (ω) is the minimum element of I(ω).

Remark A.1. Let C(Ω,D)(⊆ P(D)) be the set of information collections Γ ∈ P(D)
which respect a certain set of logical properties to be defined in Section 2.3.1. Let
C(Ω,D)(⊆ P(C(Ω,D))) be the smallest κ-complete algebra (i.e., the intersection of
all κ-complete algebras) including {{Γ ∈ C(Ω,D) | E ∈↑ Γ} ∈ P(C(Ω,D)) | E ∈ D}.
Now, any measurable mapping I : (Ω,D) → (C(Ω,D), C(Ω,D)) is an information
correspondence because BI(E) = I−1({Γ ∈ C(Ω,D) | E ∈↑ Γ}) ∈ D for each E ∈ D.

Proof of Proposition 2. By (a) of each logical property, it follows that, in (b), I sat-
isfies a given logical property if and only if ↑ I satisfies the given property.
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Notation Terminology in the Paper Corresponding Terminology
in the Knowledge Space Theory

Ω State space (Set of states Domain
of the world) (of the body of knowledge)

ω ∈ Ω State Item or question

E ∈ D Event Set of items (or questions)

J Collection of self-evident events Knowledge structure

E ∈ J Self-evident event Knowledge state

I : Ω → P(D) Information correspondence Surmise function
(Ω, I): Surmise system

E ∈ I(ω) Information set at ω Clause (background or
foundation) for ω

ω′ ∈ P (ω) Possibility (or accessibility) Surmise relation
(I(·) = {P (·)}) relation

Table A.1: A list of notations and terminologies: The first column lists key notations
of this paper. The second does their terminologies. The third does the corresponding
terminologies in Doignon and Falmagne (1985, 1999, 2016); Falmagne and Doignon
(2011).

1. (a) I show that if Γ satisfies No-Contradiction then so does ↑ Γ by contrapo-
sition. If ∅ ∈↑ Γ, then there is E ∈ Γ with E ⊆ ∅, i.e., ∅ ∈ Γ. Conversely,
if ∅ ̸∈↑ Γ, then ∅ ̸∈ Γ because Γ ⊆↑ Γ.

(b) For each ω ∈ Ω, ∅ ∈↑ I(ω) iff ω ∈ BI(∅). Thus, ∅ ̸∈↑ I(ω) for all ω ∈ Ω
iff BI(∅) = ∅.

2. (a) Let Γ satisfy Consistency. Suppose to the contrary that there are E,F ∈↑
Γ such that E ∩ F = ∅. Then, there are E ′, F ′ ∈ Γ such that E ′ ⊆ E
and F ′ ⊆ F . Thus, E ′ ∩ F ′ ⊆ E ∩ F = ∅, a contradiction. If ↑ Γ satisfies
Consistency then Ec ̸∈↑ Γ for any E ∈↑ Γ. Finally, suppose that Ec ̸∈↑ Γ
for any E ∈↑ Γ. Suppose to the contrary that there are E,F ∈ Γ with
E ∩ F = ∅. Since F ⊆ Ec, it follows that E,Ec ∈↑ Γ, a contradiction.

(b) I show that if I satisfies Consistency then BI(E) ⊆ (¬BI)(E
c). If ω ∈

BI(E) then E ∈↑ I(ω). Since Ec ̸∈↑ I(ω), I have ω ∈ (¬BI)(E
c). Con-

versely, assume BI(E) ⊆ (¬BI)(E
c). Take any ω ∈ Ω and E ∈↑ I(ω).

Since ω ∈ BI(E) ⊆ (¬BI)(E
c), I have Ec ̸∈↑ I(ω).

3. (a) If Γ ̸= ∅ then ↑ Γ ̸= ∅. If ↑ Γ ̸= ∅, then there is E ∈↑ Γ. Since E ⊆ Ω, I
have Ω ∈↑ Γ. If Ω ∈↑ Γ, then there is E ∈ Γ and thus Γ ̸= ∅.

(b) The statement follows because Ω ∈↑ I(ω) for all ω ∈ Ω iff BI(Ω) = Ω.

