
Chapter 3

Deterministic Dynamic Programming

3.1 The Bellman Principle of Optimality

Richard Bellman (1957) states his Principle of Optimality in full generality as follows:

“An optimal policy has the property that whatever the initial state and

initial decision are, the remaining decisions must constitute an optimal policy

with regard to the state resulting from the first decision.” Bellman (1957), page

83.

An optimal policy is a rule making decisions which yield an allowable sequence of decisions

and maximize a preassigned function of the final state variables.

The Bellman Principle of Optimality (BPO) is essentially based on the following prop-

erty of the real valued functions.

Lemma 1 Let f : X × Y → IR ∪ {−∞,+∞} then

V ∗ = sup
(x,y)∈X×Y

f(x, y) = sup
x∈X

{
sup
y∈Y

f(x, y)

}
,

that is, if we define pointwise the value function W : X → IR ∪ {−∞,+∞}

∀x ∈ X W (x) = sup
y∈Y

f(x, y)

then

V ∗ = sup
x∈X

W (x).

43
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Proof. First notice that if we fix x, we have V ∗ ≥ f(y, x) for all y, hence V ∗ ≥W (x)

for all x. This is true even when V ∗ = −∞ as in this case it must be that W (x) = −∞
for all x ∈ X. As a consequence

V ∗ ≥ sup
x∈X

W (x).

Now we need to show the inverse inequality. Since the case V ∗ = −∞ has been analyzed

above, we can have two cases.

(a) V ∗ < ∞. In this case, by the definition of sup in V ∗ we have that for every ε > 0

there exists a couple (x′, y′) ∈ X × Y such that f(x′, y′) + ε > V ∗. In addition, we know

that W (x′) = supy f(x
′, y) ≥ f(x′, y′), hence

sup
x
W (x) + ε ≥ W (x′) + ε > V ∗.

Since the inequality supxW (x) + ε > V ∗ must be true for all ε > 0, it must be that

supxW (x) ≥ V ∗ (otherwise it is easy to see that one obtains a contradiction).

(b) If V ∗ = ∞ we have to show that for all real numbers M < ∞ there is a x ∈ X such

that W (x) > M. Assume it is not the case and let M̄ < ∞ such that W (x) ≤ M̄, for all

x. Since for any x we have W (x) ≥ f(x, y) for all y, it must be that ∞ > M̄ ≥ f(x, y)

for all x, y, but this implies that M̄ is an upper bound for f. Since V ∗ is the least upper

bound we have a contradiction. Q.E.D.

Using the infinite penalization approach1 the same result can be stated for the case

where the choice (x, y) is restricted to a set D ⊂ X × Y. In this case, one must be

able to decompose the feasibility set in an appropriate way. In these notes, we will always

1The infinite penalization approach basically reduces a constrained maximization problem into a free

maximization one. For example, consider the constrained problem

sup
(x,y)∈D⊂X×Y

f(x, y).

If we define a new function f∗ as follows

f∗(x, y) =

{
f(x, y) if (x, y) ∈ D

−∞ otherwise

then it should be easy to see that

sup
(x,y)∈D

f(x, y) = sup
(x,y)∈X×Y

f∗(x, y).
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analyze environments where this decomposition can be done.2,3 Moreover, we will typically

consider environments where the objective function f is a sum of terms. In this case, the

following property of the supremum becomes quite useful.

Lemma 2 Let a, and b two real numbers, if b > 0, then

sup
x∈X

a+ bf(x) = a+ b sup
x∈X

f(x),

if b < 0, then

sup
x∈X

a+ bf(x) = a+ b inf
x∈X

f(x).

Proof. We will show the result when b > 0, assuming that the sup takes a finite

value. [The case where the sup takes the value −∞ or +∞ is left as an exercise for the

interested reader.] Let f ∗ = supx∈X f(x), and V ∗ = supx∈X a + bf(x). First, we show

V ∗ ≤ a+ bf ∗. Note that for all x ∈ X we have a+ bf ∗ ≥ a+ bf(x), that is, a+ bf ∗ is an

upper bound for the set

{y : y = a + bf(x) for some x ∈ X} .

As a consequence, its least upper bound V ∗ must be such that a+ bf ∗ ≥ V ∗ = supx∈X a+

bf(x). To show the converse, note that from the definition of f ∗ as a supremum, we

have that for any ε > 0 there must exist a x̄ε ∈ X such that f(x̄ε) > f ∗ − ε. Hence

a + bf(x̄ε) > a + bf ∗ − bε. Since x̄ε ∈ X, it is obvious that V ∗ ≥ a + bf(x̄ε). Hence

V ∗ ≥ a + bf ∗ − bε. Since ε was arbitrarily chosen, we have our result: V ∗ ≥ a + bf ∗.

Q.E.D.

Notice that in economics the use of the BPO is quite common. Consider for example

the typical profit maximization problem

π∗(p, w) = max
z,y

py − wz

s.t. y ≤ f(z),

2Hence, (x, y) ∈ D will always be equivalent to x ∈ domΓ and y ∈ Γ(x) for some correspondence Γ,

where the domain of a correspondence is the set of values for which it is non empty, i.e.

domΓ = {x : Γ(x) 6= ∅} .

3The constrained maximization version of Lemma 1 is

sup
(x,y)∈D

f(x, y) = sup
x∈domΓ

{
sup

y∈Γ(x)

f(x, y)

}
.
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where y is output and z is the vector of inputs; and p and w are prices. Using Lemma 1

and 2, the problem can be decomposed as follows:

π∗(p, w) = max
y

py − C(y;w),

where C is the cost function, and for any given y is defined

C(y;w) = inf
z
wz

s.t. y ≤ f(z).

Let me now introduce some notation. To make easier the study of the notes I follow

closely SLP, Chapter 4. Consider again the optimal growth problem. In the introductory

section we defined the problem as follows

sup
{kt+1}

∞

t=0

∞∑

t=0

βtu (f(kt)− kt+1)

s.t. k0 ≥ 0

0 ≤ kt+1 ≤ f(kt) for all t.

