
Chapter 1

Introduction to Recursive Methods

These notes are targeted to advanced Master and Ph.D. students in economics. They

can be of some use to researchers in macroeconomic theory. The material contained in

these notes only assumes the reader to know basic math and static optimization, and an

advanced undergraduate or basic graduate knowledge of economics.

Useful references are Stokey et al. (1991), Bellman (1957), Bertsekas (1976), and

Chapters 6 and 19-20 in Mas-Colell et al. (1995), and Cugno and Montrucchio (1998).1

For applications see Sargent (1987), Ljungqvist and Sargent (2003), and Adda and Cooper

(2003). Chapters 1 and 2 in Stokey et al. (1991) represent a nice introduction to the topic.

The student might find it useful reading these chapters before the course starts.

1.1 The Optimal Growth Model

Consider the following problem

V ∗(k0) = max
{kt+1, it, ct, nt}

∞

t=0

∞∑

t=0

βtu(ct) (1.1)

s.t.

kt+1 = (1− δ)kt + it

ct + it ≤ F (kt, nt)

ct, kt+1 ≥ 0, nt ∈ [0, 1] ; k0 given.

where kt is the capital stock available for period t production (i.e. accumulated past

investment it), ct is period t consumption, and nt is period t labour. The utility function

1Cugno and Montrucchio (1998) is a very nice text in dynamic programming, written in Italian.
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8 CHAPTER 1. INTRODUCTION TO RECURSIVE METHODS

u is assumed to be strictly increasing, and F is assumed to have the characteristics of

the neoclassical production function. 2 The above problem is know as the (deterministic

neoclassical) optimal growth model, after the seminal works by Frank Ramsey (1928),

Tjalling C. Koopmans (1963), and David Cass (1965). The first constraint in the above

problem constitutes the is law of motion or transition function for capital, which describes

the evolution of the state variable k. The optimal value of the problem V ∗(k0) - seen as

a function of the initial state k0 - is denominated as the value function.

By the strict monotonicity of u, an optimal plan satisfies the feasibility constraint

ct + it ≤ F (kt, nt) with equality. Moreover, since the agent does not value leisure (and

labor is productive), an optimal path is such that nt = 1 for all t. Using the law of

motion for kt, one can rewrite the above problem by dropping the leisure and investment

variables, and obtain:

V ∗(k0) = max
{kt+1, ct}

∞

t=0

∞∑

t=0

βtu(ct) (1.2)

s.t.

ct + kt+1 = f(kt);

ct, kt+1 ≥ 0; k0 given,

where f(kt) = F (kt, 1)+(1−δ)kt is the total amount of resources available for consumption

in period t. The problem can be further simplified and written - as a function of k alone

- as follows [Check it!]:

V ∗(k0) = max
{kt+1}

∞

t=0

∞∑

t=0

βtu(f(kt)− kt+1)

s.t.

0 ≤ kt+1 ≤ f(kt); k0 given.

This very simple framework includes a few interesting macroeconomic models (in addition

to the optimal growth model). Set, for example, f(kt) = Akt. If A = 1 the problem can

be interpreted as the one of eating optimally a cake of initial size k0. David Gale (1967)

2F is linearly homogeneous, with F1 > 0, F11 < 0, and F2 > 0, F22 < 0. In addition, commonly used

assumptions are complementarity F12 ≥ 0 and Inada conditions: limk→0 F1 = ∞ and limk→∞ F1 = 0. A

typical example is the Cobb-Douglas production function

F (k, n) = Akαn1−α with A > 0, α ∈ (0, 1) .
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studied extensively the model with f(kt) = kt. For this reason, this example is known as

the Gale’s Cake Eating problem. If A < 1 the problem can still be interpreted as a

cake eating problem, where the cake depreciates every period. Moreover, note that when

A > 1 the problem becomes the simplest model of endogenous growth, the AK-model.3

Finally, if we set f(kt) = (1 + r) kt + y, and interpret r ≥ 0 as the interest rate and

y ≥ 0 as labor income, the model becomes one of the simplest problems of optimal saving

(borrowing is not allowed since kt+1 ≥ 0).

