
Chapter 2

Useful Mathematics

In order to fully enjoy the beauty of dynamic programming modeling, we must first recall

some useful mathematical concepts. Classical references for the material contained in this

chapter are SLP, and Rudin (1964). More advanced references are Lipschutz (1994), and

Rudin (1991).

2.1 Metric and Linear Spaces

Definition 1 A metric space (X, d) is a set X, together with a metric (or distance func-

tion) d : X × X → IR, such that for all x, y, z ∈ X we have: (i) d(x, y) ≥ 0, with

d(x, y) = 0 if and only if x = y; (ii) d(x, y) = d(y, x); and (iii) d(x, z) ≤ d(x, y) + d(y, z).

For example, the set of real numbers X = IR together with the absolute value d(x, y) =

|x− y| is a metric space. Notice indeed that (i) is trivial and also (ii) is verified. To see

(iii) make a picture. Remember that the absolute value is defined as follows

|x− y| =
{

x− y if x ≥ y

y − x otherwise.

The previous discussion can be easily generalized to any n dimensional space, with n <∞.

The most natural metric for these spaces is the Euclidean distance.

Exercise 8 Show that the absolute value represents a metric on the set IN of the natural

numbers.

Exercise 9 Consider the IRn space of the vectors x = (x1, x2, .., xn). Show that the

Euclidean distance dE(x, y) =
√∑

i (xi − yi)
2 defines a metric on IRn.

19



20 CHAPTER 2. USEFUL MATHEMATICS

IR as an Ordered Field Notice we have implicitly defined a way of taking the difference

between two real numbers and the fact that one real number can be greater than another

one. This and other properties are common to any Ordered Field. In this section, we will

also discuss what are the other properties that define IR as an Ordered Field.

• The fact we were able to take the difference between two real numbers is a combina-

tion of two properties. First, within a Field we can Add up two elements being sure

that the resulting element still belong to the field. Moreover, the addition satisfies

the following properties: (A1) a+b = b+a and (A2) a+(b+c) = (a+b)+c. Second,

within a Field we can also Multiply among them two real numbers. The multiplica-

tion satisfies two properties very similar to the ones of the addition, namely: (M1)

a · b = b · a and (M2) a · (b · c) = (a · b) · c. Usually we do not write explicitly the

multiplication, so a ·b = ab. Moreover, a Field satisfies also a mixed property (AM)

a(b + c) = ab + ac. Finally, we have the zero element 0 and the one element 1 as

invariants of the two mentioned operations: namely a + 0 = a and a · 1 = a. From

these invariant elements we can define other two elements which are the inverse of

the operations (and have to belong to the Field). Namely, given an element a, we

can define the element sa as a + sa = 0 and, when a 6= 0 we can also define the

element qa as a · qa = 1. They can be also denoted as sa = −a and qa = a−1.

Exercise 10 Show that the set of natural numbers IN = {1, 2, 3, ...} is not a Field, ac-

cording to the previous discussion.

Linear Spaces: IR as a Linear Space

Definition 2 A (Real) vector space X (or Linear Space) is a set of elements on which

we use the Field IR to define two operations: addition and scalar multiplication. The

important property of a Linear Space is that for any two elements x, y ∈ X and real

numbers a, b ∈ IR we have that the vector ax+ by ∈ X, where the vector ax is derived by

the scalar multiplication between a and x, and the + symbol stays for the addition law.

The addition is defined as follows. For any three elements x, y, z ∈ X and a ∈ IR we have

(i) x+ y = y + x; (ii) x+ (y+ z) = (x+ y) + z and (iii) a(x+ y) = ax+ ay. So they are

the usual low of algebra. The operations allowed between the scalars are the one we saw

previously for a Field. Moreover, a vector space always contain the zero element θ, which

is the invariant element of the sum, that is x+ θ = x. Finally, note that from the scalar

multiplication we have that 0x = θ and 1x = x.
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Exercise 11 (From Exercise 3.2 in SLP). Show that the following are vector spaces:

(a) any finite-dimensional Euclidean space IRn;

(b) the set of infinite sequences (x0, x1, x2, ...) of real numbers;

(c) the set of continuous functions on the interval [0, 1] .

Is the set of integers {....., −1, 0, 1, 2, ...} a vector space? Explain.

Definition 3 A normed linear space is a linear space X, together with a norm ‖·‖ : X →
IR, such that for all x, y ∈ X and a ∈ IR we have: (i) ‖x‖ ≥ 0, and ‖x‖ = 0 if and only

if x = θ; (ii) ‖ax‖ ≤ |a| · ‖x‖ ; and ‖x+ y‖ ≤ ‖x‖ + ‖y‖ .

Note that from a norm, we can always define a metric (or distance), as follows d(x, y) =

‖x− y‖ . It is important to notice that this is a particular case of distance function, for

example such that d(x, y) = d(x−y, θ). Indeed, in Linear Spaces, the zero element is very

important.

The set of real numbers can also be seen as a Normed Linear space. Notice that - since

we analyze real vector spaces - we use IR also for the scalar multiplication. However, this

last use is very much different from the first one, namely the use of IR as a particular set

of vectors of a Linear Space ( that is we set X = IR in Definition 2). The absolute value

can now be seen as a norm, and IR becomes a Normed Linear Space.

Exercise 12 Solve Exercise 3.4 in SLP. Skip (a) and (f).

2.2 The Infimum and the Supremum of a Set, the Com-

pleteness of IR

Once we have an ordered set we can ask: what is the largest element? Does it exist? Take

for example the open interval (0, 1) of real numbers. Common sense tells us that 0 should

be the smallest element of the set and 1 should be the largest one. Moreover, we know

that none of these two elements belongs to the set (0, 1).

Definition 4 Given a set S ⊆ IR we say that µ = sup S if (i) µ ≥ x for each x ∈ S and

(ii) for every ε > 0 there exists an element y ∈ S such that y > µ − ε. The infimum is

defined symmetrically as follows: λ = inf S if (i) λ ≤ x for each x ∈ S; and (ii) for every

ε > 0 there exists an element y ∈ S such that y < λ+ ε.