In general, the class of dynamic problems we are going to consider is represented by

V ∗(x0) = sup
{xt+1}

∞

t=0

∞∑

t=0

βtF (xt, xt+1) (3.1)

s.t. x0 ∈ X

xt+1 ∈ Γ(xt) for all t.

One key ingredient is the time invariant function F of the present and the future states,

whose discounted sum describes the objective function of the problem. The time invariant

correspondence Γ describing feasibility, and β ∈ (0, 1) is the discount factor. Finally,

notice that we denoted the true value function V ∗ with an asterisk. This is done in order

to make the distinction between the true value function V ∗ and a specific solution V to the

Bellman functional equation implied by (3.1). We will indeed see that the two concepts

are closely related but quite different.

Exercise 35 Show that the general formulation in (3.1) can be specified to describe the

optimal growth problem defined above.[Hint: very easy!]

From these primitives, the problem can be rewritten in a more compact way. For any

sequence x = {xt+1}∞t=0 with initial value x0 define the set

Π(x0) = {{xt+1}∞t=0 such that xt+1 ∈ Γ(xt) for all t} .
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If x ∈ Π(x0) we say x is a feasible plan (with respect to x0).

We now make the following assumption on our primitive Γ.

Assumption 4.1 Γ(x) is non-empty for any x ∈ X.

The relationship between the two definitions of feasibility is clarified by the

following exercise.

Exercise 36 Show that if Assumption 4.1 is true then Π(x0) is non-empty for each

x0 ∈ X.

For any sequence x we define the intertemporal payoff function as follows

U(x) =

∞∑

t=0

βtF (xt, xt+1)

so we can equivalently write the problem (3.1) in a compact way

V ∗(x0) = sup
x∈Π(x0)

U(x). (3.2)

We allow the problem to have an unbounded value, so we write the infinite sum even

when the series is divergent. What we will never do is to consider infinite sums when the

series have indeterminate character.

Assumption 4.2 For all x0 ∈ X and x ∈Π(x0), limn→∞ Un(x) = limn→∞

∑n
t=0 β

tF (xt, xt+1)

exists although it might be plus or minus infinity.

Exercise 37 Show that if Assumption 4.2 is satisfied, we can write U(x) =
∑∞

t=0 β
tF (xt, xt+1)

as follows

U(x) = F (x0, x1) + βU(x′)

for each feasible path x ∈Π(x0) with x0 ∈ X.

We are now ready to state the BPO for our class of problems.

(Infinite) Bellman Principle If x is optimal then x′ is optimal, where x =(x0, x1, ...) and

x′ = (x1, x2, ...) is the “one-step ahead” sequence.

The BPO principle is equivalent to the possibility of writing the value function V ∗ for

our infinite dimensional problem in the form of a functional equation. Which is called the

Bellman Equation4

V (x0) = sup
x1∈Γ(x0)

F (x0, x1) + βV (x1), (3.3)

and this for any t. More formally, we have

4The corresponding finite horizon BPO is as follows
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Theorem 12 Let Assumptions 4.1 and 4.2 be satisfied by our problem. Then the func-

tion V ∗(x0) = sup
x∈Π(x0) U(x) satisfies the functional equation (3.3) for all x0 ∈ X.

Moreover, if a feasible plan x∗ ∈ Π(x0) attains the supremum in (3.2) then the maximal

plan x∗ must satisfy (3.3) with V = V ∗, i.e.

V ∗(x∗t ) = F (x∗t , x
∗
t+1) + βV ∗(x∗t+1), t = 0, 1, 2, ... (3.4)

Proof What we have to show for the first part of the theorem is the following:

V ∗(x0) ≡ sup
x∈Π(x0)

U(x) = sup
x1∈Γ(x0)

F (x0, x1) + βV ∗(x1).

As a preliminary step, use Assumption 4.2 (and Exercise 37) to rewrite

sup
x∈Π(x0)

U(x) = sup
x∈Π(x0)

F (x0, x1) + βU(x′).

By Lemma 1 (in its constrained version), we can decompose the sup operator as follows

sup
x∈Π(x0)

F (x0, x1) + βU(x′) = sup
x1∈Γ(x0)

sup
x
′∈Π(x1)

F (x0, x1) + βU(x′).

The relationship between the correspondence Γ and the feasible set Π(x0) guarantees (by

definition) that Assumption 4.1 (together with Exercise 36) suffices to allow us to do the

decomposition.

The final step is to use Lemma 2 to pass through the second sup operator. That is,

applying Lemma 2 to the second sup operator with F (x0, x1) = a and β = b > 0 we have

sup
x1∈Γ(x0)

sup
x
′∈Π(x1)

F (x0, x1) + βU(x′) = sup
x1∈Γ(x0)

F (x0, x1) + β sup
x
′∈Π(x1)

U(x′).

One must keep in mind that this last step can only be done because of the specific

characteristics of the sum. First of all, the discounted summation satisfies an obvious

monotonicity assumption since β > 0. Second, it also satisfies an important property

Finite Bellman Principle If a path (x0, x1, ..., xT ) is optimal for the T horizon problem. Then the path

(x1, x2, ..., xT ) is optimal for the T − 1 horizon problem.

That is, we can write the value function V ∗

T (x0) for the T -horizon problem in terms of the T − 1 horizon

value function V ∗

T−1 as follows

V ∗

T (x0) = sup
x1∈Γ(x0)

F (x0, x1) + βV ∗

T−1(x1).



3.1. THE BELLMAN PRINCIPLE OF OPTIMALITY 49

of continuity (as we saw a sum it is actually a linear mapping).5 The last part of the

proposition is easily derived by the fact that x∗ reaches the supremum, i.e.

U(x∗) = V ∗(x0) = max
x∈Π(x0)

U(x),

and is left as an exercise. For an alternative proof see SLP Theorems 4.2 and 4.4. Finally,

note that we used β > 0, however the case β = 0 is really easy, and again left as an

exercise. Q.E.D.

