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Abstract

Motivated by recent developments of decision theory, we study monotone, continuous, and quasicon-

cave functionals de�ned over an M -space. We show that if g is also Clarke-Rockafellar di¤erentiable

at x and 0 62 @CRg (x), then the closure of Greenberg-Pierskalla di¤erentials at x coincides with the

closed cone generated by the Clarke-Rockafellar di¤erentials at x. Under the same assumptions, we show

that the set of normalized Greenberg-Pierskalla di¤erentials at x coincides with the closure of the set of

normalized Clarke-Rockafellar di¤erentials at x. As a corollary, we obtain a di¤erential characterization

of quasiconcavity a la Arrow and Enthoven (1961) for Clarke-Rockafellar di¤erentiable functions.

1 Introduction

Since the seminal studies of de Finetti [12] and Fenchel [13], quasiconvex analysis has been the subject of

active research.1 Starting by the paper of de Finetti [12], this �eld has been deeply in�uenced by economic

theory. In keeping with this tradition, our purpose here is to relate two notions of di¤erentiability that have

been proven useful both in quasiconvex analysis and decision theory: Greenberg-Pierskalla di¤erentiability

and Clarke-Rockafellar di¤erentiability.2 Speci�cally, we study monotone, continuous, and quasiconcave func-

tionals de�ned over anM -space. Our main results are Theorems 1 and 2. In Theorem 1, we show that if g is

also Clarke-Rockafellar di¤erentiable at x and 0 62 @CRg (x), then the set of normalized Greenberg-Pierskalla
di¤erentials at x coincides with the closure of the set of normalized Clarke-Rockafellar di¤erentials at x. In

Theorem 2, under the same assumptions, we show that the closure of Greenberg-Pierskalla di¤erentials at

x coincides with the closed cone generated by the Clarke-Rockafellar di¤erentials at x. As a corollary, we

obtain a di¤erential characterization of quasiconcavity a la Arrow and Enthoven [2] for Clarke-Rockafellar

di¤erentiable functionals (see Corollary 3).

In what follows, we outline the economic motivation of our exercise and how it improves upon the current

literature. Recall that rational preferences are complete, transitive, and monotone binary relations de�ned

�Massimo Marinacci gratefully acknowledges the �nancial support of the AXA Research Fund and ERC (advanced grant,

Indimacro).
1We refer the reader to Penot [23] for a recent survey. See also Crouzeix [8], [9], and [10], Martinez-Legaz [20] and [21], and

Penot and Volle [24].
2One stark di¤erence with convex analysis is the presence of di¤erent type of dualities as well as di¤erent notions of di¤er-

entiability. See, for example, Komlosi [19] and Penot [22] as well as Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio

[6].
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on the classic space B0 (
;�; C) of decision theory where 
 is a state space, � is an event algebra, and C

is a convex set of consequences. Elements f 2 B0 (
;�; C) are simple �-measurable functions f : 
 ! C,

interpreted as the acts available to a decision maker. Under few extra suitable behavioral conditions, Cerreia-

Vioglio, Ghirardato, Maccheroni, Marinacci, and Siniscalchi [4] shows that rational preferences admit a utility

function V : B0 (
;�; C)! R, that is,

f % g () V (f) � V (g) :

Moreover, they show that V = I � u where I : B0 (
;F ;R)! R is a normalized, monotone, and continuous
functional and u : C ! R is an a¢ ne function with u (C) = R.3 An interesting behavioral object is the

revealed unambiguous binary relation %� of Ghirardato, Maccheroni, and Marinacci [15] where %� is de�ned
as

f %� g () �f + (1� �)h % �g + (1� �)h 8� 2 (0; 1] ;8h 2 B0 (
;�; C) :

It is immediate to see that %� is a subrelation of %. The comparison f %� g is meant to capture the idea
that f is robustly preferred to g. For, no matter how we hedge f and g with a third act h, the mixture of f

with h dominates the one of g with h. In [4], it is shown that

f %� g ()
Z
u (f) dp �

Z
u (g) dp 8p 2 C�

where C� is a uniquely determined convex and closed set of probabilities in �. This latter set of probability

models can be interpreted as the set of probabilities that are relevant for the decision maker (see [15]). Thus,

it is important to be able to compute the set C� in terms of the functional I. In fact, there are several works

in the literature that deal with this question:

1. Ghirardato, Maccheroni, and Marinacci [15] achieves this characterization for the important class of

invariant biseparable preferences, that is, those preferences for which I is positively homogeneous and

translation invariant.4 In this case, the set C� coincides with the Clarke�s di¤erential of I computed

at 0.

2. Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio [5] characterizes C� for the class of uncer-

tainty averse preferences, that is, those preferences for which I is quasiconcave. In this case, the set

C� coincides with the closed convex hull of the union of normalized Greenberg-Pierskalla di¤erentials

of I. Given ' 2 B0 (
;F ;R), the set of normalized Greenberg-Pierskalla di¤erentials at ' is the set:

@NGP I (') = fp 2 � : 8 h ; pi � h'; pi =) I ( ) � I (')g :

3. Ghirardato and Siniscalchi [16] (see also its working paper version) characterizes C� for the class of

monotonic, Bernoullian, and continuous preferences, that is, those preferences for which I admits a

continuous extension to the completion of B0 (
;F ;R). In this case, the set C� coincides with the closed
convex hull of the union of normalized Clarke-Rockafellar di¤erentials of I. Given ' 2 B0 (
;F ;R),
the set of normalized Clarke-Rockafellar di¤erentials at ' is the set

@NCRI (') = fp 2 � : p = p0n kp0k for some p0 2 @CRI (')g ;

where @CRI (') is the usual Clarke-Rockafellar di¤erential at '.

3 I is normalized if and only if I (k1
) = k for all k 2 R.
4That is, I (�'+ k1
) = �I (') + kI (1
) for all ' 2 B0 (
;�;R), for all � � 0, and for all k 2 R.
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In this paper, as mentioned, we focus on the quasiconcave case. In light of the results contained in points

1�3, we ask ourselves when the di¤erent sets of di¤erentials coincide, that is, when @NGP I (') = @NC I (') and

when @NGP I (') = @NCRI ('). The set @
N
C I (') denotes the set of normalized Clarke-Rockafellar di¤erentials

of I at '. Inter alia, under quasiconcavity a positive answer to this question provides a unifying framework

for points 1�3. To the best of our knowledge, this problem was never directly addressed in the literature.

Nevertheless, the equality @NGP I (') = @NC I (') can be proven in the Banach space case by grouping some of

the results that are scattered in the literature (see also Remark 2). In particular, Penot [22, Proposition 16]

yields that the set of Greenberg-Pierskalla di¤erentials at ' is contained in the cone generated by the Clarke

di¤erentials at '. As for the opposite inclusion, it can be derived as a consequence of Daniilidis, Hadjisavvas,

and Martinez-Legaz [11, Proposition 7 and Corollary 12]. By further using some of our results (see Lemma

2), one can also derive that the equality holds for the normalized sets, that is, @NGP I (') = @NC I ('). In an

earlier paper (see Cerreia-Vioglio, Maccheroni, Marinacci, and Rustichini [7, Theorem 2]), not aware of [22]

and [11], we proved directly this latter equality for the non-Banach space B0 (S;�;R).
Here, we address the problem in its full generality. To the best of our knowledge, the only relevant result

is Daniilidis, Hadjisavvas, and Martinez-Legaz [11, Proposition 7 and Corollary 12] which only yields the

inclusion @GP I (') � @CRI (') n f0g and in the particular case the domain is a Banach space.

2 Mathematical preliminaries

2.1 Basic notions

We refer to any functional analysis textbook (e.g., Aliprantis and Border [1]) for the de�nitions of normed

space (X; k k) and ordered vector space (X;�). As usual, if X is a normed space, we denote by X� its norm

dual. If X is ordered, then we denote by X+ = fx 2 X : x � 0g its positive cone. If it is both normed and
ordered, we denote by X�

+ = f� 2 X� : � (X+) = [0;1)g. An ordered vector space (X;�) is an Archimedean
Riesz space with unit if and only if

- Archimedean property : 0 � nx � y for all n 2 N implies x = 0;

- Riesz property : X is a lattice with respect to �;

- Existence of a unit : there exists e 2 X+n f0g such that for each x 2 X eventually �ne � x � ne.

The element e is called a unit and it naturally induces a norm

kxke = inf f� 2 [0;1) : ��e � x � �eg 8x 2 X:

The completion of X with respect to k�ke is an AM -space with unit (see Aliprantis and Border [1, ch. 9]).
In this paper, we will consider an Archimedean Riesz space with unit, X, endowed with the norm k�ke. For
brevity, we will call X an M -space and denote k�ke by k�k.
We denote by h�; �i : X� �X ! R the dual pairing (�; x) 7! h�; xi = � (x). We endow X� and any of its

subsets with the weak* topology. We set

� =
�
� 2 X�

+ : h�; ei = 1
	
:

If we denote by k�k� the dual norm, then k�k� = h�; ei for all � 2 X�
+. It is then immediate to see that � is

convex and, by the Banach-Alaoglu theorem, also compact.
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Example 1 Consider a measurable space (S;�) where S is a nonempty set and � a �-algebra. The space
B0 (S;�) of real valued and �-measurable simple functions is an M -space.5 The order is the usual pointwise

order between functions and the unit is 1S . The norm k�ke coincides with the supnorm. The supnorm
completion of B0 (S;�), that is B (S;�) (the space of real valued, bounded, and �-measurable functions),

is also an M -space. Both spaces play a central role in decision theory. In both cases, the norm dual can be

identi�ed with the set ba (S;�), that is, the set of all bounded, �nitely additive, and signed set functions on

�. The set � coincides with the set of �nitely additive probabilities.