1.1.1 Sequential Formulation

We shall regard the above formulation as the sequential form of the problem. Notice that

the objective function is an infinite sum, which should converge in order to have a well

defined problem.4 The max operator applied to the infinite dimensional object {kt+1}∞t=0

presents other complications (e.g., continuity and compactness are not straightforward

concepts).

Once the problem is well defined, one could attack it by using appropriate generaliza-

tions to the well known tools of “static” maximization (such as Lagrange and Kuhn-Tucker

theorems). Again, the fact that the choice variable belongs to an infinite dimensional

space induces further technical complications, this is however a viable way.5 If one takes

the sequential approach, the infinite sum
∑∞

t=0 β
tu(f(kt) − kt+1) is a special case of the

function(al) W (k0, k1, k2, . . . ) defined on an appropriate infinite dimensional space. If the

optimum is interior and W is sufficiently smooth, an optimal capital path
{
k∗t+1

}∞
t=0

start-

ing from k0 must satisfy the usual first order conditions
∂W (k0,k∗1 ,k

∗

2
, ... )

∂kt
= 0 for t = 1, 2, . . .

In our (time-separable) case, the first order conditions take the form

u′
(
f(k∗t−1)− k∗t

)
= βf ′(k∗t )u

′
(
f(k∗t )− k∗t+1

)
t = 1, 2, . . . (1.3)

with k0 given. These conditions are known as Euler equations (or Euler-Lagrange condi-

tions). In fact, conditions (1.3) are the differentiable version of a set of necessary condi-

tions that one obtains by following a general approach to optimization problems which

is denoted as the Euler variational approach. Unfortunately, even when the problem is

3This case can be seen as a Cobb-Douglas where the capital share α equals 1.
4The problem could, in fact, be tackled without imposing convergence of the series. This approach

would however require the knowledge of advanced maximization concepts (such as overtaking), which are

beyond the targets of these notes.
5An accessible text that introduces to the mathematics of optimization in infinite dimensional spaces

is Luenberger (1969).
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concave (i.e., when both u and f are concave) the Euler equations are not sufficient for an

optimum. To detect on optimal path in our case one typically imposes the transversality

condition: limT→∞ βTf ′(k∗T )u
′
(
f(k∗T )− k∗T+1

)
k∗T ≤ 0 as well. This will all be explained

in Chapter 3.

The economic interpretation of the Euler equation is relatively easy, and quite impor-

tant. Using the definition of f(kt), and recalling that ct = f(kt)− kt+1, (1.3) becomes

u′(c∗t−1)

βu′(c∗t )
= f ′(k∗t ) =

∂F (k∗t , 1)

∂kt
+ (1− δ), (1.4)

which is a condition of dynamic efficiency. It asserts the equality between the marginal

rate of substitution between t − 1 and t consumption u′(ct−1)
βu′(ct)

, and its marginal rate of

transformation ∂F (kt,1)
∂kt

+ (1 − δ): since consumption and investment are the same good,

a marginal reduction of period t − 1 consumption implies a one-to-one increase in it−1,

which in turn increases by ∂F (kt,1)
∂kt

+ (1 − δ) the amount of goods available for period t

consumption.

Under the assumptions mentioned in footnote 2, the economy allows for an interior

steady state for capital and consumption: kss, and css. In the steady state, the Euler

equation implies 1
β

= f ′ (kss) , which becomes - assuming a Cobb-Douglas production

function -
1

β
= αAkα−1 + (1− δ) =⇒ kss =

(
αA

δ + ρ

) 1

1−α

where ρ = β−1 − 1 is the agent’s discount rate [What is the intuition for the above

expression?].

The model allows a simple graphical analysis of the dynamics in the (kt, ct) space.