Let’s have another look at conditions (3.4). The key idea of the Bellman principle is

that we can simply check for “one stage deviations”. An optimal plan x∗ has the property

that for any t - once the past is given by x∗t , and the effect of your choice xt+1 on the future

returns is summarized by V ∗ (xt+1) - there is no incentive to choose a different xt+1 from

5Monotonicity alone is not enough, as the following counterexample from Bertsekas et al. (1978)

shows. In this example there are no states, and the problem is in two-periods. The agent must choose the

control c ∈ (−1, 0] and the continuation value is J0 = 0. All the complications are due to the properties

of the aggregator H : U × J → J , J ⊂ IR. It is such that

H(u, J) =

{
u if J > −1

u+ J if J ≤ −1.

One should easily see that the true optimal values are

J∗

1 = inf
u

H(u, J0) = −1

and

J∗

2 = inf
u1,u2

H(u1, H(u2, J0)) =

= inf
u1,u2

H(u1, u2) = −1.

However, if one uses the recursive formulation and the Bellman operator gets something different. In

particular

J1 = T 1(J0) = inf
u2

H(u2, J0) = −1

and

T 2(J0) = T 1(J1) = inf
u1

H(u1, J1)

= inf
u1

H(u1,−1) = −2.

To have a sufficient condition we might require either continuity, or ∃α ≥ 0 : ∀ r ≥ 0, and J

H(u, J) ≤ H(u, J + r) ≤ H(u, J) + αr.
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that implied by the optimal plan x∗t+1. That is, there is no incentive to revise the plan.

That is why economists often call the paths generated by the BPO as time consistent.

The above theorem states a set of necessary conditions for an optimal path in terms

of the functional equation. It is important to notice that regarding these properties the

distinction between finite horizon and infinite horizon is merely technical. For example,

for the finite periods version of the above theorem we do not need Assumption 4.2 since

finite sums will always be well defined. In the infinite horizon, such assumptions are only

needed to have a well defined continuation problem in each period.

If one looks for sufficient conditions the distinction between finite and infinite horizon

becomes much more important. In particular, the finite version of Theorem 12 is also a

sufficient condition for an optimum. That is, a path that satisfies the BPO is an optimal

plan. The idea is simple. The BPO states that an optimal path is such that the agent

does not have incentives to deviate for one period from his maximizing behavior and then

reverting to an optimal behavior (summarized by V ∗ (x)). By induction on this principle,

one can show that the agent has never incentive to deviate for finitely many periods either.

In contrast, the BPO cannot say anything about infinite deviations. That is behaviors

that never revert to the optimizing behavior any more. As a consequence, in order to

use the BPO to detect optimal plans one must induce some additional structure on the

problem so that the agent cannot gain from infinite deviations either. In term of the

objective function U(x) one typically requires the so called continuity at infinity (see for

example Fudenberg and Tirole, 1991, Chapter 5). Here below we follow SLP and state

the additional condition in terms of the (true) value function V ∗.

Theorem 13 Assume 4.1 and 4.2. Let a feasible path x∗ ∈ Π(x0) from x0 satisfying

(3.4), and such that

lim sup
t→∞

βtV ∗(x∗t ) ≤ 0.

Then x∗attains the supremum in (3.2) when the initial state is x0.

Proof. First notice that since x∗ is feasible its value cannot be greater than the

supremum, that is V ∗(x0) ≥ U(x∗). We have to show the inverse inequality. If we apply

repeatedly (3.4) we get

V ∗(x0) = Un(x
∗) + βn+1V ∗(x∗n+1) for n = 1, 2, ...

now using lim supn→∞ βn+1V ∗(x∗n+1) ≤ 0 we have

V ∗(x0) = Un(x
∗) + βn+1V ∗(x∗n+1) ≤ lim

n→∞
Un(x

∗) ≡ U(x∗).
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Q.E.D.

The limit value condition imposed above can be interpreted as a transversality condi-

tion for the BPO. The same idea can be applied to the value function as in the first part

of Theorem 12. In this case, we obtain a sufficient condition for a given function to be

the true value function.

Theorem 14 Assume 4.1 and 4.2. If V is a solution to the functional equation (3.3)

and satisfies

lim
t→∞

βtV (xt) = 0 for all x ∈Π(x0) and all x0 ∈ X,

Then V is the true value function, i.e. V = V ∗.

Proof. The proof here is basically on the lines of the previous theorem. The only

additional complication is that we are dealing with the sup instead of the Max. In

particular, we are not sure of the existence of an optimal plan. However, notice that one

key aspect of V ∗ to be verified for V is that

V ∗ (x0) ≥ U (x) for all x ∈Π(x0) and all x0 ∈ X.

Now since V solves (3.3) for all t we have that

V (x0) ≥ F (x0, x1) + βV (x1) ≥ F (x0, x1) + βF (x1, x2) + β2V (x2) ≥ ...

≥
T−1∑

t=0

βtF (xt, xt+1) + βTV (xT ) for all x ∈Π(x0).

Hence, as long as βTV (xT ) → 0 we have the desired property for V . See also Theorem

4.3 in SLP. Q.E.D.

The above theorem also suggests that the “guess and verify” procedure we discussed

in the introductory section simply provides one solution to the functional equation (3.3).

However (3.3) might have multiple solutions, and we are obviously looking for the right

value function V ∗. Theorem 14 guarantees that a bounded solution V to (3.3) is actually

the “right” value function.

3.2 The BPO under Bounded Returns: Continuity, Con-

cavity and Differentiability of the Value Function

In this section we will specify the problem used to study the BPO by imposing additional

restrictions on the primitives F and Γ so that to be able to show some properties for the
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value function V ∗. Following SLP, we will heavily use the contraction mapping theorem

(Theorem 7). To show that the Bellman operator is a contraction we will use the Blackwell

sufficient conditions (Theorem 8), so we will work in the space of bounded functions with

the sup norm.

Continuity To show continuity we will use the theorem of the maximum (Theorem 10).

Here are the necessary assumptions to use it.

Assumption 4.3 Γ(x) is a non-empty, compact valued and continuous correspondence,

and X ⊆ IRl.

Assumption 4.4 F is bounded and continuous and β ∈ [0, 1).