Example 2 Consider a probability space (S;�; P ) where S is a nonempty set, � a �-algebra, and P is a

probability measure on �. The space L1 (S;�; P ) is an M -space. The order is the usual P -a.s. pointwise

order and the unit is (the equivalence class including) 1S . The norm k�ke coincides with the essential supnorm.
This space plays an important role in mathematical �nance (see, e.g., Follmer and Schied [14]). In this case,

the norm dual can be identi�ed with the set ba (S;�; P ), that is, the subset of elements of ba (S;�) that

are absolutely continuous wrt P . The set � coincides with the set of �nitely additive probabilities that are

absolutely continuous wrt P .

Example 3 Consider an Hausdor¤ compact space (S; �). The space C (S) of real valued continuous func-
tions on S is anM -space. The order is the usual pointwise order and the unit is 1S . The norm k�ke coincides
with the supnorm. In this case, the norm dual can be identi�ed with the set ca (S;B), that is, the set of all
bounded, regular, and signed measures on the Borel �-algebra generated by � . The set � coincides with the

set of regular Borel probability measures.

Given an interval I � R, we de�ne

X (I) = fx 2 X : 9�; � 2 I such that �e � x � �eg :

It is easy to check that X (I) is convex and that it is open if and only if I is open. Since the set of positive

elements X+ is the set fx 2 X : x � 0g = X ([0;1)), it is then also immediate to see that X+ has nonempty

interior. We next provide a couple of ancillary lemmas.6

Lemma 1 Let C1 and C2 be two subsets of �. If C1 and C2 are such that, given x 2 X,

h�; xi � 0 8� 2 C1 =) h�; xi � 0 8� 2 C2; (1)

then co (C1) � co (C2).

Given a set C � X�
+, we de�ne the normalized (version of) C by

CN =
�
�0 2 � : �0 = �n k�k� for some � 2 C

	
:

We de�ne also coneC to be the set�
�0 2 X�

+ : �
0 = �� for some � 2 C and � > 0

	
:

Lemma 2 Let C � X�
+ be such that 0 62 C. The following statements are true:

1. If C is convex, cl
�
CN

�
is convex and compact;

2. If C is convex and compact, CN is convex and compact;

3. coneC = coneCN .
5 In the Introduction, we also denoted this space B0 (S;�;R).
6The proofs are in the Appendix.
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2.2 Quasiconcave duality

Given a function g : X (I)! [�1;1], we say that g is:

1. lower semicontinuous if and only if fx 2 X (I) : g (x) � �g is closed (in the relative topology) for all
� 2 R;

2. upper semicontinuous if and only if fx 2 X (I) : g (x) � �g is closed for all � 2 R;

3. continuous if and only if g is lower and upper semicontinuous;

4. monotone if and only if x � y implies g (x) � g (y);

5. quasiconcave if and only if fx 2 X (I) : g (x) � �g is convex for all � 2 R.

Given a function G : R��! [�1;1], we say that G is:7

1. lower semicontinuous if and only if f(t; �) 2 R�� : G (t; �) � �g is closed for all � 2 R;

2. quasiconvex if and only if f(t; �) 2 R�� : G (t; �) � �g is convex for all � 2 R.

An important function from R�� to [�1;1] is the function

(t; �) 7! G� (t) = sup fg (y) : y 2 X (I) and h�; yi � tg :

If I = R and g is monotone, then it is easy to see that X (I) = X and

G� (t) = sup fg (y) : h�; yi = tg 8 (t; �) 2 R��: (2)

Proposition 1 Let I be an open interval. If g : X (I)! [�1;1] is monotone and quasiconcave, then

1. (t; �) 7! G� (t) is quasiconvex over R��;

2. If g is also lower semicontinuous, t 7! G� (t) is monotone for each � 2 �;

3. If g is also lower semicontinuous, (t; �) 7! G� (t) is lower semicontinuous;

4. If g is also lower semicontinuous and real valued, then

g (x) = min
�2�

G� (h�; xi) 8x 2 X (I) :

Proof. See [5] and [6]. In particular, point 1 follows from [5, Lemma 31]. Points 2 and 3 follow from [5,

Lemma 32]. Point 4 follows from [5, Theorem 36]. �
A notion of superdi¤erential which comes from quasiconvex analysis is the one due to Greenberg and

Pierskalla [17]. A functional � 2 X�
+ is a Greenberg-Pierskalla (super)di¤erential at x 2 X (I) if and only if

for each y 2 X (I)
h�; yi � h�; xi =) g (y) � g (x) :

We denote the collection of Greenberg-Pierskalla di¤erentials at x by @GP g (x). An interesting subset of

@GP g (x) is the set of normalized Greenberg-Pierskalla di¤erentials

@NGP g (x) = � \ @GP g (x) :

This subset is particularly important in decision theory (see, e.g., [25, p. 1169], [18], [5, p. 1288] and [7]).

