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1. INTRODUCTION

In an important paper, Cremer [3] has explored the following setting:
Overlapping generations of finitely lived players play a prisoners’ dilemma
type game. Even though every player is finitely lived, there is an equi-
librium in which all but the oldest player cooperate (this is true provided
cooperation is sufficiently efficiency-enhancing). The cooperative equilib-
rium is sustained by the threat that cooperation would end as soon as one
player deviated; the promise that cooperation will continue is credible since
the “organization” in which the game is played lives forever and so there
is no last period; future generations could always punish deviators who are
still alive in the next period.

In this note, we explore the robustness of Cremer’s result if we introduce
a small amount of uncertainty in the model. This extension is important
because it is very unlikely that in economically relevant settings, the param-
eters of the game remain constant forever. Rather, tomorrow’s parameters
are a random variable for today’s players. We find that, for a very large
class of stochastic processes, even a very small uncertainty may decrease
substantially the range of parameters for which cooperation can be sus-
tained as an equilibrium. This is true even if it is extremely unlikely that
noncooperation becomes more profitable than cooperation in the future.

Suppose for example that the costs of cooperation follow a random walk.1

If the costs of cooperation become too high, then the young player will not
cooperate. This implies that there will always be a “threshold cooperator”,
a person who is supposed to cooperate, but if the costs increase next pe-
riod, the next young player will not cooperate, and so the first player will
not receive any benefit from cooperating. For the threshold cooperator to
have incentives to keep cooperating, the payoff if everything goes well and
cooperation does not terminate in the next period must be quite high. This
is possible only if the threshold is reached for parameters for which coop-
eration would be very efficient. Consequently, there are other parameters
for which cooperation would still be efficient, but is not an equilibrium.

Our result relates to one of the central questions in modelling repeated
games. The vast majority of papers which use repeated games assume that
players are infinitely lived and play the same stage game in every period.
Both assumptions are certainly not appealing because they depict reality,
but are made rather because they facilitate the analysis and appear quite
innocuous: Adding sufficiently small uncertainty to a game with infinitely
lived players does not change the equilibrium considerably; also, a model
of overlapping generations of finitely lived players generates (under certain
conditions) results which are very similar to the standard case of infinitely

1Our results in the main text hold for a considerably larger class of stochastic pro-
cesses.
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lived players and no uncertainty. Only when we change both of these as-
sumptions, we can see that in an OLG model, the equilibrium in games
with uncertainty does not necessarily converge to the equilibrium in the
same game under certainty, as the uncertainty becomes small.2

While our first result casts some doubts on the robustness of cooperation
in OLG models, our second major result is more positive: Under certain
conditions, efficient cooperation can (almost) be restored if the level of
cooperation can be adjusted continuously, and costs and benefits of co-
operation decrease proportionally. To uphold efficient cooperation, society
has to use flexible cooperation rules: When cooperation is only slightly bet-
ter than non-cooperation, the level of cooperation that is required from an
individual in order not to trigger punishment, decreases. This ensures that
there is no single “last” cooperator who would suffer a lot if cooperation
were to end in the next period and who has to be compensated accord-
ingly in case cooperation does not end. We show that the cooperation
technology is decisive: Full cooperation as in the deterministic case can be
approximated if there are what we call decreasing or constant returns to
cooperation, while the same is not possible for increasing returns.

The first analysis of cooperation in OLG models using noncooperative
game theory is Hammond [7].3 Several other papers have analyzed coop-
eration in OLG games. Kandori [8] proves a folk theorem for these games:
If the players’ lives overlap sufficiently long and there is no discounting,
any individually rational payoff can be (approximately) achieved as aver-
age payoff in an equilibrium of the OLG game. A similar result is also
obtained by Smith [12] and Salant [10]. The difference between these pa-
pers and the present one is that they analyze a deterministic game while
our game is stochastic: The costs of cooperation change every period by a
small amount. Another difference between the present paper and the works
of Kandori [8], Smith [12] and Dutta [4] is that we do not prove a folk (or
anti-folk) theorem, but rather analyze in which cases the allocations, which
can be obtained in the equilibrium of the deterministic OLG game and the
stochastic OLG game with very little uncertainty, coincide.

Esteban and Sakovics [6] analyze the role of “institutions” in facilitating
cooperation in OLG games. In their model, an institution creates a switch-
ing cost that must be paid by the young generation if they choose to alter
the level of cooperation. In our model, there is no such switching cost that
could stabilize cooperation.