Theorem 15 Assume 4.3 and 4.4 and consider the metric space (C(X), d∞) of bounded

and continuous functions with the sup norm. Then the Bellman operator T defined by

(TV )(x) = max
x′∈Γ(x)

F (x, x′) + βV (x′) (3.5)

(i) maps C(X) into itself; (ii) has a unique fixed point V ∈ C(X); for all V0 ∈ C(X) we

have

d∞(T nV0, V ) ≤ βnd∞(V0, V ), for any n = 0, 1, ....

(iii) and the policy correspondence

G(x) = {x′ ∈ Γ(x) : V (x) = F (x, x′) + βV (x′)}

is non empty, compact valued, and upper semi-continuous.

Proof. (i) If f is continuous and F is continuous the objective function of the maxi-

mization problem (3.5) is continuous. This, together with the properties of the correspon-

dence Γ imply that we can directly apply Theorem 10 to show that the value function

of this problem Tf is also continuous. The fact that F is bounded also implies that if

f is bounded then Tf will be bounded too. So (i) is shown. To show (ii) and (iii) we

use Theorem 7. We need to show that T describes a contraction and that the metric

space (C(X), d∞) is complete. The completeness of (C(X), d∞) have been presented in

Theorem 6. To show that T is a contraction we can use Theorem 8. In Exercise 22 we

have precisely shown monotonicity and discounting for the optimal growth model, how-

ever, one can closely follow the same line of proof and prove the same statement in this
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more general case. So we have (ii). Finally, since we have shown that the fixed point V

is continuous, we can apply the maximum theorem again and show (iii). Q.E.D.

Notice first, that when F is a bounded function also V ∗ must be bounded, and from

Theorem 14 the unique bounded function V satisfying the Bellman equation must be

the true value function, i.e. V = V ∗. Moreover, from (iii) above we are guaranteed we

can construct an optimal plan by taking a selection from the policy correspondence G as

follows: start form x0 an then for any t ≥ 1 set xt ∈ G(xt−1). But then we have also shown

existence without using possibly complicated extensions of the Weierstrass theorems in

infinite dimensional spaces.

Concavity and Differentiability

Assumption 4.7 Γ has a convex graph, i.e. for each two x1, x2 ∈ X and corresponding

feasible x′1 ∈ Γ(x1), x
′
2 ∈ Γ(x2) we have

[θx′1 + (1− θ)x′2] ∈ Γ (θx1 + (1− θ)x2) for any θ ∈ [0, 1] .

Assumption 4.8 F is concave and if θ ∈ (0, 1) and x1 6= x2 we have

F (θx1 + (1− θ)x2, θx
′
1 + (1− θ)x′2) > θF (x1, x

′
1) + (1− θ)F (x2, x

′
2) .

Now we are ready to show our result.

Theorem 16 Assume 4.3, 4.4, 4.7 and 4.8. (i) Then the fixed point V is strictly

concave and the policy G is a continuous function g. (ii) Moreover, if F is differentiable

then V is continuously differentiable and

V ′(x) =
∂F (x, g(x))

∂x
= F1(x, g(x))

for all x ∈ intX such that the policy is interior, i.e. g(x) ∈ intΓ(x).

Proof. The proof of (i) uses the fact that under 4.7 and 4.8 the operator T maps

continuous concave function into concave functions, and the space of continuous concave

functions is a closed subset of the metric space (C(X), d∞) . As a consequence we can

apply Exercise 20 to be sure that the space of continuous and bounded functions in the

sup norm is a complete metric space and apply the contraction mapping theorem. Under

4.8 it is easy to show that V is actually strictly concave. Since a strictly concave problem

has a unique maximum, the policy correspondence must be single valued, hence g is a
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continuous function (see Exercises 28 and 12.3). Part (ii) will be shown graphically in

class. The interested reader can see the proof in SLP, Theorem 4.11, page 85. Q.E.D.

The key element of the proof of part (ii) above is the following Lemma of Benveniste

and Sheinkman (1979):

Lemma 3 Let x0 ∈ intX and let D a neighborhood of x. If there exists a concave and

differentiable function W : D → ℜ such that for x ∈ D W (x) ≤ V (x) and V (x0) = W (x0)

then V is differentiable at x0 and V ′(x0) =W ′(x0).

Proof. If p ∈ ∂V (x0) then p ∈ ∂W (x0) since the subgradient inequality carries over.

But W is differentiable, hence p is the unique subgradient of W , which implies that also

V has only one subgradient at x0. V is concave, and since any concave function with only

one subgradient is differentiable V is differentiable. This last statement is not easy to

show, see Rockafellar (1970). Q.E.D.

Monotonicity When F (x, x′) is monotone in x and the feasibility set Γ(x) widens with

x, it is easy to show that V (x) is increasing.

Differentiability using Boldrin and Montrucchio (1998) Boldrin and Montruc-

chio (1998) use the properties of the contraction, the uniform convergence of the policy

of a class of finite period problem to the policy of the infinite horizon problem, and a

well known approximation theorem (Dieudonné, Foundations of Mathematics No. 8.6.3)

to show differentiability.6 Their result does not use concavity, hence their method can be

used to study parameter sensitivity as well.

Differentiability of the policy under C2 Differentiability of the policy is strictly

linked to the second order differentiability of the value function. Montrucchio (1997)

shows that under some conditions the Bellman operator is a contraction also in the C2

topology. Santos (1991) shown the same result using a different methodology. Recently,

Santos (2003) shows how this result can be profitably used to compute bounds on the

approximation errors in the numerical discretization procedures.

6The key Lemma they use guarantees that if V ′

T (k) → φ(k) uniformly as T → ∞, and VT → V, with

VT differentiable for all T then V ′(k) = φ(k).
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Unbounded returns In most cases the complication of unbounded F is solved on

an ad hoc basis. Alvarez and Stokey (1998) analyze the case where both F and Γ are

homogeneous functions. Montrucchio and Privilegi (1998) and, more recently, Rincón-

Zapatero and Rodriguez-Palmero (2003) generalize Boyd (1990) and use the contraction

mapping theorem to show existence and uniqueness of V in a large class of Bellman

equation problems with unbounded returns. Streufert (1990, 1998) analyze a large class

of capital accumulation problems and uses the monotonicity property of the Bellman

operator to show that V is upper hemi-continuous. He defines the notion of admissibility

and uses biconvergence to show uniqueness and continuity.