4. (a) Since ↑ Γ is closed under set inclusion, ↑ Γ satisfies Non-empty λ-Conjunction
if and only if ↑ Γ is closed under non-empty λ-intersection.
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(b) Take any F ⊆ D with 0 < |F| < λ. Observe that
∩

F∈F BI(F ) ⊆ BI(
∩

F)
iff, for any ω ∈ Ω, if F ∈↑ I(ω) for all F ∈ F then

∩
F ∈↑ I(ω).

Proof of Proposition 3. 1. First, I show that (1a) implies (1b). If E ∈↑ I(ω) then
there is F ∈ I(ω) with F ⊆ E. Then, ω ∈ F ⊆ E. Second, I show that (1b)
implies (1c). If ω ∈ BI(E), then E ∈↑ I(ω), and thus ω ∈ E. Finally, I show
that (1c) implies (1a). If E ∈ I(ω) ⊆↑ I(ω), then ω ∈ BI(E) ⊆ E.

2. First, I show that (2a) implies (2b). Take (ω,E) ∈ Ω×D. There is F ∈ I(ω) ⊆↑
I(ω) with the following property: if ω′ ∈ F and E ∈↑ I(ω′) then F ′ ∈ I(ω′)
for some F ′ ⊆ E. Then, ω′ ∈ E. Second, I show that (2b) implies (2c). Take
(ω,E) ∈ Ω × D. There is F ∈ I(ω) such that F ⊆ (¬BI)(E) ∪ E. Thus,
ω ∈ BI((¬BI)(E)∪E), and hence Ω = BI((¬BI)(E)∪E). Finally, I show that
(2c) implies (2a). Take any (ω,E) ∈ Ω×D. Since ω ∈ Ω = BI((¬BI)(E)∪E),
there is F ∈ I(ω) such that F ⊆ (¬BI)(E) ∪ E. If ω′ ∈ F and if there is
F ′ ∈ I(ω′) with F ′ ⊆ E, then, since ω′ ∈ BI(E), I have ω′ ∈ E.

3. First, I show that (3a) implies (3b). Fix (ω,E) ∈ Ω × D. There is F ∈
I(ω) ⊆↑ I(ω) with the following property: if ω′ ∈ F and if E ∈↑ I(ω′) and thus
F ′ ∈ I(ω′) with F ′ ⊆ E, then H∩E ̸= ∅ for all H ∈↑ I(ω′). Thus, Ec ̸∈↑ I(ω′).
Second, I show that (3b) implies (3c). Fix E ∈ D, and take ω ∈ Ω. I show that
¬(BI(E)∩BI(E

c)) = (¬BI)(E)∪ (¬BI)(E
c) ∈↑ I(ω). By supposition, there is

F ∈↑ I(ω) such that if ω′ ∈ F and if ω′ ∈ BI(E) then ω′ ∈ (¬BI)(E
c). Thus,

F ⊆ ¬(BI(E) ∩ BI(E
c)), and hence ¬(BI(E) ∩ BI(E

c)) ∈↑ I(ω). Finally, I
show that (3c) implies (3a). Fix (ω,E) ∈ Ω×D. Since ω ∈ Ω = BI(¬(BI(E)∩
BI(E

c))), there is F ∈ I(ω) such that F ⊆ ¬(BI(E)∩BI(E
c)). Thus, if ω′ ∈ F

and if there is F ′ ∈ I(ω′) with F ′ ⊆ E, then ω′ ∈ (¬BI)(E
c). Thus, H ∩E ̸= ∅

for all H ∈ I(ω′).