Our paper proceeds as follows. The next section will present the ba-
sic model which is very near in spirit to Cremer’s paper and shows that

2We will make all these notions more precise in the paper.
3The problem of cooperation in OLG economies has also been analyzed extensively

from a cooperative point of view. For this approach, see Esteban [5] and the sources
cited there.
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the parameter space for which cooperation can be achieved in equilibrium
shrinks discontinuously if a small uncertainty is introduced and is strictly
smaller than the set of parameters for which cooperation can be achieved as
an equilibrium in the deterministic setting. In Section 3, we analyze what
happens if the level of cooperation can be varied in a continuous way; we
define a notion of returns to scale in cooperation and show that the efficient
level of cooperation can be approximated in the case of non–increasing re-
turns to cooperation while the same is not possible for increasing returns.
The last section concludes.

2. THE MODEL
2.1. Basic setup and results

Consider the following, very simple, cooperation game between two gen-
erations. The young player can either “cooperate” which costs γ and gives
the old player a benefit normalized to 1, or he can “not cooperate” which
costs nothing for the young player and also creates no benefit for the old
player. In the next period, the old player leaves the stage and is replaced
by the (formerly) young player; a new young player enters the system.
There is no discounting between periods, so cooperation is efficient as long
as γ < 1, and we assume that this inequality is satisfied. We assume that
all players are risk neutral.4

With an infinite sequence of players who enter the system one after an-
other, there is a subgame perfect equilibrium in which all players cooperate
in their period as young player. If all players play the following strategy:
“Cooperate, as long as every player before you has cooperated as a young
player; otherwise, do not cooperate.”, then it is in each young player’s self
interest to cooperate, because this now costs γ, but brings a benefit of 1 in
the next period.5

We depart from Cremer’s deterministic setting by assuming that γ is
not constant for all times, but rather follows some quite general Markov
process. The only condition we require for our main result in this section
to hold is what we call “stochastic monotonicity” of the process: This
assumption means that the probability that the process increases in the
next period over some value γ is larger if the process has already reached
that value than if today’s value is smaller than γ.

4In a previous version of this paper which is available from the authors upon request,
we consider the case where players are risk averse.

5In general, the result of Cremer [3] is that only “almost” full cooperation can be
achieved; there is no way to induce an old player to do something “cooperative” (do
something which decreases his utility but benefits the society in general), as there is no
further period in which this player could be punished for not cooperating. Here, the old
player does not need to cooperate, and hence even the first best can be achieved as an
equilibrium.
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Definition 2.1. A stochastic process is a stochastically monotone Markov
process if it is a Markov process and the following condition holds for all γ
and γ with γ > γ:

Prob(γt > γ|γt−1 = γ) ≥ Prob(γt > γ|γt−1 = γ) (1)

This is a rather weak condition which is satisfied, for example, if γ
follows a random walk or a mean reverting process.

In Cremer’s game where γ is constant, cooperation can be enforced by the
threat that, if a player deviates, cooperation terminates for all time after-
wards. Here however, γ fluctuates and after increasing above the threshold
(call it γT ) can fall again below it. Hence, such a harsh punishment does
not seem reasonable. For the formulation of the equilibrium, it is useful to
define a “correct behavior” which does not lead to punishment, as follows:

Definition 2.2. The “correct behavior” for the young player in the first
period t = 1 is to cooperate if and only if γ1 ≤ γT . The correct behavior
for the young player at time t > 1 is to cooperate if and only if γt ≤ γT

and the young player in the previous period t− 1 behaved correctly.

We will look for equilibria in which all players play the same strategy,
“behave correctly (given γT )”. We will be particularly interested in γ∗,
the greatest γT such that the strategy profile in Definition 2.2 is still an
equilibrium, and we will therefore in the following just focus on γ∗ if no
confusion can arise.

Correct behavior as defined here requires to punish a predecessor who
stopped to cooperate although γ was smaller than γ∗, or a predecessor who
did not punish his predecessor although this would have been his task. On
the other hand, a player who did not cooperate because γ increased over
γ∗ will not be punished if γ decreases again when he is old. Note that
a simple “tit for tat” strategy profile (“cooperate if and only if γt ≤ γ∗

and your predecessor cooperated”) might be a Nash equilibrium, but is not
subgame perfect:6 If all players keep to the tit for tat strategy profile, but
one player deviated, then it is not in the self interest of his successor to
actually perform the punishment, since this would mean that he would be
punished in the next period, too. Hence we need the more complicated
strategy defined above for a subgame perfect equilibrium.

The following proposition characterizes γ∗ and shows that cooperation
is not sustainable for all values for which it can be sustained in the deter-
ministic case.

Proposition 2.1. Suppose that the cost of cooperation develops accord-
ing to a stochastically monotone Markov process, and has Prob(γt > 1|γ0) >

6This was shown by Bhaskar [1].
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0 for all γ0 and at least some t. Then the most cooperative subgame perfect
equilibrium is defined implicitly by the greatest solution of

1− Prob(γt > γ∗|γt−1 = γ∗) = γ∗. (2)

Moreover, γ∗ < 1.