The steady state point can be identified as by the crossing point between two curves: the

curve that describes the condition kt+1 = kt and that describing the condition ct+1 = ct.

From the feasibility constraint, we get: kt+1 = kt ⇔ ct = f (kt)−kt. The concave function

c0 (k) = f (k)−k hence describes the curve along which capital is time constant. Moreover

notice, that given kt next period capital kt+1 is decreasing in ct. For consumption values

above the curve c0, capital must decrease, while when the chosen c is below this curve,

one has kt+1 > kt. If f (0) = 0 this curve starts at the origin of the IR2
+ diagram and -

whenever limk→∞ f ′ (kt) < 1 - it intersects the zero consumption level at a finite k̄ <∞.

The dynamics for ct are described by condition (1.4). It is easy to see that by the

strict concavity of f, and u there is only one interior point for k that generates constant

consumption. This is the steady state level of capital. For capital levels above kss the

value at the right hand side of the Euler equation αkα−1 + (1− δ) is lower than 1
β
, which
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implies a ratio u′(ct−1)
u′(ct)

lower than one, hence ct > ct−1. The opposite happens when k > kss.

This is hence represented by a vertical line in the (k, c) space. Of course, only one level of

consumption is consistent with feasibility. But feasibility is guaranteed by the function c0.

At the crossing point of the two curves one finds the pair (kss, css) which fully describes

the steady state of the economy.

As we saw, the Euler equations alone do not guarantee optimality. One typically

impose the transversality condition. It is easy to see, that any path satisfying the Euler

equation and converging to the steady state satisfied the transversality condition, it is

hence an optimal path [Check it].

1.1.2 Recursive Formulation

We now introduce the Dynamic Programming (DP) approach. To see how DP works, con-

sider again the optimal growth model. One can show, under some quite general conditions,

that the optimal growth problem can be analyzed by studying the following functional

equation

V (k) = max
0≤k′≤f(k)

u(f(k)− k′) + βV (k′), (1.5)

where the unknown object of the equations is the function V. A function can be seen as

in infinite dimensional vector. The number of equations in (1.5) is also infinite as we have

one equation for every k ≥ 0.

What are then the advantages of such a recursive formulation of this sort? First

of all, realizing that a problem has a recursive structure quite often helps understand

the nature of the problem we are facing. The recursive formulation reduces a single

infinite-dimensional problem into a sequence of one-dimensional problems. This implies

several computational advantages. Moreover, the study of the above functional equation

delivers much richer conclusions than the study of the solution of a specific optimal growth

problem. In dynamic programming we embed the original problem within a family of

similar problems and study the general characteristics of this class of problems. Instead

of deriving a specific path of optimal capital levels
{
k∗t+1

}∞
t=0

, starting from a given k0, a

solution to the recursive problem delivers a policy function k′ = g(k) which determines

tomorrow’s optimal capital level k′ for all possible levels of today’s capital k ≥ 0. The

path
{
k∗t+1

}∞
t=0

can still be recovered by repeatedly applying the policy function starting

from k0 as: k∗1 = g(k0); k
∗
2 = g(k∗1), and so on. DP is however a much richer, concise, and

elegant description of all solutions to the model.

Of course, solving a functional equation is typically a difficult task. However, once
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the function V is known, the derivation of the optimal choice k′ is an easy exercise since

it involves a simple ‘static’ maximization problem. Moreover, we will see that in order to

study a given problem one does not always need to fully derive the exact functional form

of V. Other advantages include the applied numerical computation facilities, the appealing

philosophical idea of being able to summarize a complicate world (the infinite-dimensional

problem) with a policy function, which is defined in terms of a small set of states.

In DP, state variables play a crucial role. But what are the state variable exactly?

“In some problems, the state variables and the transformations are forced

upon us; in others there is a choice in these matters and the analytic solution

stands or fall upon this choice; in still others, the state variables and some-

times the transformations must be artificially constructed. Experience alone,

combines with often laborious trial and error, will yield suitable formulations

of involved processes.” Bellman (1957), page 82.