4. First, I show that (4a) implies (4b). For any (ω,E, F ) ∈ Ω×D×D, there is G ∈
I(ω) ⊆↑ I(ω) such that if ω′ ∈ G, E ∈↑ I(ω′), and if (¬E) ∪ F ∈↑ I(ω′), then
F ∈↑ I(ω′). Second, I show that (4b) implies (4c). Fix E,F ∈ D and ω ∈ Ω.
There is G ∈↑ I(ω) such that if ω′ ∈ G, ω′ ∈ BI(E), and if ω′ ∈ BI((¬E)∪F ),
then ω′ ∈ BI(F ). Thus, G ⊆ ¬(BI(E) ∩ BI((¬E) ∪ F )) ∪ BI(F ). Hence, ω ∈
BI(¬(BI(E)∩BI((¬E)∪F ))∪BI(F )). Finally, I show that (4c) implies (4a).
Take (E,F ) ∈ D2 and ω ∈ Ω = BI(¬(BI(E)∩BI((¬E)∪F ))∪BI(F )). There
is G ∈ I(ω) such that if ω′ ∈ G then ω′ ∈ ¬(BI(E)∩BI((¬E)∪F ))∪BI(F ). If
ω′ ∈ G, E ′ ∈ I(ω′) for some E ′ ⊆ E, and if F ′ ∈ I(ω′) for some F ′ ⊆ (¬E)∪F ,
then ω′ ∈ BI(F ), i.e., there is G′ ∈ I(ω′) with G′ ⊆ F .

5. First, I show that (5a) implies (5b). If E ∈↑ I(ω), then there is F ∈ I(ω)
such that F ⊆ E. Then, there is G ∈ I(ω) such that if ω′ ∈ G then there is
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F ′ ∈ I(ω′) ⊆↑ I(ω′) such that F ′ ⊆ F ⊆ E. Second, I show that (5b) implies
(5c). If E ∈↑ I(ω), then there is F ∈↑ I(ω) such that if ω′ ∈ F then there
is E ′ ∈↑ I(ω′) such that E ′ ⊆ E. Then, since F ⊆ {ω′ ∈ Ω | E ∈↑ I(ω′)},
it follows {ω′ ∈ Ω | E ∈↑ I(ω′)} ∈↑ I(ω). Third, I show that (5c) implies
(5d). If ω ∈ BI(E), then E ∈↑ I(ω). Then, {ω′ ∈ Ω | E ∈↑ I(ω′)} ∈↑ I(ω),
i.e., ω ∈ BIBI(E). Finally, I show that (5d) implies (5a). Fix ω ∈ Ω and
E ∈ I(ω) ⊆↑ I(ω). Then, ω ∈ BI(E) ⊆ BIBI(E), and thus {ω′ ∈ Ω | E ∈↑
I(ω′)} ∈↑ I(ω). Now, there is F ∈ I(ω) such that if ω′ ∈ F then E ∈↑ I(ω′),
i.e., there is E ′ ∈ I(ω′) with E ′ ⊆ E.

6. First, I show that (6a) implies (6b). Let (ω,E) ∈ Ω×D be such that Ec∩F ̸= ∅
for all F ∈↑ I(ω). Since I(ω) ⊆↑ I(ω) and since I(ω) is Euclidean, there is
F ′ ∈ I(ω) ⊆↑ I(ω) such that if ω′ ∈ F ′ then ∅ ̸= Ec ∩ F for all F ∈↑ I(ω′).
Second, I show that (6b) implies (6c). If E ̸∈↑ I(ω), then Ec ∩ F ̸= ∅ for all
F ∈↑ I(ω). Then, there is F ′ ∈↑ I(ω) such that F ′ ⊆ {ω′ ∈ Ω | E ̸∈↑ I(ω′)},
i.e., {ω′ ∈ Ω | E ̸∈↑ I(ω′)} ∈↑ I(ω). Third, I show that (6c) implies (6d). If
ω ∈ (¬BI)(E), then E ̸∈↑ I(ω). Then, {ω′ ∈ Ω | E ̸∈↑ I(ω′)} ∈↑ I(ω), i.e.,
ω ∈ BI(¬BI)(E). Finally, I show that (6d) implies (6a). Let (ω,E) ∈ Ω×D be
such that Ec∩F ̸= ∅ for all F ∈ I(ω). Since E ̸∈↑ I(ω), I get ω ∈ (¬BI)(E) ⊆
BI(¬BI)(E), i.e., {ω′ ∈ Ω | E ̸∈↑ I(ω′)} ∈↑ I(ω). Thus, there is F ′ ∈ I(ω)
such that if ω′ ∈ F then E ̸∈↑ I(ω′), i.e., Ec ∩ F ̸= ∅ for all F ∈ I(ω′).