According to the above definition, in order to derive the supremum of a set we first

should consider all its upper bounds
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Definition 5 A real number M is an upper bound for the set S ⊆ IR if x ≤ M for all

x ∈ S.

We then choose the smallest of such upper bounds. Similarly, the infimum of a set

is its largest lower bound. In the example above we decided to take the number 1 (and

not 1.2 for example) as representative of the largest element of the set, perhaps precisely

because it has such a desirable property.

Notice that we introduced the concepts of sup and inf for sets of real numbers. One

reason for this is that we will consider these concepts only for sets of real numbers. Another

important reason is that the set of real numbers satisfies a very important property that

qualifies it as Complete, which basically guarantees that both sup and inf are well defined

concepts in IR. Before defining this property, and to understand its importance, consider

first the set of Rational Numbers Q :

Q =
{
q : ∃ n,m ∈ Z such that q =

n

m
= n ·m−1 = n : m

}
.

Where Z is the set of integers, that is the natural numbers IN with sign (+ or −) and

the zero. With the usual ≥ operator, we can see Q as an ordered field.1 Now consider

the following subset B = {b ∈ Q : b · b ≤ 2} . It is easy to see that the supremum (sup) of

this set is the square root of 2. Moreover, we all know that the square root of 2 does not

belong to Q. This is not a nice property. In fact, this problem induced mathematicians

to look for a new set of numbers. The set of real numbers does not have this problem.

Property C. The Set of Real Numbers IR has the Completeness property, that

is, each set of real numbers which is bounded above has the least upper bound

( sup), and each set of real numbers which is bounded below has the greatest

lower bound ( inf). Where, we say that a set S is bounded above when it has

an upper bound; that is, there exists a U ∈ IR such that x ≤ U for all x ∈ S.

Bounded below, if ∃ L ∈ IR : x ≥ L ∀ x ∈ S.

We will take the previous statement as an axiom. In fact, the set of real numbers can be

defined as an ordered field satisfying Property C. So, if we consider sets of real numbers,

we can always be sure that each bounded set has inf and sup . Sometimes, when the set

S ⊆ IR is not bounded, we will use the conventions supS = ∞ or/and inf S = −∞.

1It is an useful exercise to check that it satisfies all the properties we introduced above for an Ordered

Field.
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2.3 Sequences: Convergence, liminf, limsup and the

Cauchy Criterion

Definition 6 A sequence from a set X is a mapping f : IN → X, from the natural

numbers to X. We will define each element f(n) = xn, in turn, the whole mapping will be

summarized as {xn}n∈IN.

It is usual to denote it by {xn}∞n=0,
2 or, if does not create confusion, simply by {xn} .

Another important concept which is of common usage, and it is good to define formally

is the one of subsequence.

Definition 7 A sequence {yk}k∈IN is a subsequence of the sequence {xn}n∈IN if there

exists a function g : IN → IN such that: (i) for every k we have yk = xg(k), and (ii) for

every n (index in the main sequence) there exists a N (index of the subsequence) such

that k ≥ N implies g(k) ≥ n.

A typical notation for subsequences is {xnk
} , where nk = g(k). Note that to define a

subsequence we also need some sort of monotonicity property that has to be satisfied by

the “renumbering” function g.

Definition 8 A sequence of real numbers is said to be bounded if there exists a number

M such that |xn| < M for all n.

Definition 9 Consider a metric space (X, d). We say that the sequence {xn}∞n=0 is con-

vergent to y ∈ X if for each real number ε > 0 there exists a natural number N such that

for all n ≥ N we have d (xn, y) < ε. And we write xn → y, or

lim
n→∞

xn = y.

Notice that - since the distance function maps into IR+ - we can equivalently say

that the sequence {xn}∞n=0 in the generic metric space (X, d) converges to y, if (and only

if) the sequence {d (xn, y)}∞n=0 of real numbers, converges to 0 (thus, in the familiar one-

dimensional space IR, with the usual absolute value as distance function). So, this concept

of convergence is the most usual one, and it easy to check .... Yes, it is easy to check, once

we have the candidate y. But suppose we do not know y (and actually we do not care

2In fact, it is probably more common to write it as {xn}∞n=1 , that is starting the sequence with x1

not with x0. We will see below the reason for our notational choice.
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about y), but we still would like to know whether a given sequence is converging.3 Then

it can be very difficult to make the guess. Long time ago, the mathematician Cauchy

defined an important concept for sequences, which is somehow close to convergence.

Definition 10 We say that a sequence {xn}∞n=0 of elements from a metric space (X, d)

is Cauchy if for each ε > 0 there exists a natural number N such that for all n,m ≥ N

we have d (xn, xm) < ε.

Below we will study the relationship between this concept and convergence. Intuitively,

the difference between a Cauchy and converging sequence is that in the former, as both n

and m increase the values xn and xm get closer and closer to each other. In a converging

sequence, both xn and xm get closer and closer to the converging point y. Notice that if

both xn and xm get close to y they must get close to each other as well. So convergence

is a stronger concept than Cauchy. You will be asked to formally show this statement in

Exercise 18 below.

We can also formally define divergence as follows.

Definition 11 We say that a sequence of real numbers diverges, or converges to +∞,

if for each real number M there exists a natural number N such that for all n ≥ N we

have xn > M. The definition of divergence to −∞ is trivially symmetric to this one.

Notice that, of course, it is not true that every sequence of real numbers either con-

verges or diverges. Indeed, the points of convergence are very special ones. In particular,

they are accumulation points.

Definition 12 Given a metric space (X, d) and a set S ⊂ X an element x is an accu-

mulation point for the set S if for each ε > 0 there exists an element y ∈ S, y 6= x such

that d(x, y) < ε.