In other terms, the detection of the state variables is sometimes very easy. In other cases

it is quite complicated. Consider the following formulation of the model of optimal growth

V (k0) = max
{it, ct, nt}

∞

t=0

∞∑

t=0

βtu(ct)

s.t.

ct + it ≤ F

(
t∑

j=1

(1− δ)t−jij−1 + (1− δ)tk0, nt

)

ct ≥ 0;
t∑

j=1

(1− δ)t−jij−1 + (1− δ)tk0 ≥ 0; nt ∈ [0, 1] ; k0 given.

The problem is now described in terms of controls alone, and can of course be solve in

this form. However, “experience and trial and error” suggests that it convenient to first

summarize some of the past controls {ij}t−1
j=0 by the state variable kt =

∑t
j=1(1−δ)t−jij−1+

(1− δ)tk0 and attack the problem using the (1.1)-(1.2) formulation. In this case it is also

easier to detect the state as it was the predetermined variable in our problem (recall that

k0 was ‘given’). Looking for predetermined variables is certainly useful, but the ‘trick’

does not always work.

In other cases, the purely sequential formulation can actually be very convenient. For

example, one can easily check that the cake eating problem can be written in terms of
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controls alone as follows:

V (k0) = max
{ct}

∞

t=0

∞∑

t=0

βtu(ct)

s.t. (1.6)
∞∑

t=0

ct ≤ k0; ct ≥ 0; k0 given.

With the problem formulated in this form the solution is quite easy to find.

Exercise 1 Consider the above problem and assume u = ln . Use the usual Lagrangian

approach to derive the optimal consumption plan for the cake eating problem.

Let us be consistent with the main target of this chapter, and write the cake eating

problem in recursive form. By analogy to (1.5), one should easily see that when u is

logarithmic the functional equation associated to (Cake) is

V (k) = max
0≤k′≤k

ln(k − k′) + βV (k′). (1.7)

As we said above, the unknown function V can be a quite complicate object to derive.

However, sometimes one can recover a solution to the functional equation by first guessing

a form for V and then verifying that the guess is right. Our guess for V in this specific

example is an affine logarithmic form:

V (k) = A +B ln(k).

Notice that the guess and verify procedure simplifies enormously the task. We now have

to determine just two numbers: the coefficients A and B > 0. A task which can be

accomplished by a simple static maximization exercise. Given our guess for V and the

form of u, the problem is strictly concave, and first order conditions are necessary and

sufficient for an optimum. Moreover, given that limk→0 ln(k) = −∞, the solution will be

and interior one. We can hence disregard the constraints and solve a free maximization

problem. The first order conditions are

1

k − k′
= β

B

k′

which imply the following policy rule k′ = g(k) = βB
1+βB

k. Plugging it into our initial

problem V (k) = ln(k − g(k)) + βV (g(k)), we have

V (k) = A+
1

1− β
ln k,
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so B = 1
1−β

, which implies the policy g(k) = βk.6

Exercise 2 Visualize the feasibility set 0 ≤ k′ ≤ k and the optimal solution g(k) = βk

into a two dimensional graph, where k ≥ 0 is represented on the horizontal axis. [Hint:

very easy!]

Exercise 3 Consider the optimal growth model with y = f(k) = kα, α ∈ (0, 1) (so δ = 1)

and log utility (u(c) = ln c). Guess the same class of functions as before:

V (k) = A+B ln k,

and show that for B = α
1−βα

the functional equation has a solution with policy k′ = g(k) =

αβkα. Use the policy to derive the expression for the steady state level of capital kss.

Exercise 4 Under the condition f(0) = 0, the dynamic system generated by the policy

we described in the previous exercise has another non-interior steady state at zero capital

and zero consumption. The non-interior steady state k = 0 is known to be a ‘non-stable’

stationary point. Explain the meaning of the term as formally as you can.