7. First, I show that (7a) implies (7b). Fix (ω,E) ∈ Ω × D. Suppose that, for
any F ∈↑ I(ω), there is ω′ ∈ F with E ∈↑ I(ω′). Then, for any F ∈ I(ω),
there are ω′ ∈ F and F ′ ∈ I(ω′) with F ′ ⊆ E. Thus, ω ∈ E. Second, I
show that (7b) implies (7c). Fix E ∈ D. If ω ∈ (¬BI)(¬BI)(E), then for any
F ∈↑ I(ω), F ̸⊆ (¬BI)(E), i.e., there are ω′ ∈ F and E ∈↑ I(ω′). Then,
ω ∈ E. Finally, I show that (7c) implies (7a). Fix (ω,E) ∈ Ω × D. Suppose
that, for any F ∈ I(ω), there are ω′ ∈ F and F ′ ∈ I(ω′) with F ′ ⊆ E. Thus,
for any F ∈ I(ω), F ̸⊆ (¬BI)(E). Then, ω ∈ (¬BI)(¬BI)(E) ⊆ E.

8. First, I characterize Belief in Non-empty λ-Conjunction. Throughout the proof,
let F ∈ P(D) \ {∅} satisfy |F| < λ. I show that (8a) implies (8b). Fix
ω ∈ Ω. There is G ∈ I(ω) ⊆↑ I(ω) such that if ω′ ∈ G and if F ⊆↑ I(ω′),
then there is EF ∈ I(ω′) with EF ⊆ F for each F ∈ F . Thus, there is
G′ ∈ I(ω′) ⊆↑ I(ω′) such that G′ ⊆

∩
F . Next, I show that (8b) implies (8c).

For each ω ∈ Ω, there is G ∈↑ I(ω) such that G ⊆ ¬(
∩

F∈F BI(F ))∪BI(
∩

F).
Hence, ω ∈ BI(¬(

∩
F∈F BI(F )) ∪ BI(

∩
F)). Next, I show that (8c) implies

(8a). Take ω ∈ Ω = BI(¬(
∩

F∈F BI(F )) ∪ BI(
∩
F)). There is G ∈ I(ω) such

that if ω′ ∈ G and if, for each F ∈ F , there is EF ∈ I(ω′) with EF ⊆ F , then
ω′ ∈ BI(

∩
F). Thus, there is G′ ∈ I(ω′) with G′ ⊆

∩
F .

Second, I show that Belief in Perfect Reasoning is equivalent to Belief in Non-
empty ℵ0-Conjunction. Without loss, one can restrict attention to the following
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form. For any (ω,E, F ) ∈ Ω×D×D, there is G ∈↑ I(ω) such that if ω′ ∈ G and
E,F ∈↑ I(ω′) then E ∩ F ∈↑ I(ω′). Suppose that I satisfies Belief in Perfect
Reasoning, and take (ω,E, F ) ∈ Ω × D × D. There is G ∈↑ I(ω) such that if
ω′ ∈ G, E ∈↑ I(ω), and F ∈↑ I(ω′), then, since F ⊆ (¬E) ∪ (E ∩ F ), I have
(¬E) ∪ (E ∩ F ) ∈↑ I(ω′) and thus E ∩ F ∈↑ I(ω′). Conversely, suppose that
I satisfies Belief in Non-empty ℵ0-Conjunction. Take (ω,E, F ) ∈ Ω × D × D.
There is G ∈↑ I(ω) such that if ω′ ∈ G, E ∈↑ I(ω), and (¬E) ∪ F ∈↑ I(ω′),
then E ∩ F = E ∩ ((¬E) ∪ F ) ∈↑ I(ω′). Since E ∩ F ⊆ F , I get F ∈↑ I(ω′).

Remark A.2. The statement in the main text can be recast in terms of the belief
operator BI as follows: if BI satisfies Monotonicity, Truth Axiom, and Positive In-
trospection, then the Axiom B and Negative Introspection are equivalent. The axiom
B implies (¬BI)(E) ⊆ BI(¬BI)BI(E). Since BI(E) ⊆ BIBI(E) by Positive Intro-
spection and since BI is monotonic, it follows that BI(¬BI)BI(E) ⊆ BI(¬BI)(E).
Thus, (¬BI)(E) ⊆ BI(¬BI)(E), as desired. Conversely, Truth Axiom and Negative
Introspection yield Ec ⊆ (¬BI)(E

cc) ⊆ BI(¬BI)(E
cc).