Notice that an accumulation point does not necessary belong to the considered set.

However, we have the following result.4

3For example, we will see that in infinite horizon models this is the main problem. We just want to

know whether the objective function (an infinite sum) converges somewhere or not.
4Here is a useful result about accumulation points, which is not crucial for the following analysis.

Remark 1 Each bounded set E ⊂ IR which contains infinitely many real numbers has at least one

accumulation point.
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Proposition 1 Consider a set S in (X, d). If a point y is an accumulation point of S

then there exists a sequence of {yn} , with yn ∈ S for every n, that converges to y.

Proof From Definition 12 we can always choose a sequence of εn = 1
n

and we can

be sure that there exists a yn ∈ S such that d(yn, y) < εn = 1
n
. But since limn→∞ εn =

0, limn→∞ yn = y and we are done. Q.E.D.

Now a useful concept that may be completely new to someone.

Definition 13 Given a bounded sequence {xn} of real numbers we say that −∞ < s ≡
lim supn→∞ xn < +∞ if (i) For every ε > 0 there is a N such that for all n ≥ N we have

xn ≤ s+ ε; and (ii) For every ε > 0 and N there is an n > N, such that xn ≥ s− ε. The

concept of lim inf is symmetric. We say −∞ < l ≡ lim infn→∞ xn < +∞ if (i) For each

ε > 0 there exists a N such that for every n ≥ N we have xn ≥ l − ε; and (ii) For each

ε > 0 and N there exists an n > N, such that xn ≤ l + ε. We can write also

s = inf
n
sup
k≥n

xk

l = sup
n

inf
k≥n

xk.

And note that s ≥ l and that lim inf xn = − lim sup(−x).

Note that from the above definition both lim inf and lim sup must exist. For example,

define s = infn yn with yn = supk≥n xk. Since xk are real numbers and the sequence is

bounded, than by Property C each yn ∈ IR is well defined, an so is s ∈ IR. One can

Proof The proof is by construction. If E ⊂ IR is bounded, then there exists an interval [a, b] with

a, b ∈ IR such that E ⊂ [a, b] . First assume w.l.o.g. that b > a. We are going to split the interval in

two and we will chose the one of the two semi-intervals that contain infinitely many points. Since the

set contains infinitely many points this can always be done. So we have
[
a, b−a

2

]
and

[
b−a
2 , b

]
. We call

the one we chose [a1, b1] . Notice that we can do this division infinitely many times. In this way, we

generate at the same time two sequences and two sets of real numbers A = {an} and B = {bn} such that

supA = inf B = ξ, note indeed that the way we constructed the sequence of real numbers,

0 ≤ inf B − supA ≤ b− a

2n
for each n.

Moreover it is easy to see that the real number ξ exists and has to belong to each of the intervals [an, bn] ,

indeed if this were not true than supA could not coincide with inf B. Thus we have that for each ε > 0

we can construct an interval Iε(ξ) centered in ξ and such that |x− ξ| < ε for all x ∈ Iε(ξ) and such that

it contains infinitely many points different from ξ and belonging to E (so, we can always find at least

one) and this proves that ξ is an accumulation point of E. Q.E.D.
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actually show that lim inf xn is the smallest accumulation point of {xn} and lim sup xn is

the greatest.

Consider now the lim sup concept in Definition 13. As a first approximation we can

think it as the sup of the tail of the sequence. This is, of course not a well defined concept,

since we do not know exactly what “the tail of the sequence” is yet. However, note that

the number s = lim sup has all the characteristics of a sup . Indeed, from (i) it is not

possible to have values above it in the tail, and from (ii) for every ε > 0 we can find one

element in the tail such that it is greater than s− ε. That is, we can show that the first

definition implies the second. More formally, we will show that if s satisfies (i) and (ii),

then s = infn supk≥n xk. First note that (i) implies ∀ε > 0 ∃N : yN = supk≥N {xk} < s+ε,

so infn yn ≤ yN ≤ s + ε, but since ε is arbitrary, we can say that infn yn ≤ s. Now from

(ii) we have that ∀ε > 0 and ∀N we have yN = supk≥N {xk} > s − ε, which further

implies (since it is for any N) that actually infn yn ≥ s − ε (to see it suppose that it is

not true and you will have a contradiction). Again, since the choice of ε was arbitrary, we

have that infn yn ≥ s which, together with the previous result, gives infn supk≥n xk = infn

yn = s ≡ lim supn→∞ xk.

Since the two concept coincide one should be able to show that also converse is true.

Exercise 13 Consider a bounded sequence {xn} of real numbers. Show that if a real

number is such that s = infn supk≥n xk then it has both the properties (i) and (ii) stated

for s at the beginning of Definition 13.

Definition 14 A point y is an accumulation point (or a limit point, or a cluster point) of

a sequence {xn} from the metric space (X, d) , if for every real number ε > 0 and natural

number N there exists some k > N such that d (xk, y) < ε.

Exercise 14 State formally the relationship between the concept of an accumulation point

in Definition 14 for sequences of real numbers and that in Definition 12 for sets.

Exercise 15 Show that a sequence {xn} of real numbers has limit L if and only if

lim inf xn = lim sup xn = L.

Thus, when a sequence converges to a point then the limit is the unique accumulation

point for the sequence.

Theorem 1 If a sequence {xn} has limit L, then every possible subsequence {xnk
} of

{xn} has limit L.
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Proof Straightforward from the definition of limit and subsequence. Indeed (sub)sequences

can converge only to some accumulation point of the original sequence. Q.E.D.

Proposition 2 Given a bounded sequence {xn} of real numbers, it is always possible

to take a converging subsequence {xnk
} such that

lim
nk→∞

xnk
= lim sup

n→∞
xn

Proof This is a particular case of accumulation point introduced in Definition 14.

From Definition 13 we are sure that for every ε > 0 and N > 0 we can take an xnk
such

that L − ε ≤ xnk
≤ L + ε (part (i) of Definition 13 is actually a stronger statement).