Exercise 5 Solve the Solow model with f(k) = kα and δ = 1 and show that given the

saving rate s, the steady state level of capital is kss = s
1

1−α . Show that the golden rule level

of savings implies a policy of the form k′ = αkα. Compare this policy and the golden rule

level of capital in the steady state, with the results you derived in the previous exercise.

Discuss the possible differences between the two capital levels.

Exercise 6 Consider the following modification of the optimal growth model

V (k0) = max
{kt+1, ct}

∞

t=0

ũ(c0) +

∞∑

t=1

βtu(ct−1, ct)

s.t.

ct + kt+1 = f(kt)

ct, kt+1 ≥ 0; k0 given.

Write the problem in recursive form by detecting the states, the controls, and the transition

function for the states. [Hint: you might want to assume the existence of a non negative

number x ≥ 0 such that ũ(c0) = u(x, c0) for any c0].

6Note that the actual value of the additive coefficient A is irrelevant for computing the optimal policy.
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1.2 Finite Horizon Problems as Guided Guesses

Quite often an analytic form for V does not exist, or it is very hard to find (this is why

numerical methods are useful). Moreover, even in the cases where a closed form does exist,

it is not clear what a good guess is. Here is a way of getting ‘good guesses’. Consider the

one-period Gale’s cake eating problem

V1(k) := max
0≤k′≤k

u
(
k − k

′

)
. (1.8)

The sub-index on the value function V indicates the time horizon of the problem. It says

how many periods are left before the problem ends. In (1.8) there is only one period.

Note importantly, that (1.8) describes a map from the initial function V0(k) ≡ 0 and the

new function V1, as follows

V1(k) := (TV0) (k) = max
0≤k′≤k

u
(
k − k

′

)
+ βV0(k

′) = max
0≤k′≤k

u
(
k − k

′

)
.

The operator T maps functions into functions. T is known as the Bellman operator.

Given our particular choice for V0, the n-th iteration of the Bellman operator delivers the

function

Vn(k) := T nV0 = (TVn−1)(k) = max
0≤k′≤k

u
(
k − k

′

)
+ βVn−1(k

′),

which corresponds to the value function associated to the n-horizon problem. The solution

to the functional equation (1.7) is the value function associated to the infinite horizon case,

which can be see both as the limit function of the sequence {Vn} and as a fixed point of

the T−operator:

lim
n→∞

T nV0 = V∞ = TV∞.

Below in these notes we will see that in the case of discounted sums the Bellman oper-

ator T typically describes a contraction. One important implication of the Contraction

Mapping Theorem - which will be presented in the next chapter - is that, in the limit, we

will obtain the same function V∞, regardless our initial choice V0.

As a second example, we can specify the cake eating problem assuming power utility: u(c) =

cγ , γ ≤ 1. It is easy to show that the solution to the one-period problem (1.8) gives the pol-

icy k′ = g0(k) = 0. If the consumer likes the cake and there is no tomorrow, she will eat it

all. This solution implies a value function of the form V1(k) = u (k − g0(k)) = B1k
γ = kγ.

Similarly, using first order condition, one easily gets the policy g1(k) = k

1+β
1

γ−1

as an
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interior solution of the following two period problem

V2(k) = T 2V0 = (TV1)(k) = max
0≤k′≤k

(
k − k

′

)γ
+ βV1(k

′)

= (k − g1(k))
γ + βV1 (g1(k))

=

(
1− 1

1 + β
1

γ−1

)γ

kγ + β

(
1

1 + β
1

γ−1

)γ

kγ

= B2k
γ

and so on. It should then be easy to guess a value function of the following form for the

infinite horizon problem

V (k) = Bkγ + A.

Exercise 7 (Cugno and Montrucchio, 1998) Verify that the guess is the right one.

In particular, show that with B =
(
1− β

1

1−γ

)γ−1

the Bellman equation admits a solution,

with implied policy k′ = g(k) = β
1

1−γ k. Derive the expression for the constant A. What is

the solution of the above problem when γ → 1? Explain.
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