Proof. The threshold cooperator pays a cost of cooperation equal to
γ∗ and receives a benefit of 1 only in the case that γt ≤ γ∗, that is, with
probability 1 − Prob(γt > γ∗|γt−1 = γ∗); the largest γ∗ which gives the
threshold cooperator a non-negative return for cooperation is then given by
(2). Moreover, the monotonicity condition (1) implies that for γt−1 < γ∗,
Prob(γt > γ∗|γt−1) is smaller and hence an individual who cooperates
in this case gets a positive payoff which is strictly greater than zero, the
payoff which can be achieved through non-cooperation. Finally, the as-
sumptions that Prob(γt > 1|γ0) > 0 for all γ0 and some t, and of stochas-
tic monotonicity, imply that the greatest solution of (2) satisfies γ∗ < 1.

Note that the condition that for every γ, we have Prob(γt > 1|γ0 =
γ) > 0 for some t, is important: Suppose that the γ process has an upper
reflecting barrier at ¯̄γ such that γ can never increase above ¯̄γ. If ¯̄γ < 1
then there is always an equilibrium in which people cooperate: If all players
believe that cooperation will continue for every value of γ that can be
reached, it is always in their interest to cooperate.

2.2. Examples
In this subsection, we analyze two examples of stochastically monotone

Markov processes in order to illustrate proposition 2.1.
Random walk. Suppose the costs of cooperation evolve according to

the following random walk:

γt+1 =

{
γt + h with probability p

γt − h with probability 1− p
. (3)

Since the probability that γ increases is always constant for this process,
the (unique) solution of (2) is γ∗ = 1− p. The intuition behind this result
is simple: The threshold cooperator receives a reward in the next period
only with probability 1 − p, i.e. if costs go down in the next period; for
him to be willing to cooperate, it must be true that −γ + (1− p) ≥ 0.

There are some points worth mentioning here. First, note that the ran-
dom walk is not stationary: For p ≥ 1/2, it is eventually (almost) certain
that there must be a date when cooperation breaks down. Notice how the
result differs from a model where the cost of cooperation increase determin-
istically and will eventually become greater than 1. In the deterministic
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model, simple backwards induction shows that cooperation will break down
immediately, because otherwise, there would be a last person who is sup-
posed to cooperate, but does not receive any benefits. In the stochastic
model, there is no single individual who is sure to be the last one who is
supposed to cooperate. Even the threshold cooperator has a probability of
1 − p that cooperation continues in the next period. Therefore, coopera-
tion can be sustained for low values of γ that make cooperation particularly
beneficial.

On the other hand, if p < 1/2 and h is sufficiently small, the probability
that γ increases above 1 goes to zero for any γ0 < 1. Nevertheless, there
are values of γ < 1 for which cooperation is not feasible; this is in contrast
to a situation with deterministically decreasing costs where cooperation is
feasible for all γ ≤ 1. Consider a situation where γ0 = 0.7 and p = 0.4. The
cooperation threshold γ∗ = 1− p = 0.6 is independent of h. In particular,
h could be very small. The probability that the stochastic process ever
increases above 1 is then almost zero. Nevertheless, there would be no
cooperation in the beginning, as long as γt > 0.6.

Finally, consider two random walks, one as the one given in (3) with
p = 1/2, and the other one as follows:

γt+1 =

{
γt +

√
2h with probability 1/3

γt −
√

2h/2 with probability 2/3
.

These two processes have the same expected drift of zero and the same
variance per period, h2. The law of large numbers then implies that the
distribution of, say, γ1000 given γ0 is approximately normally distributed
with expected value γ0 and variance 1000h2 for both processes. Neverthe-
less, the two processes have very different cooperation thresholds: For the
first process, γ∗ = 1/2, for the second one, γ∗ = 2/3. This indicates that
in general, the exact size of the cooperation threshold is very sensitive to
the particular stochastic process governing γ.

AR(1) process. We now consider the following AR(1) process:

γt+1 = αγt + εt, (4)

where εt ∼ N(µ, σ2) for all t and 0 < α < 1. Other than the random
walk above, this process has a stationary (long run) distribution, which
is the normal distribution N(µ/(1 − α), σ2/(1 − α2)).7 This example will
therefore illustrate that our results do not require non-stationarity of the
stochastic process of γ.