Moreover, one can easily check that the sequence can be chosen to satisfy the monotone

property for sequences requested in Definition 7. Q.E.D.

Exercise 16 Following the lines of the previous proof, show Proposition 2 for the lim inf .

Corollary 1 From a bounded sequence {xn} of real numbers, it is always possible to

extract a converging sequence.

Proof This result was originally due to Weierstrass. From Proposition 2, we can

always take a converging subsequence which converges to lim sup . Q.E.D.

Theorem 2 Given a sequence {xn} of real numbers and y ∈ IR. If from any subsequence

of {xn} it is possible to extract a converging sub-subsequence which converges to the same

y then limn→∞ xn = y.

Proof From Proposition 2 (and Exercise 16) we know that among all the possi-

ble subsequences from {xn} there will be in particular a subsequence that converges to

lim sup {xn} and another converging to lim inf {xn} , but then lim inf {xn} = lim sup {xn}
and we are done by Exercise 15. Q.E.D.

Quick Review about Series

Definition 15 A series is a couple of sequences {xn, sn}∞n=0 where sn are called the partial

sums and are such that

sn =

n∑

t=0

xt.

Sometimes, abusing in notation, a series is written
∑∞

t=0 xt or even simply
∑

t xt.
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Definition 16 A series is said to be convergent if exists finite the limit of the sequence

of partial sums

s = lim
n→∞

sn <∞,

and the number s is said to be the sum of the series and we can write s =
∑∞

t=0 xt.

Note that, in principle the above definition allows us to write the infinite sum only

if the series converges. Actually a series can be of three characters. (i) Convergent, (ii)

Divergent or (iii) Indeterminate. A series is divergent when the sequence of partial sums

goes either to minus or to plus infinity.

2.4 Closed and Compact Sets: Maxima and Minima

We are now ready to define closed and compact sets. There are many concepts of closed-

ness and compactness. Here we will use sequences to define them. So, to be precise we

will speak about sequential closedness and sequential compactness, but for the spaces we

will be interested in, these concepts will all coincide.

Definition 17 A set S is closed if for each convergent sequence of elements in S, the

point of convergence is in S, i.e.

xn → y and xn ∈ S ∀n, implies y ∈ S.

A set is open if its complement is closed. Where, in IR, the complement of S is defined

Sc ≡ {x ∈ IR : x /∈ S} .

Definition 18 A set S is (sequentially) compact if for each sequence of elements in S we

can take a subsequence which converges in S.

Exercise 17 Show that a set S is closed if and only if it contains all its accumulation

points.

Theorem 3 A set F ⊂ IR is (sequentially) compact if and only if it is closed and bounded.

Proof (⇒) Assume F is compact. Then first it has to be limited otherwise it is possible

to show that there must exist a subsequence going to either +∞ or −∞ (example). In

this last case, by the definition of sequence converging to (say) +∞ it will be impossible

to find a sub-subsequence converging to any real number, since from Theorem 1 all of
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them will converge to +∞, and this would contradict the assumption of compactness.

Now we show that F has to be closed by showing that F contains all its accumulation

points. So consider an accumulation point y. From Proposition 1 we know that there

must be a sequence {yn} converging to y. Moreover, this sequence is such that yn ∈ F for

every n. Now we know that by the definition of compactness it is possible to extract from

{yn} a subsequence converging to a point y′ ∈ F, but from Theorem 1 we know that each

sub-sequence must converge to y, so y′ = y ∈ F and we are done.

(⇐) Now assume F is closed and bounded, and consider a generic sequence {xn}
with xn ∈ F for all n. Since F is bounded, this sequence must be bounded. Hence from

Proposition 2 it is possible to extract a converging subsequence {xnk
}. Moreover, since

F is closed and xnk
∈ F ∀k, the converging point must belong to F, and we are done.

Q.E.D.

Definition 19 An element is a maximum for S if x = supS and x ∈ S. Similarly, y is

the minimum of S if y = inf S and y ∈ S.

Theorem 4 Each closed and bounded set F ⊂ IR has a Max and a Min.

Proof Since it is bounded, it has supF < ∞. By the definition of supF , it is an

accumulation point. Thus, by Proposition 1 we can always construct a sequence with

elements in F that converges to supF. By the closedness of F the limit of this sequence

must belong to F . Q.E.D.

2.5 Complete Metric Spaces and The Contraction Map-

ping Theorem

Complete Metric Spaces: IR as a Complete Metric Space Recall that when

we introduced the concept of a Cauchy sequence and we related it to the concept of a

convergent sequence we also said that the latter is stronger then former. In the exercise

below you are asked to show it formally.

Exercise 18 Consider a generic metric space (X, d) . Show that each convergent sequence

is Cauchy.

In fact, convergence is a strictly stronger concept only in some metric spaces. Metric

spaces where the two concepts coincide are said to be Complete.
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Definition 20 A metric space (X, d) is said to be Complete if any Cauchy Sequence is

convergent in X.

The concept of completeness here seems very different from the one we saw in Section

2.2. However, one can show that there is a very close relationship between the two

concepts of completeness.

Exercise 19 Show that in the metric space (IR, |·|) every Cauchy sequence is bounded.

Theorem 5 (IR, |·|) is a Complete metric space.

ProofConsider a generic Cauchy sequence {xn} in IR. From Exercise 19, we know it is

bounded. Then from Corollary 1 of Proposition 2 there must be a subsequence converging

to y = lim sup xn. Using the triangular inequality, it is not difficult to see that if a Cauchy

sequence has a converging subsequence, it is convergent. Hence we are done. Q.E.D.

To have an example of a non complete metric space consider again the set of real

numbers, with the following metric

d(x, y) =

{
0 if x = y

max
{

1
1+|x|

, 1
1+|y|

}
otherwise.