3.3 The Euler’s Variational Approach and the Bellman

Principle of Optimality

To get the key idea of the Euler’s Variational approach we should recall the problem we

analyzed in Lemma 1, at the beginning of this section

max
(x,y)∈X×Y

f(x, y).

To keep the analysis as simple as possible, assume the existence of a maximum couple

(x∗, y∗), and define

V ∗ = f(x∗, y∗) ≥ f(x, y) for all (x, y) ∈ X × Y. (3.6)

According to the Bellman’s principle (Lemma 1) the problem can be solved in two steps:

V ∗ = max
x∈X

W (x),

with

W (x) = max
y

f(x, y);

and vice versa: any pair that solves such a two steps problem is an optimal one. The Eu-

ler’s variational approach starts by the observation that the optimal pair (x∗, y∗) satisfies

(among other things)

f(x∗, y∗) ≥ f(x, y∗) for all x ∈ X, and (3.7)

f(x∗, y∗) ≥ f(x∗, y) for all y ∈ Y. (3.8)

Notice the key difference from the Bellman principle: an optimal pair (x∗, y∗) has to be

such that along the optimal path there is no incentive to deviate from it “unilaterally,”
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that is only in one direction.7 Notice that we can equivalently write the BPO two step

procedure as

f(x∗, y∗) ≥ f (x, y∗ (x)) for all x ∈ X

where (assuming there is only one optimum)

y∗ (x) = argmax
y∈Y

f (x, y) .

That is, crucially y∗ (x) is not a fixed number, it is a function of x.

In our notation, the Euler variational approach translates in the observation that an

optimal plan x∗ for any t must satisfy

F (x∗t−1, x
∗
t ) + βF (x∗t , x

∗
t+1) ≥ F (x∗t−1, xt) + βF (xt, x

∗
t+1) (3.9)

for all xt ∈ Γ(x∗t−1) such that x∗t+1 ∈ Γ(xt).

That is, one property of the optimal plan is that the agent cannot gain by deviating (in a

feasible fashion) from the optimal path in any period, taking the optimal path as given.

This is again a one stage deviation principle. However, the key distinction with the BPO

is that the deviation considered here does not take into account the future effects of such

a deviation, but takes as given both the past and the future. Recall that the equivalent to

condition (3.9) for the BPO is

F (x∗t−1, x
∗
t ) + βV (x∗t ) ≥ F (x∗t−1, xt) + βV (xt)

for all xt ∈ Γ(x∗t−1).

In other terms, the interpretation of the Euler condition under differentiability is that

one-period reversed arbitrage, an arbitrage that immediately returns to the original path,

is not profitable on an optimal path. This means that the cost calculated at t = 0 from

acquiring an extra unit of capital at time t, βtu′(c∗t ) = βtF2(x
∗
t , x

∗
t+1), is at least as great

as the benefit realized at time t + 1 discounted back to period t = 0, from selling that

additional unit of capital at t + 1 for consumption. The extra unit of capital yields in

utility terms βt+1F1(x
∗
t+1, x

∗
t+2) = f ′(kt+1)β

t+1u(c∗t+1) : f
′(kt+1) units of consumption good

at time t+ 1, and each unit of that good is worth βt+1u(c∗t+1) utils in period 0. Hence we

have

u′(c∗t ) = βf ′(kt+1)u
′(c∗t+1).

The Variational approach uses one somehow weak property of optimality. As a conse-

quence, in general the Euler’s conditions are far from being sufficient for determining an

7Unilateral deviations of this sort are both in the concepts of saddle points and Nash equilibria.
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optimal point. So the question is, suppose we have as a candidate the couple (x∗∗, y∗∗) such

that satisfies (3.7) and (3.8). What are the additional conditions we need in order to

guarantee that (x∗∗, y∗∗) is an optimal point? It turns out that a sufficient condition for

an interior optimum is that at (x∗∗, y∗∗) f is subdifferentiable.8 The idea is simple: if

(x∗∗, y∗∗) satisfies (3.7) and (3.8) and at (x∗∗, y∗∗) f is subdifferentiable, then the vector

(0, 0) must belong to the subdifferential of f at (x∗∗, y∗∗). This property is at the core of

the sufficiency of the first order conditions when f is concave.9

Example 1 Let f(x, y) = (x− 1)2 (y − 1)2 with x, y ∈ [0, 3] . Obviously,

max
(x,y)∈[0,3]×[0,3]

f(x, y) = 4,

with solution x∗ = y∗ = 3, however it is easy to see that the pair x∗∗ = y∗∗ = 1 satisfies

(3.7) and (3.8) as well [check it!].

Exercise 38 Do the same exercise with f(x, y) =
√
x
√
y and x, y ∈ [0, 3] . Notice that

now we can use the first order conditions to find the ‘unilateral’ maximum for x given

y = ȳ, since the problem is concave in x alone given ȳ. The same is true for y given

x = x̄. Is this form of concavity enough? Explain.

Transversality So, Euler equations are necessary conditions for an optimum. We also

said above that exactly following the same logic used in static maximization, when the

problem is concave an interior optimal can be detected by the Euler’s equations. However,

this principle works only for finite horizon problems. When the time horizon is infinite

Euler equations are not enough, and we need an additional restriction to detect optimal

programs.

The reason is the same as the one for the BPO. The Euler conditions control for only

one-stage deviations, which can be extended by induction to any finite stages deviation.

But they cannot tell us anything about infinite period deviations.

8A real valued function f : X × Y → IR is subdifferentiable (in the concave sense) at (x0, y0) if there

exists a vector p = (px, py) such that

f(x, y) ≤ f(x0, y0) + px.(x − x0) + py.(y − y0) for any x ∈ X, y ∈ Y,

and p is the subdifferential of f at (x0, y0) .
9A function f defined in a convex X is concave if for any two x, y ∈ X and any λ ∈ [0, 1] we have

f (λx+ (1− λ) y) ≥ λf (x) + (1− λ) f(y).