7This claim is easy to verify: If γt has the claimed distribution, γt+1 is again normally

distributed, with expected value α µ
1−α

+ µ = µ/(1 − α) and variance α2 σ2

1−α2 + σ2 =

σ2

1−α2 .
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Proposition 2.2 characterizes how the cooperation threshold depends on
the parameters of the stochastic process. Intuitively, both a larger α and
a larger µ increase the probability of an upward move in the next period,
for each possible state of the process. For the threshold cooperator, this
means a higher risk of a cooperation breakdown and hence the cooperation
threshold must be lower. The effect of σ is ambiguous.

Proposition 2.2. For all (α, µ, σ), γ∗ ∈ (0, 1). The threshold γ∗ is a
decreasing function of α and µ, and may increase, decrease or stay constant
as σ increases.

Proof. Applying proposition 2.1 to the process given in (4), γ∗ is the
largest zero of

Z(γ) =
∫ (1−α)γ

−∞

1√
2πσ

e−
(x−µ)2

2σ2 dx− γ. (5)

Since Z is continuous, and Z(γ) > 0 for all γ ≤ 0 and Z(γ) < 0 for all
γ ≥ 1, we have 0 < γ∗ < 1. For the second claim, observe that, although
Z need not be decreasing everywhere, it certainly must be so at its largest
zero, γ∗. We will now show that an increase of α or µ shifts the whole
function Z downward, and therefore γ∗ decreases in these two parameters.
Differentiating (5) with respect to µ yields

∂Z

∂µ
= − 1√

2πσ
e−

[(1−α)γ−µ]2

2σ2 < 0, (6)

and differentiating (5) with respect to α yields ∂Z
∂α = γ ∂Z

∂µ < 0. Finally, the
sign of the derivative of Z with respect to σ,

∂Z

∂σ
=

µ− (1− α)γ√
2πσ2

e−
[(1−α)γ−µ]2

2σ2 , (7)

changes from positive to negative at γ = µ/(1−α). Therefore, no clear cut
comparative static results with respect to σ can be obtained, and Figure 1
shows γ∗ as function of σ, for α = 0.5 and µ = 0.3.

As another example, consider the stochastic process with α = 3/4,
µ = 1/8 and σ = 0.1. With this process, the stationary distribution of
γ is normal with mean 0.5 and variance 16/700; it places a probability of
about 99.95% on γ < 1, so cooperation would be efficient in most periods.
However, the highest zero of (5) is γ∗ = 0.5, the mean of the distribution,
and hence cooperation can only be sustained in one half of the periods in
the long run.
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FIG. 1. γ∗ as function of σ

3. RETURNS TO SCALE AND EQUILIBRIUM
COOPERATION

The results of the last section have shown that cooperation ceases to be
an equilibrium in the stochastic game for a lower threshold of cooperation
costs than in the deterministic game. From this perspective, Cremer’s
result of almost complete cooperation appears to be very fragile. However,
in this section, we will identify a setting in which complete cooperation can
(almost) be achieved as an equilibrium in a stochastic OLG model through
the use of “flexible cooperation rules”. The most cooperative equilibrium in
the stochastic game can approximate the most cooperative equilibrium in
the deterministic game, if the size of the shock per period is small and the
level of cooperation can be reduced to a positive level below full cooperation
and the corresponding benefits decrease either proportionally or less than
proportionally. However, approximately full cooperation is not possible, if
benefits decrease more than proportionally once the level of cooperation is
reduced.

The results of this section are limit results in the sense that the uncer-
tainty with respect to γ is very small. We find it therefore useful to specify a
particular stochastic process for γ, the symmetric random walk (p = 1/2 in
equation (3)); the step size h provides a convenient measure of uncertainty,
and we will let h go to 0. The loss in generality through this assumption
is relatively small: In order to be comparable with the deterministic (i.e.,
static) setting, the stochastic process should have an expected increment
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of zero in each period. At the cost of additional notation, the result gen-
eralizes to other stochastic processes with a per period increment that has
an expected value of zero and a sufficiently small variance.

The technology of the basic model is an extreme case of what we call
increasing returns to scale in cooperation. Only two levels of cooperation
(0 and 1) were feasible for the young player; economically, this is equiv-
alent to saying that there are all levels of cooperation between 0 and 1
possible, but there is only a benefit for the old player if there is full co-
operation. Of course, the scale economies are limited here by the fact
that a level of cooperation greater than 1 is not possible.8 Other possible
cooperation technologies are constant returns to scale (CRTS) in coopera-
tion: Decreasing the level of cooperation, measured by the costs incurred
by the young player, decreases the benefit received by the old player pro-
portionally. With decreasing returns to scale (DRTS), decreasing the level
of cooperation decreases the benefit received by the old player less than
proportionally.