[Check that d is actually a metric!]. Now consider the sequence {xn}∞n=0 of integers

x0 = 0, x1 = 1, x2 = 2, x3 = 3, ... xn = n, ... . It is easy to see that as m and n

increase the distance d(xn, xm) = d(n,m) goes to zero.5 Hence the sequence is Cauchy.

However, it is easy to see that the sequence {xn}∞n=0 = {n}∞n=0 does not converge to any

real number x, since for any fixed x <∞ we have d(x, n) ≥ 1
1+|x|

> 0.

Another possibility is to keep the metric of the absolute value and change X. Assume

for example X = Q, the set of rational numbers. Consider now a sequence of rational

numbers that converges to
√
2. It is clear that this sequence would satisfy the Cauchy

criterion, but would not converge in Q by construction. Each time we guess a q ∈ Q at

which the sequence converges, since q 6=
√
2, we must have

∣∣q −
√
2
∣∣ = ε > 0 for some

ε > 0, hence we can find a contradiction each time the elements of the sequence are

sufficiently close to
√
2.

Exercise 20 Show that if (X, d) is a complete metric space and S is a closed subset of

X, then (S, d) is still a complete metric space.

5If n,m ≥ N, then d(n,m) ≤ 1
1+N

.
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Banach Space (Complete Normed Linear Space): IR and C1 as Banach Spaces

Definition 21 A Complete Normed Linear Space is called Banach Space.

Directly, from the definition is clear that IR is a Banach space.

Theorem 6 Let X ⊂ IR and C(X) the set of bounded and continuous6 real valued

functions f : X → IR, together with the “sup” norm ‖·‖∞ : C(X) → IR such that

‖f‖∞ ≡ supt |f (t)| is a Banach Space.

Proof From Exercise 12 we know that this space is a normed linear space. We want

to show that it is complete. Here is a sketch of the proof based on Theorem 3.1 in SLP

(Page.47-49). One has to show that for any Cauchy sequence {fn} of functions there

exists a limit function f ∗ such that fn → f ∗, and f ∗ ∈ C(X). Our candidate f ∗ is defined

as follows: f ∗(x) = limn fn(x) for any given x. Notice that f ∗ is well defined since for any

given x, the sequence of real numbers yn = fn(x) is Cauchy and, from the completeness

of IR it must converge. This type of convergence is called pointwise.

We have to first show that {fn} converge to our candidate in sup norm, or uniformly.

Second, that f ∗ is bounded and continuous (we just show that f ∗ is real valued). The

first part requires that for any ε > 0 exists a Nε such that for all n ≥ Nε we have

sup
x

|fn(x)− f ∗(x)| ≤ ε.

Notice that if Nε is such that for all n,m ≥ Nε we have ‖fn − fm‖ ≤ ε
2
, then for any given

x it must be that for n ≥ Nε

|fn(x)− f ∗(x)| ≤ |fn(x)− fmx
(x)|+ |fmx

(x)− f ∗(x)|
≤ ε

2
+
ε

2
= ε,

where mx ≥ Nε is possibly a different number for each x, but mx must exist since we saw

that for all x fm(x) → f ∗(x). For each x, there is a function fmx
(·) that can be used as

pivotal to show that fn and f ∗ are close to each other at the point x. This function never

appears in the left hand side however. Hence we are done. To show that f ∗ is bounded

and continuous, let x be given and consider an arbitrary y in an proper neighborhood of

x. If n is such that ‖f ∗ − fn‖ < ε
3
, we have

|f ∗(x)− f ∗(y)| ≤ |f ∗(x)− fn(x)|+ |fn(x)− fn(y)|+ |f ∗(y)− fn(y)|
≤ 2 ‖f ∗ − fn‖+ |fn(x)− fn(y)|
< 2

ε

3
+
ε

3
= ε.

6Continuity is intended with respect to the topology induced by the Euclidean norm in X.



32 CHAPTER 2. USEFUL MATHEMATICS

This is true for all y belonging to the appropriate neighborhood of x. The second term in

the second line can then be chosen small enough since fn is continuous. Q.E.D.

The sup norm defines in the obvious way the sup distance function, which will be

sometimes denoted by d∞.

The Contraction Mapping Theorem

Definition 22 Let (X, d) a metric space and T : X → X a function mapping X into

itself. T is a Contraction (with modulus β) if for some β < 1 we have

d (Tx, Ty) ≤ βd (x, y) , for all x, y ∈ X.

To understand the idea, make a picture of a contraction from IR+ to IR+. For example

draw a line with slope β ∈ [0, 1) and nonnegative intercept.

Theorem 7 If (X, d) is a complete metric space and T : X → X is a contraction with

modulus β, then (i) T has exactly one fixed point x∗ in X, i.e. x∗ = Tx∗, and (ii) for all

x0 ∈ X we have d (T nx0, T
nx∗) ≤ βnd (x0, x

∗) , n = 0, 1, 2, ...

Proof The proof goes as follows. Start with a generic x0 ∈ X and construct a sequence

as follows: xn = T nx0. Since X is complete, to show existence in (i), it suffice to note

that the so generated sequence is Cauchy. Let’s show it.

Notice first that by repeatedly applying our map T one gets, d(xn+1, xn) ≤ βnd(x1, x0).

Consider now, w.l.o.g., m = n+ p+ 1; we have

d(xm, xn) ≤ d(xm, xm−1) + d(xm−1, xm−2) + .... + d(xn+1, xn)

≤ βpd(xn+1, xn) + βp−1d(xn+1, xn) + .... + d(xn+1, xn)

≤ 1

1− β
d(xn+1, xn) ≤

βn

1− β
d(x1, x0)

where, for the first inequality we used property (iii) in Definition 1, for the second

and fourth we used the property of our sequence. The third inequality is trivial, since

d(xn+1, xn) ≥ 0 and β < 1.

As a consequence, for each ε > 0, we can choose an index N large enough and have
βN

1−β
d(x1, x0) < ε for all n,m ≥ N as it is required by the definition of Cauchy sequence.