By the separation theorem, any concave function is subdifferentiable.
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Proposition 3 Assume F is bounded, continuous, concave, and differentiable. Moreover

assume Γ has a compact and convex graph. (i) If the (interior) sequence {x∗t}∞t=1 with

x∗t+1 ∈ intΓ(x∗t ) for any t = 0, 1, 2, ... satisfies

F2(x
∗
t , x

∗
t+1) + βF1(x

∗
t+1, x

∗
t+2) = 0 for t = 0, 1, ... (3.10)

and for any other feasible sequence {xt}∞t=0 ∈ Π(x0) we have

lim
T→∞

βTF1(x
∗
T , x

∗
T+1)(xT − x∗T ) ≥ 0, (3.11)

then {x∗t}∞t=1 is an optimal sequence. (ii) If in addition F1(x, x
′) > 0 for all x, x′ ∈ intX

and X ⊆ IRl
+, the condition (3.11) can be substituted by

lim
T→∞

βTF1(x
∗
T , x

∗
T+1)x

∗
T ≤ 0.

Proof. (i) We are done if we can show that for any feasible {xt}∞t=1 ∈ Π(x0) we have

lim
T→∞

T∑

t=0

βtF (x∗t , x
∗
t+1) ≥ lim

T→∞

T∑

t=0

βtF (xt, xt+1),

where both limit exist and the inequality has a meaning since F is bounded. Now, notice

that from the concavity and differentiability of F we have that

F (xt, xt+1) ≤ F (x∗t , x
∗
t+1) + F1(x

∗
t , x

∗
t+1)(xt − x∗t ) + F2(x

∗
t , x

∗
t+1)(xt+1 − x∗t+1)

multiplying by βt and summing up the first T terms one gets

T∑

t=0

βtF (xt, xt+1) ≤
T∑

t=0

βtF (x∗t , x
∗
t+1) +DT , (3.12)

where

DT =
T∑

t=0

βt
[
F1(x

∗
t , x

∗
t+1)(xt − x∗t ) + F2(x

∗
t , x

∗
t+1)(xt+1 − x∗t+1)

]
.

Since
∑T

t=0 β
tF (xt, xt+1) converges for any sequence {xt}, one can show that (3.12) implies

that DT must converge as well.10 It then suffices to show that

lim
T→∞

DT ≤ 0

10See Mitchell (1990), page 715.
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Notice that we can rearrange the terms in DT and obtain11

DT =

T−1∑

t=0

βt
[
F2(x

∗
t , x

∗
t+1) + βF1(x

∗
t+1, x

∗
t+2)

]
(xt+1 − x∗t+1)− βTF1(x

∗
T , x

∗
T+1)(xT − x∗T ).

Euler conditions (3.10) guarantee that the fist T − 1 terms go to zero, hence

lim
T→∞

DT = − lim
T→∞

βTF1(x
∗
T , x

∗
T+1)(xT − x∗T ) ≤ 0

where the last inequality is implied by the transversality condition (3.11). In order to

show (ii) notice that if F1 > 0 and xT ≥ 0,

lim
T→∞

βTF1(x
∗
T , x

∗
T+1)(xT − x∗T ) ≥ − lim

T→∞
βTF1(x

∗
T , x

∗
T+1)x

∗
T ≥ 0

and we are done. Q.E.D.

The convexity assumption on Γ is required only in order to define concavity of F.

In fact, the theorem only uses the subdifferentiability property of F, so it will remain

true as long as F is subdifferentiable along the optimal trajectory. Notice moreover that

feasibility is used very little (only at t = 0). This is so since we assumed interiority, hence

the sequence
{
x∗t+1

}
is in fact unconstrained optimal. That is, the optimal sequence

dominates all other sequences. The sequence of subdifferentials are also called supporting

prices. The reason will become clear in the next paragraph.

The Euler equations (3.10) are the usual first order conditions for x∗t+1 to be an interior

maximum given x∗t and x∗t+t of the problem described in (3.9). The transversality condition

(3.11) has the following interpretation. Notice first that F1 is the marginal return of the

state, for example, in the optimal growth model F1(x
∗
t , x

∗
t+1) = u′(c∗t )f

′(k∗t ) is the price

of capital.12 Since in the optimal growth model we have both xt ≥ 0 and F1 > 0, the

11In more detail, consider the first few terms

F1(x
∗

0, x
∗

1)(x0 − x∗

0) + F2(x
∗

0, x
∗

1)(x1 − x∗

1)

+β [F1(x
∗

1, x
∗

2)(x1 − x∗

1) + F2(x
∗

1, x
∗

2)(x2 − x∗

2)]

= [F2(x
∗

0, x
∗

1) + βF1(x
∗

1, x
∗

2)] (x1 − x∗

1)

+β [F2(x
∗

1, x
∗

2) + βF1(x
∗

2, x
∗

3)] (x2 − x∗

2)

−β2F1(x
∗

2, x
∗

3)(x2 − x∗

2)

where the term F1(x
∗

0, x
∗

1)(x0 − x∗

0) disappears since feasibility implies x0 = x∗

0; and we have added and

subtracted the term β2F1(x
∗

2, x
∗

3)(x2 − x∗

2).
12The value of “one” unit of k∗t is the price of the consumption goods u′(c∗t ) times the amount of

consumption goods that can be produced by one unit of capital.
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transversality condition requires limT→∞ βTu′ (c∗T ) f
′ (k∗T ) k

∗
T ≤ 0. It is clear that for

a finite horizon problems if βTu′ (c∗T ) f
′ (k∗T ) > 0 the agent will not maximize lifetime

utility by ending the last period with a positive amount of capital k∗T . The transversality

condition states this intuitive argument in the limit. If limT→∞ βTu′ (c∗T ) f
′ (k∗T ) k

∗
T > 0

the agent is holding valuable capital, and perhaps he can increase the present value of its

utility by reducing it.