Definition 3.3. Let the cost of cooperation be γc, where c ≤ 1 is the
level of cooperation, and let f(c) be the benefit of the old person, with f(0) =
0 and f(1) = 1.9 If f is strictly convex, we speak of increasing returns to
scale (IRTS) in cooperation; if f is linear, we have constant returns to scale
(CRTS); and if f is strictly concave, we have decreasing returns to scale
(DRTS).

In a deterministic setting, let us define the steady state efficient level of
cooperation ce(γ) as the one which maximizes a young player’s expected
lifetime utility:10

ce(γ) := arg max
z∈[0;1]

−γz + f(z) (8)

If f has IRTS or CRTS, ce = 1 for γ ≤ 1 and ce = 0 for γ > 1. If f has
DRTS, ce(γ) takes the value 1 for γ < γ′, is decreasing in [γ′; γ′′] and takes

8Perhaps, it would be more precise to speak of a technology which first exhibits
increasing returns to scale (near zero cooperation) and then decreasing returns to scale.
In the interest of brevity, we will be less precise.

9This is just a normalization, for comparison purposes.
10There are very many Pareto efficient plans, also in the deterministic setting; for

example, to cooperate only in all even periods is clearly the best what can happen to
all generations born in odd periods since they themselves do not have to contribute
when they are young and receive the benefits when they are old. Even a restriction to
individually rational plans does not yield a unique Pareto efficient level of cooperation
since for example starting to cooperate only in period 2 is also a Pareto optimum because
the generation born in period 1 cannot be made better off. The steady state efficient
level of cooperation is hence only one particularly simple and appealing Pareto optimum.
For more results on the notion of efficiency in stochastic OLG models, see Messner and
Polborn [9].
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the value 0 for γ > γ′′, where γ′ is defined by −γ′ + f ′(1) = 0 and γ′′ is
defined by −γ′′ + f ′(0) = 0.

In the following, we will analyze cooperation functions that specify the
“correct behavior” for each γ. We require that a cooperation function
must be incentive compatible; this means that it must always be in the
self interest of the young player to transfer c(γt) to the old player, given
that the next player also keeps to the cooperation rules defined by c. If
c(γ) = 0, the cooperation function is trivially incentive compatible at the
point γ since “cooperating” costs nothing.

Definition 3.4. A cooperation function c : R+ → [0; 1] is called in-
centive compatible at point γ if and only if either c(γ) = 0 or c(γ) > 0
and

1
2
f(c(γ + h)) +

1
2
f(c(γ − h)) ≥ γc(γ). (9)

A cooperation function is incentive compatible if it is incentive compatible
for all γ.

There exists at least one incentive compatible cooperation function, since
c(γ) = 0 for all γ is incentive compatible, independent of the functional
form of f(·). Note that any incentive compatible cooperation function must
have c(γ) = 0 for all γ > 1 in case of IRTS or CRTS and for all γ ≥ γ′′

in case of DRTS; otherwise, the young player could benefit by deviating.
A cooperation function is called the greatest one if it enforces the highest
possible level of cooperation for all γ. Formally:

Definition 3.5. An incentive compatible cooperation function cG is called
the greatest cooperation function if for every incentive compatible coopera-
tion function c̃ we have cG(γ) ≥ c̃(γ) for all γ.

While it is intuitive that the greatest cooperation function corresponds
to the “best” equilibrium for the society since it enforces the maximum
amount of cooperation feasible in this society under the constraint that all
individuals must cooperate voluntarily, it is not immediately clear that a
greatest cooperation function exists. However, Proposition 3.3 (1) shows
that the pointwise supremum of two incentive compatible cooperation func-
tions is itself incentive compatible, and hence a greatest cooperation func-
tion exists.

Under constant returns to scale, we can construct an incentive compat-
ible cooperation function that decreases continuously from a cooperation
level of one to a level of zero. For γ near to 1, this incentive compatible
prescribes a level of cooperation of c(γ) < 1. If h is sufficiently small and
c is continuous, a player who keeps to the stipulated equilibrium receives
a utility of −γc(γ) + (1/2)c(γ + h) + (1/2)c(γ − h) ≈ (1 − γ)c(γ). The
key observation is that this utility is linear in the level of cooperation c;
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hence, if a level of cooperation of 1 (that is certain in both periods of an
individual’s life) is better for individuals than what they can achieve by not
cooperating, then any positive level of cooperation smaller than 1 is also
better for them than what they would get by not cooperating. Even though
partial cooperation is not optimal, it is yet better than no cooperation at
all (for this parameter γ′ near to 1). The same applies, a fortiori, if there
are decreasing returns to cooperation.