Since (X, d) is complete this sequence must converge, that is, there must exist a x∗ such

that

lim
n→∞

xn = x∗.
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By the continuity of T (in fact T is uniformly continuous) we have that the limit point of

the sequence is our fixe fixed point of T 7

Tx∗ = T lim
n→∞

xn = lim
n→∞

Txn = lim
n→∞

xn+1 = x∗.

It remains to show that the limit of the sequence x∗ = Tx∗ is unique. Suppose the contrary,

and call x∗∗ = Tx∗∗ the second fixed point. Note that

d (x∗∗, x∗) = d (Tx∗∗, Tx∗) ≤ βd (x∗∗, x∗) ,

which is a contradiction as long as d (x∗∗, x∗) > 0, hence we must have d (x∗∗, x∗) = 0,

that is x∗and x∗∗ must in fact be the same point. The (ii) part of the proof is simple and

left as an exercise, see also Theorem 3.2 in SLP (page 50-52). Q.E.D.

Exercise 21 Notice that we allow for β = 0. Draw a mapping T : IR+ → IR+ which is a

contraction of modulus β = 0 and show graphically that T must have a unique fixed point.

Now formally show the statement, that is, show that if T is a contraction of modulus

β = 0 in a complete metric space then T admits a unique fixed point. Is the completeness

assumption on (X, d) crucial in this case?

The following result is due to Blackwell and provides a couple of easy-to-verify condi-

tions for a contraction.

Theorem 8 Let X ⊂ IRl, and let B(X) the space of bounded functions f : X → IR, with

the sup norm. Let T : B(X) → B(X) be an operator satisfying: (i) f, g ∈ B(X) and

f(x) ≤ g(x) ∀x ∈ X, implies (Tf) (x) ≤ (Tg) (x) ∀x ∈ X, and (ii) there exists some

0 ≤ β < 1 such that

[T (f + a)] (x) ≤ (Tf) (x) + βa, ∀f ∈ B(X), a ≥ 0, x ∈ X.

Then T is a contraction with modulus β.

Proof Notice that for any two functions f and g in B(X) the sup norm d∞(f, g) ≡
sup |f(x)− g(x)| implies that g(x) ≥ f(x)−d∞(f, g) for all x; or g+d∞(f, g) ≥ f. From the

monotonicity of the operator T (property (i)) we have T [g + d∞(f, g)] (x) ≥ Tf(x) for all

x. Now using property (ii) (discounting) with a ≡ d∞(f, g) ≥ 0, we have Tg+βd∞(f, g) ≥
Tf or βd∞(f, g) ≥ (Tf)(x)− (Tg)(x) for all x. But this implies d∞(Tf, Tg) ≤ βd∞(f, g),

hence T is a contraction with modulus β. Q.E.D.

Assumptions (i) and (ii) in the above theorem are usually called Blackwell sufficient

conditions for a contraction.
7See also Exercise 25.
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Exercise 22 (a) Show that the Bellman operator of the Optimal Growth Model satisfies

Blackwell’s sufficient conditions if u is a bounded function. (b) One of the most commonly

used utility functions in growth theory is the CRRA utility u(c) = c1−σ

1−σ
; σ ≥ 0. We know

that in this case u is not a bounded function. Could you suggest a way of showing that

Bellman operator of the optimal growth model with no technological improvement is a

contraction when σ < 1? [Hint: Use the Inada conditions.]

2.6 Continuity and the Maximum Theorem

Continuity and Uniform Continuity: The Weierstrass’s Theorem We start by

reviewing one of the most basic topological concepts: Continuity.

Definition 23 A real valued function f : X → IR is continuous at x ∈ X if for every

ε > 0 there is a δ > 0 such that

d(x, y) < δ implies f(x)− ε < f(y) < f(x) + ε.

A function is continuous in a set S ⊂ X if it is continuous at every point x ∈ S.

Definition 24 A real value function is said to be uniformly continuous in S ⊂ X if for

every ε > 0 there is a δ > 0 such that for any two points x, y ∈ S such that d(x, y) < δ

we have f(x)− ε < f(y) < f(x) + ε.

Notice that uniform continuity is stronger than continuity. Indeed, for any ε > 0

uniform continuity requires to find a δ, which is the same for each point x ∈ X. While

the usual concept of continuity allows you to choose a different δ for each x.

Exercise 23 Show that if f is uniformly continuous in E, then f is also continuous in

E.

Exercise 24 Show that a continuous function on a compact set is uniformly continuous.

[A bit difficult].

Exercise 25 Show that a real valued function f : IR → IR, is continuous in x if and only

if for every sequence {xn} converging to x we have that the implied sequence {yn = f(xn)}
converges to y = f(x).

We are now ready to show one of the most well known theorems in Real analysis.
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Theorem 9 (Weierstrass) A continuous real valued function f defined on a compact set

S has maximum and minimum.

Proof The simplest way to show this result is using sequences. We already saw

that the supremum of a set of real numbers is an accumulation point. As a consequence,

Proposition 1 guarantees that there exists a sequence yn that converges to y∗ = supx f(x).

Since f is continuous, Exercise 25 implies that the induced sequence xn such that yn =

f(xn) must also converge (say to the point x∗), hence y∗ = f(x∗). By the compactness of

S, x∗ must belong to it, so x∗ is the maximum. Q.E.D.

Exercise 26 Show that a continuous function on a compact set is bounded, i.e. supx f(x) <

∞.

Exercise 27 (Brower Fixed Point) Show that a continuous function defined on the

compact set [0, 1] and mapping values into [0, 1] has a fixed point, that is, a point x∗ such

that f(x∗) = x∗.

Correspondences: Some Basic Concepts Correspondences are more complicated

concepts than functions but the idea is similar.

Definition 25 A map Γ : X → Y is said a correspondence if for any x ∈ X assigns a

set Γ(x) ⊂ Y .