More in general, the transversality condition (3.11) requires any alternative trajectory

{xt} satisfying

lim
t→∞

βtF1(x
∗
t , x

∗
t+1)(xt − x∗t ) < 0

to be infeasible. That is, the transversality condition means that if given {x∗t} it is

impossible to reduce the limit value of the optimal stock (considered in discounted terms)

by choosing xt 6= x∗t (except perhaps for incurring in an infinite loss because {x} is not

feasible) then the value of the capital has been exhausted along the trajectory, and {x∗t}
must be optimal as long there are no finite period gains (the Euler condition).

Exercise 39 Reproduce the proof of the sufficiency of the Euler plus transversality con-

ditions for the optimal growth model. That is, show the following statement. Assume that

a consumption path c∗ solves u′ (c∗t ) = βf ′
(
k∗t+1

)
u′
(
c∗t+1

)
for all t, that

lim
T→∞

βTu′ (c∗T ) k
∗
T+1 = 0,

and that both u and f are concave functions (with the usual interpretations). Then c∗ is

an optimal path for the optimal growth problem.

Necessity of the Transversality Condition. A typical situation where the transver-

sality is a necessary condition is when the capital stocks are bounded in the optimal growth

model. One can of course derive a general proof of it. We will just provide the intuition

behind it in a special case. Recall that in the optimal growth model the transversality

condition is

lim
T→∞

βTu′(c∗T )k
∗
T+1 = 0.

In ‘finance’ terms, the Euler conditions state the unprofitability of reversed arbitrages;

while the transversality condition defines a no-arbitrage condition for unreversed arbi-

trages: arbitrages which never return to the original path (Gray and Salant, 1983). Sup-

pose (c, k) is an optimal path and suppose the agent decides to increase consumption in

period 0, this is possible if he/she foregoes one unit of capital to be used in next period

production. The marginal gain in period zero is u′(c∗0). Now let T any natural number
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and define a T -period reversed arbitrage the case where the planner reacquire the unit of

capital foregone in period 0 only at time T + 1. After period T + 1 we are back to the

original path.

This deviation from the optimal path
{
c∗t , k

∗
t+1

}∞
t=0

generates two costs. First, the

direct cost of reacquiring the capital in period T +1, which in period zero utility terms is

βT+1u′(c∗T+1). The indirect cost arises since the net marginal product of capital that unit

of capital is lost every period between t = 1 and t = T + 1; this is a foregone shadow

interest loss. The indirect cost at time t in period zero utils is

βtu′(c∗t ) (f
′(k∗t )− 1) .

Adding to those losses the direct cost and equating to the marginal benefit yields the

following zero marginal profit condition:

u′(c∗0) =

T+1∑

t=1

βtu′(c∗t ) (f
′(k∗t )− 1) + βT+1u′(c∗T+1). (3.13)

Notice that for T = 0 the expression reduces to the Euler equation. It is also clear

from this condition, that the unprofitability of one-period reversed arbitrage expressed

via the Euler equations implies the unprofitability of any T−period reversed arbitrage

[just rearrange terms to obtain a sum of Euler equations].

However, this is not the end of the story. The infinite horizon implies that the agent

should contemplate also the possibility of an unreversed arbitrage, in which a the unit

of capital is permanently sacrificed at t = 0. Of course, there are not repurchase costs

associated with this deviation. Hence the zero marginal profit condition for the unreversed

arbitrage is

u′(c∗0) =
∞∑

t=1

βtu′(c∗t ) (f
′(k∗t )− 1)

but this equation is compatible with (3.13) as T → ∞ only if

lim
T→∞

βTu′(c∗T ) = 0,

which, in the bounded k∗T+1 case, implies the transversality condition. Thus, the transver-

sality condition expresses the zero marginal profit condition for the open-ended arbitrages

which are only admissible in the infinite horizon context. Hence both Euler equations and

transversality are necessary for optimality. We of course know, that when the problem is

concave, the Euler equation together with the transversality are sufficient conditions for

optimality.
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3.4 Optimal Control and the Maximization Principle

of Pontryagin

Under the name “optimal control” one typically refer to an approach strictly linked with

the Euler’s approach and developed by Pontryagin et al. (1962).

In fact, one can study an optimal control problem with both the recursive and the

variational techniques. The basic discrete-time optimal control problem consists in max-

imizing and an objective function of the form

UT = φ(xT+1) +

T∑

t=0

βtu (xt, ct) .

subject to a dynamic system

xt+1 = f(xt, ct), (3.14)

where f describes how today’s control ct ∈ C affects future state xt+1, given today’s state

xt, and φ(xT+1) summarizes the final effect of the state. The set C is any direct restriction

on controls other than the law of motion. As usual, we have the initial condition on state

x0 = x. One can use the natural extension of the Bellman approach to study such a

problem. For example, the Bellman equation for this problem is

Vt+1(x) = sup
c∈C

u(x, c) + βVt(f(x, c))

with V0(xT+1) = φ(xT+1).

One can see the problem in the joint space of control and state plans and apply a

generalized version (for infinite dimensional spaces) of the Lagrange multiplier theorem

to it. Another approach is, however, to note that (3.14) uniquely determines the path of

states x = {xt} once the path of controls c = {ct} is specified and hence we really have

to select c with objective

UT = UT (c) =φ(xT+1(c)) +

T∑

t=0

βtu (xt(c), ct) .

Still another approach is to view the problem in the space of states by considering the

implicitly defined set of all trajectories that can be obtained by application of admissible

controls. Each of these approaches has theoretical advantages for the purpose of deriving

necessary conditions and practical advantages for the purpose of developing computational

procedures for obtaining solutions.
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The Maximum Principle of Pontryagin The Maximum Pontryagin’s principle is

typically associated to optimal control problems since it emphasizes the role of controls

alone. It gives a set of necessary conditions for optimality. It is assumed that f is such

that given x0, a given path x is uniquely determined by c, hence the objective functional

can be considered to be dependent only on c. It is typically assumed that both u and f

have partial derivatives with respect to x which are jointly continuous in (c, x). We will

further assume that the optimal trajectory is interior with respect to C.