The same is not necessarily true if there are IRTS: Then a reduction
in the contribution reduces the benefits more than proportionally. Hence,
−γ+f(1) = 1−γ > 0 does not imply that we must have −γc(γ)+f(c(γ)) >
0 for c(γ) < 1; partial cooperation can be worse than no cooperation at
all, even though full cooperation would be worthwhile. This is the problem
which prevents the construction of an incentive compatible cooperation
function which is very near to the efficient level in the case of IRTS. These
results are formally stated in Proposition 3.3.

Proposition 3.3. Consider the following technology: Cooperating at the
level c costs the young player γc, and brings the old player a benefit of f(c),
where f(0) = 0 and f(1) = 1.

1.A greatest cooperation function exists. It is the pointwise supremum of
all incentive compatible cooperation functions.

2.If f is linear (CRTS), then, for every ε > 0, there exists h̄ > 0 and
a cooperation function c such that c is incentive compatible for all h ≤ h̄,
and µ ({γ : c(γ) 6= ce(γ)}) ≤ ε, where µ(·) is the Lebesgue measure.

3.If f is a strictly concave and twice differentiable function (DRTS), then
for every ε > 0 there exists h̄ > 0 and a cooperation function c, such that
c is incentive compatible for all h ≤ h̄, and ce(γ)− c(γ) ≤ ε for all γ.

4.Let f be a strictly convex function (IRTS); then the efficient level of
cooperation is ce = 1 for γ ≤ 1 and ce = 0 otherwise. The greatest cooper-
ation equilibrium has no cooperation for γ ≥ γ∗, where γ∗ < 1− ε < 1.

Proof. See Appendix.

A limitation of flexible cooperation rules as used in Proposition 3.3 is
that with flexible cooperation rules, all players must be able to observe the
preceding players’ actions very closely. If individuals can only distinguish
between “full cooperation” and “not full cooperation”, the greatest incen-
tive compatible cooperation function is given by the solution of the basic
model. Hence, flexibility in the level of cooperation and non–increasing
returns to scale in cooperation alone will not necessarily yield the result
that the efficient level of cooperation can almost be achieved, but it is also
necessary that all individuals are able to observe their predecessors and the
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state variables they faced exactly and that they are able to implement a
rather complicated strategy profile.

An example that plausibly satisfies the assumption of non-increasing re-
turns to scale in cooperation is the consumption-loan model introduced by
Samuelson [11] and underlying the pay as you go pension scheme. Proposi-
tion 3.3 suggests that cooperation in this model is quite stable with regard
to small uncertainty about the cost of cooperation.

On the other hand, increasing returns to scale in cooperation, as a result
of fixed cost or a minimum efficient level of cooperation, will result in a
breakdown of cooperation before this is socially optimal. It is hard to tell in
general whether for example cooperation within a firm or within families is
usually characterized by increasing or decreasing returns; both possibilities
seem plausible for specific applications.

4. CONCLUSION

This paper analyzes an overlapping generations model of cooperation in
the spirit of Cremer [3], with the addition that we assume that cooperation
costs are not fixed but rather follow a random walk. We have shown that
in the basic stochastic model, the introduction of even a small uncertainty
in the cost of cooperation decreases considerably the range of parameters
for which cooperation can be sustained in equilibrium in this economy.

Our second major result is to identify a setting in which almost the same
level of cooperation can be sustained in equilibrium in the stochastic case
as in the deterministic case. The assumption required for this result to
go through is that the level of cooperation is flexible and there are non–
increasing returns to scale in the cooperation technology. Our result hence
indicates that cooperation will be more stable in environments where the
level of cooperation can be adjusted continuously.

APPENDIX: PROOF OF PROPOSITION 3.3.

1. Let cG be the pointwise supremum of all incentive compatible co-
operation functions; we have to show that cG is incentive compatible. For
ε > 0 and γ′ ∈ [0; 1], let cε

γ′ be an incentive compatible cooperation function
which satisfies

γ′(cG(γ′)− cε
γ′(γ

′)) = ε. (A.1)

(Note that cε
γ′ need not exist for every pair (γ′, ε), but if cG is not incentive

compatible at γ′, then there exist an infinite sequence of {ε}, converging
to zero, such that all cε

γ′ exist.) Since cG is the supremum of all incentive
compatible cooperation functions and cε

γ is itself incentive compatible, we
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know that

−γcε
γ(γ) +

1
2
f(cG(γ + h)) +

1
2
f(cG(γ − h)) ≥

−γcε
γ(γ) +

1
2
f(cε

γ(γ + h)) +
1
2
f(cε

γ(γ − h)) ≥ 0 (A.2)

must hold for all ε > 0. By construction, the term to the left of the first
inequality sign converges for ε → 0 to

−γcG(γ) +
1
2
f(cG(γ − h)) +

1
2
f(cG(γ + h)). (A.3)

Hence, this term cannot be negative, and therefore cG must be incentive
compatible.