Remark A.3. Let (Ω,D) = ({ω1, ω2, ω3},P(Ω)). Define I : Ω → P(D) as follows:

I(ω) =


{{ω1, ω2}, {ω2, ω3}} if ω = ω1

{{ω2}} if ω = ω2

{∅} if ω = ω3

.

The belief operator BI is given as follows:

BI(E) =


{ω3} if E ∈ {∅, {ω1}, {ω3}, {ω1, ω3}}
{ω2, ω3} if E = {ω2}
Ω if E ∈ {{ω1, ω2}, {ω2, ω3},Ω}

.

The operator BI violates No-Contradiction because ∅ ∈ I(ω3). In fact, BI(∅) = {ω3}.
Consequently, it violates Truth Axiom and Consistency (indeed, BI(E) ∩ BI(E

c) =
{ω3} for any E ∈ D). The operator violates Non-empty λ-Conjunction (especially,
λ = ℵ0): BI({ω1, ω2}) ∩ BI({ω2, ω3}) = Ω ̸⊆ {ω2, ω3} = BI({ω2}). In contrast, it
can be seen that I is secondary reflexive and secondary serial. It also satisfies Belief
in Non-empty λ-Conjunction and consequently Belief in Perfect Reasoning.

Remark A.4. I provide an example where I is not strongly transitive but transitive.
While one can give such an example by modifying the example in Remark A.3, for
future use I define a reflexive and transitive information correspondence. Let (Ω,D) =
({ω1, ω2, ω3},P(Ω)). Define I : Ω → P(D) as I(ω1) = I(ω3) = {{ω1, ω3}} and
I(ω2) = {{ω2}, {ω1, ω2}}. By construction, I is reflexive.

To see that I is not strongly transitive, take E = {ω1, ω2} ∈ I(ω2) and ω1 ∈ E.
Then, {ω1, ω3} ∈ I(ω1) and {ω1, ω3} ̸⊆ E = {ω1, ω2}. It can be seen, however,

25



that I is transitive. This can also be verified by the fact that BI satisfies Positive
Introspection:

BI(E) =


∅ if E ∈ {∅, {ω1}, {ω3}}
{ω2} if E ∈ {{ω2}, {ω1, ω2}, {ω2, ω3}}
{ω1, ω3} if E = {ω1, ω3}
Ω if E = Ω

. (A.1)

Two additional remarks are in order. First, observe that I satisfies the Kripke
property. Thus, consider I ′(·) = {P (·)}, where P (ω1) = {ω1, ω3}, P (ω2) = {ω2}, and
P (ω3) = {ω1, ω3}. Now, I ′ is strongly transitive.

Second, BI satisfies all the four logical properties defined in Section 2.3.1. Also,
BI satisfies all the eight introspective properties defined in Section 2.3.2.

Remark A.5. I provide an example where I is strongly transitive but ↑ I is not as
in Remark A.4. Let (Ω,D) = ({ω1, ω2, ω3},P(Ω)). Define I : Ω → P(D) as follows:

I(ω) =

{
{{ω1, ω3},Ω} if ω = ω1 or ω = ω3

{{ω2},Ω} if ω = ω2

. (A.2)

First, I show that I is strongly transitive. Let ω ∈ Ω, E ∈ I(ω), and ω′ ∈ E. There
is F = E ∈ I(ω′) such that F ⊆ E. Second, ↑ I is written as follows:

↑ I(ω) =

{
{{ω1, ω3},Ω} if ω = ω1 or ω = ω3

{{ω2}, {ω2, ω3},Ω} if ω = ω2

. (A.3)

Third, I show that ↑ I is not strongly transitive. Take E = {ω2, ω3} ∈ I(ω2) and
ω3 ∈ E. Then, {ω1, ω3} ̸⊆ {ω2, ω3} = E and Ω ̸⊆ {ω2, ω3} = E. I remark that, since
I is transitive, it follows from Proposition 3 that ↑ I is transitive. I also remark that
the belief operator BI in this example coincides with that defined by Equation (A.1)
in Remark A.4.