Theorem 17 Let {xt+1, ct}Tt=0 the optimal control and state trajectory for the above op-

timal control problem given x0. Then under some regularity conditions there is an adjoint

trajectory {λt+1}Tt=0 , such that, given x0, {xt+1, ct, λt+1}Tt=0 satisfy:

xt+1 = f(xt, ct) system equation (3.15)

λt = Hx(λt+1, xt, ct) adjoint equation (3.16)

λT+1 = φx(xT+1) adjoint final equation (3.17)

0 = Hc(λt+1, xt, ct) variational condition (3.18)

where H is the Hamiltonian function

H(λt+1, xt, ct) = u (xt, ct) + βλt+1f(xt, ct).

Proof (Sketch). We do not investigate what are the regularity conditions that guar-

antee the existence of the multipliers (λt+1)
T
t=0 . Under weaker conditions one can show

that a similar result can be shown by using an extended Hamiltonian of the form Ĥ =

ptu (xt, ct) + βλt+1f(xt, ct) for some sequence {pt} . The core part of the proof has two

main ingredients. The adjoint equations and the adjoint final condition on one hand,

together with the fact that we can approximate arbitrarily well the value of a deviation

by a first order Taylor’s expansion when the deviation is small. Notice indeed that the

proof considers only deviations around the optimal path, and that the statement has a

local nature. Specifically, let us write the Lagrangian associated with the above problem

L(λ,x, c) =

T∑

t=0

βtu (xt, ct) + φ(xT+1) +

T∑

t=0

βt+1λt+1 [f(xt, ct)− xt+1] .

The key point of the approach is that once we take into account the adjoint equation,

and if we consider local variations, we can check only deviations of the controls. More

precisely, from the regularity properties of the problem one can show that along a plan

that satisfies the adjoint equation the total value of the program can be approximated in
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terms of first order by a variation of the Lagrangian in only the controls, keeping states

as constant. That is, suppose (x∗, c∗, λ∗) = (xt+1, ct, λt+1)
T
t=0 is a triplet with c ∈ C, and

satisfying the adjoint and the final adjoint equations, givenx0, we have:

UT (c
∗)−UT (c) = L(λ∗,x∗, c∗)−L(λ∗,x∗, c)+o (‖c∗ − c‖) ,

with limc→c
∗

o(‖c∗−c‖)
‖c∗−c‖

= 0. The last step is to realize that if states have second order effects

(along the plan satisfying the adjoint equation) deriving deviations of the Lagrangian we

can ignore any component that does not depend explicitly from the controls c. This

implies that it is enough to consider deviations in the Hamiltonian alone. Indeed we can

rewrite the Lagrangian emphasizing the Hamiltonian as follows

L(λ,x, c) = φ(xT+1) +

T∑

t=0

βt [u (xt, ct) + βλt+1f(xt, ct)− βλt+1xt+1]

= φ(xT+1) +

T∑

t=0

βt [H(λt+1, xt, ct)− βλt+1xt+1] ,

and notice that the remaining addends βλt+1xt+1 can be ignored if x and λ satisfy the

adjoint equations. See also Luenberger (1969), page 262. Q.E.D.

Notice that the variational condition in the above theorem is expressed in terms of sta-

tionary point for H . In continuous time this condition requires c∗ to maximize the Hamil-

tonian each period. In fact, this distinction represents an important difference between the

continuous time and the discrete time versions of the Maximum Principle. The idea be-

hind this fact is simple. In continuous time one can construct “small” deviation in controls

by varying a lot the path, but for a very short period of time:
∫ T

0
|c(t)− u(t)| dt < ε. This

is not possible in discrete time, where to have a “small” deviation one must remain close

to the optimal path for any t. As a consequence, the Pontryagin’s Maximum Principle in

more powerful in continuous time than when the time is discrete.

In continuous time, Mangasarian (1966) and Arrow and Kurz (1970) derived sufficient

conditions for optimality. Mangasarian showed that if H is concave in (x, c) (and C

convex), the necessary conditions of the Pontryagin’s maximum theorem become also

sufficient for an optimum. The discrete time version of the sufficiency theorem would be

as follows13

Proposition 4 Let
{
x∗t+1, c

∗
t , λ

∗
t+1

}T
t=0

a sequence satisfying all the conditions of Theorem

17 above. Moreover assume that λ∗t+1 ≥ 0 for all t, and that both u, f and φ are concave

in (xt, ct) , then the sequence
(
x∗t+1, c

∗
t

)
is a global optimum for the problem.

13See Takayama (1985), especially pages 660-666, for a didactical review in continuous time.
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Proof. The proof uses the fact that a concave function is subdifferentiable to show

a sequence of key inequalities using a similar derivation to that in Proposition 3. The

condition λ∗t+1 ≥ 0 only guarantees that when both u and f are concave then H is concave

in (xt, ct). When f is linear it can be dispensed. Q.E.D.

Static Maximization and Pontryagin We have already mentioned that the maxi-

mum principle is basically an extension of the Lagrangian theorem. It improves at least in

two direction. First, the theorem is particularly suitable for infinite dimensional spaces.

The infinite dimensional version of the Lagrange theorem uses the same line of proof of

the usual Lagrange theorem in finite dimensional spaces. However, the generalized In-

verse Function Theorem of Liusternik is by no mean a simple result.14 In addition, in

continuous time, the theorem is not stated in terms of derivatives with respect to c, hence

it allow for non differentiable cases. For example, the method allows for both corner and

bang-bang solutions.

Consider the following exercise.

Exercise 40 (i) Write the neoclassical growth model in terms of an optimal control prob-

lem. That is, distinguish states x from controls c, and specify f , u and C for this problem.

[Hint: you might want to write the feasible set for controls C as a function of the state].

(ii) Next, derive the Euler equations from the Pontryagin maximum principle, and inter-

pret economically the adjoint variables λt.

Using the Pontryagin maximum principle one can deal perhaps with a larger class of

problems than the one covered by the Euler’s variational approach. In both cases however,

when the horizon is infinite, one need to derive appropriate transversality condition.

14See Chapter 9 of Luenberger (1969).
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