2. If f has constant returns to scale, the efficient level of cooperation is
given by

ce(γ) =
{

1 for 0 ≤ γ ≤ 1
0 for γ > 1.

(A.4)

For a given step size h, let n = 1
2 (−1− ln h

ln 2 ) such that h = 1
22n+1 . Define

the following sequence of cooperation functions:

cn(γ) =


1 for γ ≤ 2n+1−1

2n+1

1− m
2n for 2n+1−1

2n+1 + m−1
22n+1 < γ ≤ 2n+1−1

2n+1 + m
22n+1 ,m ∈ {1, 2, ..., 2n − 1}

0 for γ ≥ 1
(A.5)

For h → 0, this sequence converges to ce in the sense described in the
proposition. We have to show that it is also incentive compatible. It is
clear that cn is incentive compatible for γ < 2n+1−1

2n+1 − hn and γ > 1.
Next, consider the case that 2n+1−1

2n+1 + m−1
22n+1 < γ ≤ 2n+1−1

2n+1
m

22n+1 for m ∈
{1, 2, ..., 2n − 1}. In that case, the expected payoff under cooperation is
(1− γ)(1− m

2n ) ≥ 0, while not cooperating would yield only 0.
Finally, consider the last individual who is supposed to contribute the full
amount of 1: 2n+1−1

2n+1 − hn < γ ≤ 2n+1−1
2n+1 . For him, the expected utility is

−γ +
1
2

+
1
2

(
1− 1

2n

)
= 1− 1

2n+1
− γ ≥ 0, (A.6)

where equality is achieved only if γ = 2n+1−1
2n+1 . Hence, cn(γ) is incentive

compatible.
3. We will prove this part of the proposition in two steps. First, fix ε,

and define γ∗ implicitly by ce(γ∗) = ε. Define a set of piecewise linear
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-

6

γ′

1

γ

ce(γ′)− ε

ce

C
C
C
C
C
C
C

cε
γ′

{ε

FIG. 2. Construction of cε
γ′

cooperation functions, parameterized by γ′, as follows:

cγ′(γ) =

 ce(γ′)− ε for γ ≤ γ′

ce(γ′)− ε− a(γ − γ′) for γ′ < γ ≤ γ̂
0 for γ > γ̂

, (A.7)

where a = maxγ≤γ∗ −c′(γ) and γ̂ is implicitly defined by ce(γ)− ε−a(γ̂−
γ) = 0.1 This function is composed of three linear parts and constructed
such that it always lies below ce (see Figure 2).

Claim 1: There exists h̄ > 0 such that for all h < h̄ and all γ′, the
function cγ′ is incentive compatible.

Proof of Claim 1: First, it should be clear that cγ′ is incentive compatible
for all γ < γ′−h and γ ≥ γ̂. To save on notation in the following, we define
k ≡ cγ′(γ). We now show incentive compatibility for γ ∈ (γ′ − h, γ′) and

1Notice that a exists and is finite because the derivative of ce is continuous for f
strictly concave and twice differentiable.
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h → 0. In this interval, cooperation yields

−γk +
1
2
f(k) +

1
2
f(cγ′(γ + h)) ≥ −γk +

1
2
f(k) +

1
2
f(k − ah). (A.8)

For h → 0, this converges to −γk + f(k), which is strictly greater than
0, because of optimality considerations (ce(γ) > k > 0, and the objective
function is strictly concave).

For γ ∈ [γ′; γ′ + h], cooperation yields

−γk+
1
2
f(cγ′(γ−h))+

1
2
f(cγ′(γ+h)) ≥ −γk+

1
2
f(k)+

1
2
f(k−ah). (A.9)

This converges for h → 0 to −γk + f(k), which is strictly greater than
0, by the same argument as above. Hence, for sufficiently small h, cγ′ is
incentive compatible for γ ∈ [γ′; γ′ + h].

For γ ∈ [γ′ + h; γ̂ − h], cooperation yields

−γk +
1
2
f(cγ′(γ − h)) +

1
2
f(c′γ(γ + h)) = −γ′k + f(k) + O(h2) (A.10)

which is strictly greater than 0 for h → 0 (by the same argument as above),
and hence, c′γ is incentive compatible for γ ∈ [γ′+h; γ̂−h] and sufficiently
small h.

For γ′ ∈ [γ̂ − h; γ̂], cooperation yields2

−γk +
1
2
f(0) +

1
2
f(cγ′(γ − h)) = −γk +

1
2
f(k − ah− k + ah) +

1
2
f(k + ah)

= −γk + f(k) +
1
2
f ′(k) · (ah− k) + O(h2)

= −γ̃k + f(k) + (γ̃ − γ)k +
1
2
f ′(k) · (ah− k) + O(h2) (A.11)

where γ̃ is defined by ce(γ̃) = k; The first two terms in (A.11) are greater
than 0 by optimality (ce(γ̃) = k and not 0). So, there must exist a h̄ > 0
such that for h < h̄ and all k < ah, the expression in (A.11) is positive,
either because of the third or the fourth term. This completes the proof of
claim 1.