Sometimes many concepts are easy to understand if we consider the case where it fails

to be satisfied.

Definition 26 A non empty correspondence Γ is said to be not lower hemi-continuous

(not l.h.c.) at x if for at least one converging sequence xn → x, it is not possible to

reach a point y ∈ Γ(x) with a converging sequence of points such that yn ∈ Γ(xn).

Definition 27 A non empty and compact-valued correspondence Γ is said to be not upper

hemi-continuous (not u.h.c.) at x if for at least one converging sequence xn → x, it is

possible to find a converging (sub)sequence yk ∈ Γ(xnk
), (with xnk

a subsequence of xn),

whose limit point yis such that y /∈ Γ(x).

We can have an idea of these concepts by drawing graphs. If we try to visualize when

one of the two concepts fail we will immediately understand that l.h.c. does not allows
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for “discontinuities” that appear as “explosions” in the set of points, whereas the u.h.c.

does not allows for “discontinuities” that appear as “implosions”.8

Definition 28 A Correspondence Γ which is both u.h.c. and l.h.c. at any x is said to be

continuous.

Note that a single valued correspondence is actually a function.

Exercise 28 Show that a single valued correspondence is l.h.c. if and only if it is u.h.c.

Exercise 29 Is a continuous correspondence also a continuous function ? Is a continuous

function also a continuous correspondence ? Try to justify formally your answer.

Exercise 30 Show the following useful result. Let fi, gi i = 1, 2, ...N be continuous real

valued functions such that fi ≥ gifor all i. Define Γ (x) = {y ∈ IRN : gi (x) ≤ yi ≤ fi (x) ,

i = 1, 2, ...N}. Then Γis a continuous correspondence.

From Exercise 25 we saw that an elementary way of defining continuity of f at a

point is to guarantee that if xn → x then f (xn) → f (x) . Here below we provide some

generalizations based on this definition:

Definition 29 A function f : X → IR is upper (lower) semi-continuous at x if for all

converging sequences xn → x, lim supn→∞ f(xn) ≤ f(x) (lim inf f(xn) ≥ f(x)).

Upper semicontinuity is immediately extended to functions that possibly take values −∞
and lower semicontinuity can be extended to functions that can possibly take the value

+∞. More in general, upper semicontinuos functions can be equivalently defined as those

functions having closed upper level sets while lower semicontinuous functions those having

close lower level sets for all v ∈ IR. Where the upper and lower level set at level v is defined,

respectively, as:

Uv := {x ∈ X|f(x) ≥ v}; and Lv := {x ∈ X|f(x) ≤ v}.

We have the following extension to the Weierstrass theorem.

8In general, since the correspondence is (more or less implicitly) assumed to map into a compact

Hausdorff space, u.h.c. is equivalent to the graph of Γ is closed, where the graph of a correspondence is

defined as Gr(Γ) = {(x, y) ∈ X × Y : y ∈ Γ(x)} (see Theorem 14.12 in Aliprantis et al., 1994). While

l.h.c. is implied by the fact that Gr(Γ) is an open set (but the converse is not necessarily true: for

example, a continuous correspondence is obviously l.h.c. but its graph is closed).
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Lemma 0. Let f : IRN → IR ∪ {−∞} be upper-semincontinuous and C ⊂ IRN be

compact. If f ∗ := supx∈C f(x) > −∞ then there is a x∗ ∈ C such that f(x∗) = f ∗ <∞.

Proof : Consider the function f̂ defined pointwise as follows: f̂(x) = f(x) for x ∈ C and

f̂(x) = −∞. Clearly f ∗ = sup
x∈IRN f̂(x) and the set of maximisers of the two problems

concide. The closeness of the set C and the upper-semicontinuity of f makes f̂ upper-

semicontinuous as well, that it has closed (possibly empty) upper level sets Xr := {x ∈
IRN |f̂(x) ≥ r} for all r > −∞. Since C is bounded, Xr are bounded (again, possibly

empty) for all r > −∞. In other terms Xr are all compact sets. Now, the definition of

sup implies that for each r < f ∗, the set Xr is non-empty. x∗ is hence one element of

the the set generated by intersection ∩r<f∗Xr. Since f never takes the value +∞ and f̂

is bounded above by f ∗, it must be that f ∗ = f(x∗) = f̂(x∗) < ∞. And we are done.

Q.E.D.

There is a way of seeing continuity of a correspondence very similar to that for func-

tions, as specified in the above definition. We just need to define the appropriate extension

of Definition 13 for sets.

Definition 30 Let {An}∞n=1 a sequence of sets in IRn. We say that x ∈ lim inf An if every

neighborhood Ix of x intersects all An for a n sufficiently large, i.e. for each Ix there is a

N such that for all n ≥ N Ix ∩ An 6= ∅. We say x ∈ lim supAn if every neighborhood of

x intersects infinitely many An. Clearly lim inf An ⊂ lim supAn. We say that An → A or

limAn = A if limsup and liminf are the same set.

In words, the set lim inf Γ (xn) is the set of all possible limit points of sequences {yn}n
such that yn ∈ Γ(xn) for all n, while lim sup Γ (xn) is the set of all cluster points of such

sequences.

Definition 31 Let Γ (·) be a correspondence which maps points X into subsets of IRn,

and let {xn}n be a sequence converging to x. We say that Γ is u.h.c. (resp. l.h.c.

) [resp. continuous ] if Γ (x) ⊃ lim sup Γ (xn) (resp. Γ (x) ⊂ lim inf Γ (xn) ), [resp.

Γ (x) = limΓ (xn) ].

The definition of u.h.c. in Definition 27 is hence more restrictive than that in Defi-

nition ?? in that the later does not require to work on compact spaces. In contrast, the

correspondence between the two concepts of l.h.c. is perfect.