Proof of Proposition 4. 1. By Propositions 2 and 3, BI satisfies the logical and
introspective properties of beliefs imposed on I. Next, IBI(ω) = {E ∈ D | ω ∈
BI(E)} = {E ∈ D | E ∈↑ I(ω)} =↑ I(ω) for all ω ∈ Ω. Since BI is monotonic,
↑ IBI(·) = IBI(·) =↑ I(·). Conversely, BIB(E) = {ω ∈ Ω | E ∈↑ IB(ω)} =
B(E) for each E ∈ D. By Propositions 2 and 3, any generator I of B satisfies
the logical and introspective properties of beliefs imposed on B. As argued in
the main text, I(·) ⊆↑ I(·) =↑ IB(·) = IB(·).

2. First, I show that IJB
is an information correspondence that generates B, i.e.,

B = BIJB
. Take E ∈ D and ω ∈ B(E). Since ω ∈ B(E) ⊆ BB(E), it follows

that B(E) ∈ IJB
(ω) and E ∈↑ IJB

(ω). Thus, ω ∈ BIJB
(E). Conversely, if

26



ω ∈ BIJB
(E) then there is F ∈ IJB

(ω) with ω ∈ F ⊆ E. Then, ω ∈ F ⊆
B(F ) ⊆ B(E). Second, IJB

is by construction reflexive. Third, I show that
IJB

is strongly transitive. Let E ∈ IJB
(ω), i.e., ω ∈ E = B(E). If ω′ ∈ E then

there is E ′ = E ∈ IJB
(ω′) such that E ′ ⊆ E.

Remark A.6. I formulate the equivalence between information correspondences and
belief operators in Proposition 4 as a Galois connection. To that end, let (I,≤I) be the
collection of information correspondences on a state space (Ω,D) with the following
pre-order (i.e., reflexive and transitive order): I ≤I I ′ if and only if, for each ω ∈ Ω
and E ∈ I(ω), there is F ∈ I ′(ω) such that F ⊆ E. In other words, ↑ I(·) ⊆↑ I ′(·).
Let (B,≤B) be the collection of monotonic belief operators from D into itself. Let
α : (I,≤I) → (B,≤B) be such that α(I) = BI defined as in Equation (1). I show that
α is order-preserving. If I ≤I I ′ then ↑ I ≤I↑ I ′ and thus BI ≤B BI′ by Equation (1).
Next, let β : (B,≤B) → (I,≤I) be β(B) = IB as in Equation (4). By construction, β
is order-preserving, i.e., if B ≤B B′ then IB ≤I IB′ .

Now, I show that (α, β) is a Galois connection, that is, the order-preserving maps
α and β on pre-ordered spaces satisfy I ≤I β(B) if and only if α(I) ≤B B for any
(I, B) ∈ I × B. Indeed, if α(I) ≤B B then I = IBI ≤I IB = β(B). Conversely, if
I ≤I β(B) then α(I) = BI ≤B BIB = B.

Proof of Proposition 5. Let J satisfy Condition (5). First, I show that IJ is an
information correspondence. For each E ∈ D,

{ω ∈ Ω | there is F ∈ IJ (ω) such that F ⊆ E}
= {ω ∈ Ω | there is F ∈ J such that ω ∈ F ⊆ E} ∈ J ⊆ D.

Second, IJ is reflexive by construction. Third, IJ is strongly transitive. For any
E ∈ IJ (ω) and ω′ ∈ E, E ′ = E ∈ IJ (ω

′) satisfies ω′ ∈ E ′ ⊆ E. Fourth, if Ω ∈ J ,
then Ω ∈ IJ (ω) for any ω ∈ Ω.