Claim 2: The function c̃(γ) is incentive compatible:

c̃(γ) =
{

ce(γ)− ε for 0 ≤ γ < γ∗

0 for γ ≥ γ∗
.

Claim 1 has shown that all {cγ} are incentive compatible, and because
c̃(γ) is the pointwise supremum of all {cγ}, the first part of this propo-
sition implies that c̃(γ) is incentive compatible, provided that h̄ from the

2For this interval, the step downward leads to a cooperation level of 0.
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preceding claim can be chosen independently of γ, so that all {cγ} are
incentive compatible under the same step size h < h̄.

Let h̄(γ) be the supremum over all stepsizes under which cγ is incen-
tive compatible. Continuity of the involved functions (f , ce and cγ) im-
plies that h̄(γ) must vary continuously with γ. It follows therefore that
minγ∈[0,γ∗] h̄(γ) exists, and because h̄(γ) > 0 for all γ ∈ [0, γ∗], it must be
strictly positive.

4. It should be clear that it is efficient to cooperate fully if and only if γ ≤
1, since f is strictly convex and hence f(c) < c. We prove the remainder
of this part in two steps, and by contradiction. First, we show that there
cannot be a continuous incentive compatible cooperation function which is
arbitrarily close to ce (in the sense of the proposition). Hence, if the efficient
cooperation function can be approximated at all, this has to be done by
a function which decreases in discrete steps (rather than continuously).
However, we then show that the ε-neighborhood of ce (again as defined in
the proposition) does not contain any incentive compatible step function
either.
Claim 1: There exists ε̄ > 0 such that, for all ε < ε̄, the ε-neighborhood
of ce does not contain a continuous cooperation function that is incentive
compatible for h → 0.

Proof of Claim 1: For each incentive compatible, continuous cooperation
function c, the utility of a cooperator is given by

−γc(γ) +
1
2
f(c(γ + h)) +

1
2
f(c(γ − h))

and converges to −γc(γ) + f(c(γ)) for h → 0. Suppose that, contrary to
the hypothesis, there is a sequence 〈ck〉 of continuous incentive compatible
functions that converge to ce in the sense specified in the proposition, and
let c̃ be any number in (0, 1). Then the sequence 〈γk〉 implicitly defined
by the condition ck(γk) = c̃ must converge to 1,3 which in turn implies
that −γkck(γk) + f(ck(γk)) → −c̃ + f(c̃) < 0. Hence, there must be a k̄
such that for k > k̄ the functions ck cannot be incentive compatible. By
the same arguments, there cannot be an incentive compatible cooperation
function near to ce that is decreasing continuously only over some part of
the range, either.

We will now consider an approximation of ce by step functions. We will
show that, the closer the approximation, the smaller must be the size of the
steps in which the corresponding cooperation function decreases. We will
show that the stepsize converges to zero and hence the limiting function
must be continuous. It then follows from the result in Claim 1 that an

3Notice that γk is well defined, since ck is (by assumption) continuous for every k.
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arbitrary close approximation of ce is not possible. In the following, denote
the size of the ith step downward by si, so that the “first partial cooperator”
is supposed to contribute c(γ′+h) = 1−s1, where γ′ = max{γ : c(γ) = 1}.

Claim 2: For γ′ → 1, si → 0 for all i.
Proof of Claim 2: Since the player at γ = γ′ must be willing to cooperate,
we have −γ′ + 1

2f(1) + 1
2f(1− s1) ≥ 0. As f is strictly convex, and hence

f(c) < c for all 0 < c < 1, the left hand side of this inequality is smaller
than −γ′ + 1− 1

2s1; this implies that s1 ≤ 2(1− γ).
The cooperator at γ′+ ih has expected utility −(1−

∑i
j=1 sj)(γ′+ ih)+

1
2f(1 + si −

∑i
j=1 sj) + f(1 −

∑i
j=1 sj − si+1). Since this is lower than

−(1−
∑i

j=1 sj)(γ′+ih)+1−
∑i

j=1 sj+ 1
2 (si−si+1), a necessary condition for

expected utility to be non-negative is si−si+1 ≥ −(1−γ′−ih)(1−
∑i

j=1 sj).
Hence, if si goes to zero for γ′ → 1, so does si+1. This shows that, because
s1 → 0, all other steps go to zero as well, as γ′ → 0.
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