Exercise 31 Show that when we consider compact valued correspondences the last defi-

nitions and those in Definitions 26 and 27 are equivalent.
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Note that it can be the case that a correspondence fails to be u.h.c. at a point x

according to Defintion 27 while Γ (x) = limΓ (xn) . That is, strictly speaking, we should

have used a qualification such as ’weak’ for u.h.c. and continuity properties in Definition

31. Since in the theorems below we will assume compact valued correspondences this

distinction will not matter.

Exercise 32 Let f : X × Z, and define the graph of f given z as

Grf (z) = {(x, y) ∈ X × Y : −B ≤ y ≤ f(x, z)} ,

where B <∞ guarantees to have a compact valued correspondence for each given z. Show

that if Grf (z) is a continuous correspondence then f is jointly continuous in (x, z) . What

are the properties of f if Grf (z) is a upper (lower) hemi-continuous correspondence?

The Maximum Theorem This is not a simple result, but it is one of the most impor-

tant ones.

Theorem 10 Let X ⊂ IRl and Y ⊂ IRm, let f : X × Y → IR be a continuous function,

and let Γ : X ։ Y be a compact valued and continuous correspondence. Then (i) the

function h : X → IR defined as

h(x) = max
y∈Γ(x)

f(x, y)

is continuous, and the policy correspondence G : X → Y defined as

G(x) = {y ∈ Γ(x) : f(x, y) = h(x)}

is (ii) nonempty, (iii) compact valued and (iv) upper hemi-continuous.

Proof (sketch): (i) Recall the ‘implosions and explosions interpretation’ for corre-

spondences. It f is continuous it cannot have jumps. So the maximum value h can have

jumps (i.e., it can be discontinuous) only if there are some implosions or explosions in the

feasible set. In particular, with implosions we can have a sharp reduction of the sup, with

explosions h can jump upward. The continuity of Γ guarantees that there are no such

implosions and explosions in the feasible set, hence h must vary continuously with x.

Now, from the Weierstrass Theorem a maximum exists for any x, so (ii) is immediate.

(iii) To show that G is compact valued, note first that G(x) ⊂ Γ(x) hence G is bounded.

To see that G maps closed sets for all x, note that for any convergent sequence yn with
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yn ∈ G(x) it must be that f(x, yn) = h(x) so from the continuity of f and Exercise 25,

we have that

lim
n→∞

f(x, yn) = f(x, lim
n→∞

yn) = f(x, y) = h(x),

where the last equality comes for the fact that f(x, yn) = h(x) for all n, which implies

limn→∞ f(x, yn) = h(x). Hence y ∈ G(x) and, according to Definition 17, we have shown

that G(x) is closed for all x.

(iv) We now show that the policy correspondence cannot fail to be u.h.c.. Recall

Definition 27. In order for a correspondence not to be u.h.c. at a point x one must be

able to find two converging sequences xn → x and yn ∈ G (xn) → y such that y /∈ G (x) .

However, if we recall the definition of the policy G(x) = {y ∈ Γ(x) : f(x, y) = h(x)} , it

is easy too see that as long as Γ is continuous this failure surely cannot happen because

of y /∈ Γ(x). Moreover, because of continuity of both f and h for any couple of such

converging sequences we must have that

f (x, y) = f (lim xn, lim yn) = lim
n
f (xn, yn) = lim

n
h (xn) = h

(
lim
n
xn

)
= h (x)

where in the first equality we used the definition of x an y as limit points, in the second

we used the joint continuity of f ; in the third we used the fact that yn ∈ G (xn) for all n,

and in the penultimate equality we used again the continuity of h. Hence, we have just

seen that this cannot happen at all.9 Q.E.D.

Notice that the policy correspondence is “only” upper hemi-continuous. Hence we can

have explosions in the set that describes the optimal points, even tough the feasibility set

cannot.

Exercise 33 How can we have explosions in the policy correspondence if both f and Γ

are continuous ?

Exercise 34 Solve exercise 3.16 of SLP.

Theorem 10 is due to C. Berge (1959) and can be extended as follows:

Theorem 11 Let Γ : X ։ Y a u.h.c. correspondence with non-empty and compact

values. And let f : X × Y → IR ∪ {−∞} be upper semi-continuous. Then the “value

function” h : X → IR defined by

h(x) = max
y∈Γ(x)

f(x, y)

is upper semi-continuous.

9Of course, the tricky part is to show that G(x) is u.h.c. and that h is continuous simultaneously. In

the proof of Theorem 3.6, SLP show that G is u.h.c. only using the continuity of f.
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Proof : We want to show that the upper level sets of h(x) are closed. When they are

empty the result is trivial. So, suppose for some v < ∞ the upper level set of h - call it

Uv is non-empty and take a converging sequence xn → x with all xn ∈ Uv. To be in Uv

it must be that h(xn) > −∞ for all n. Note that given xn, we are maximizing the upper

semicontinuous function f(xn, ·) (that takes nowhere plus infinity) over the compact and

non-empty set Γ(xn) and we get a value greater than −∞. By Lemma 0 a maximum

exists. In particular, for all n there is a yn ∈ Γ(xn) such that f(xn, yn) ≥ v. Since Γ

is compact valued {yn} has a cluster point y [not immediate step]. Since Γ is u.h.c we

must have y ∈ Γ(x). Now take a subsequence of {yn} converging to y. Since f is upper

semicontinuous we have f(x, y) ≥ lim supk f(xnk
, ynk

) ≥ v. Since y ∈ Γ(x) it must be that

h(x) ≥ f(x, y), so h(x) ≥ v as required. Q.E.D.

As expected, if we allow both the feasibility set and the functions to jump upward,

the value function may jump upward as well. Notice that downward jumps are not always

preserved by the max operator. These are preserved by the min. Indeed, the same theorem

guarantees that whenever −f is upper semi-continuous (i.e., f is lower semi-continuous)

then h is lower semi-continuous since −h = −min f must be upper semi-continuous. Do

not get confused, Γ is always required to be u.h.c. [Can you explain intuitively why?].
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