Conversely, I show that JI satisfies Condition (5). For each E ∈ D, let BJI(E) :=
{ω ∈ Ω | there is F ∈ JI such that ω ∈ F ⊆ E}. I show that BJI(E) ∈ JI , i.e., if
ω ∈ BJI(E), then there is F ′ ∈ I(ω) such that F ′ ⊆ BJI(E). Let ω ∈ BJI(E). There
is F ∈ JI such that ω ∈ F ⊆ E. Since ω ∈ F , there is E ′ ∈ I(ω) such that E ′ ⊆ F .
Since I is transitive, there is F ′ ∈ I(ω) such that if ω′ ∈ F ′ then there is G ∈ I(ω′)
such that ω′ ∈ G ⊆ E ′ ⊆ F ⊆ E. Thus, ω′ ∈ BJI(E). Hence, I get F ′ ⊆ BJI(E), as
desired.

If I(·) ̸= ∅, then for any ω ∈ Ω, there is F ∈ I(ω) such that F ⊆ Ω. Thus,
Ω ∈ JI .

Next, let E ∈ J . For any ω ∈ E, I have E ∈ IJ (ω) and E ⊆ E. Thus, E ∈ JIJ .
Conversely, if E ∈ JIJ , then

E = {ω ∈ Ω | there is F ∈ IJ (ω) such that F ⊆ E}
= {ω ∈ Ω | there is F ∈ J such that ω ∈ F ⊆ E} ∈ J .
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Finally, let I be given. First, I show ↑ IJI(ω) ⊆↑ I(ω). If E ∈ IJI(ω), then
ω ∈ E ∈ JI . Thus, E ∈↑ I(ω). This implies IJI(ω) ⊆↑ IJI(ω) ⊆↑ I(ω). Conversely,
suppose that E ∈↑ I(ω). Since I is transitive, E ′ := {ω′ ∈ Ω | E ∈↑ I(ω′)} ∈↑ I(ω).
Thus, there is F ∈ I(ω) such that F ⊆ E ′. Since I is reflexive, ω ∈ F ⊆ E ′. If
ω′ ∈ E ′ then ω′ ∈ {ω′′ ∈ Ω | E ′ ∈↑ I(ω′′)}. That is, if ω′ ∈ E ′ then there is G ∈ I(ω′)
such that G ⊆ E ′. Thus, E ′ ∈ JI . Since ω ∈ E ′, I have E ′ ∈ IJI(ω). By reflexivity,
E ′ ⊆ E. Thus, E ∈↑ IJI(ω).

Remark A.7. Consider the belief operator B defined as in Equation (A.1) in Remark
A.4. Let J := JB = {∅, {ω2}, {ω1, ω3},Ω}. I get the information correspondence IJ
as in Equation (A.2) in Remark A.5. Then, ↑ IJ is given as in Equation (A.3) in
Remark A.5. The arguments in Remark A.5 show that, while IJ is strongly transitive,
↑ IJ is not.

Remark A.8. Let (Irt,≤rt) be the collection of reflexive and transitive information
correspondences with the following pre-order as in Remark A.6: I ≤rt I ′ if and only
if, for each ω ∈ Ω and E ∈ I(ω), there is F ∈ I ′(ω) such that F ⊆ E. In other
words, ↑ I(·) ⊆↑ I ′(·). Let (J,⊆) be the space consisting of collections of events
J (∈ P(D)) satisfying Condition (5). Define α : (Irt,≤rt) → (J,⊆) by α(I) = JI as
in Equation (7). I show that the mapping α is order-preserving. Let I ≤rt I ′, and
take E ∈ JI . If ω ∈ E then there is F ′ ∈ I ′(ω) such that F ′ ⊆ E. Thus, E ∈ JI′ .
Next, define β : (J,⊆) → (I,≤rt) by β(J ) = IJ as in Equation (6). I show that β is
order-preserving. If J ⊆ J ′, then IJ (·) ⊆ IJ ′(·). This implies IJ ≤rt IJ ′ .

Now, I establish (α, β) is a Galois connection, i.e., I ≤rt β(J ) if and only if
α(I) ⊆ J for any (I,J ) ∈ Irt × J. If I ≤rt β(J ) = IJ then α(I) ⊆ α ◦ β(J ) =
JIJ = J . Conversely, if α(I) ⊆ J then I ≤rt β(J ) because ↑ I =↑ IJI ≤rt↑ IJ .
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