This notion of di¤erential is an ordinal notion well suited for quasiconcave functions, in fact:
7We endow R�� with the product topology.
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1. @GP g (x) is a cone, that is, if � 2 @GP g (x), then �� 2 @GP g (x) for all � > 0;

2. If f : [�1;1]! [�1;1] is strictly increasing, then @GP g (x) = @GP (f � g) (x);

3. If g is real valued, monotone, and lower semicontinuous, then g is quasiconcave if and only if @NGP g (x) 6=
; for all x 2 X (I).

Proposition 2 Let I be an open interval. If g : X (I)! R is monotone, quasiconcave, and lower semicon-
tinuous, then for each x 2 X (I)

~� 2 @NGP g (x) () ~� 2 argminG� (h�; xi) :

In particular, @NGP g (x) is nonempty, convex, and compact.

Proof. Let x 2 X (I). Observe that for each � 2 �

G� (h�; xi) = sup fg (y) : y 2 X (I) and h�; yi � h�; xig � g (x) :

If ~� 2 @NGP g (x), then g (y) � g (x) for all y 2 X (I) such that
D
~�; y
E
�
D
~�; x

E
. This implies that

G~�

�D
~�; x

E�
� g (x), that is, G~�

�D
~�; x

E�
= g (x). By Proposition 1, we can conclude that ~� 2 argminG� (h�; xi).

Viceversa, if ~� 2 argminG� (h�; xi), then

sup
n
g (y) : y 2 X (I) and

D
~�; y
E
�
D
~�; x

Eo
= G~�

�D
~�; x

E�
= g (x) ;

proving that if y 2 X (I) and
D
~�; y
E
�
D
~�; x

E
, then g (y) � g (x), that is, ~� 2 @NGP g (x).

By Proposition 1 and since � is convex and compact and (t; �) 7! G� (t) is quasiconvex and lower

semicontinuous, we have that � 7! G� (h�; xi) is quasiconvex and lower semicontinuous and

@NGP g (x) = argminG� (h�; xi) 6= ;

is convex and compact. �

Lemma 3 Let I be an open interval and g : X (I)! R a monotone and lower semicontinuous function. If
g is such that

t > 0 and x; x+ te 2 X (I) =) g (x+ te) > g (x) ; (3)

then � 2 @NGP g (x) if and only if

y 2 X (I) and h�; yi < h�; xi =) g (y) < g (x) : (4)

Proof. Assume � satis�es (4). Next, consider y 2 X (I) such that h�; yi � h�; xi. If h�; yi < h�; xi, then
g (y) � g (x). If h�; yi = h�; xi, then for �n 2 N large enough y � 1

�ne 2 X (I). It follows that fyngn��n de�ned
as yn = y � 1

ne 2 X (I) is such that h�; yni < h�; xi for all n � �n. By (4), it follows that g (yn) � g (x) for

all n � �n. By passing to the limit and since g is lower semicontinuous, we have that g (y) � g (x). We can

conclude that � 2 @NGP g (x). Assume now � 2 @NGP g (x). Consider y 2 X (I) such that h�; yi < h�; xi. If we
choose t > 0 small enough, we have that y + te 2 X (I) and h�; y + tei � h�; xi. Since � 2 @NGP g (x) and g
satis�es (3), this implies that g (y) < g (y + te) � g (x), proving that � satis�es (4). �
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2.3 Nonsmooth di¤erentials

Consider a continuous functional g : X (I)! R and x 2 intX (I). De�ne the

(i) Clarke-Rockafellar upper (directional) derivative g" (x; �) : X ! [�1;1] at x by:

g" (x; y) = lim sup
x0!x
t#0

inf
y0!y

g (x0 + ty0)� g (x0)
t

8y 2 X;

(ii) Clarke upper (directional) derivative g� (x; �) : X ! [�1;1] at x by:

g� (x; y) = lim sup
x0!x
t#0

g (x0 + ty)� g (x0)
t

8y 2 X;

(iii) Clarke lower (directional) derivative g� (x; �) : X ! [�1;1] at x by:

g� (x; y) = lim inf
x0!x
t#0

g (x0 + ty)� g (x0)
t

8y 2 X;

(iv) Clarke-Rockafellar lower (directional) derivative g# (x; �) : X ! [�1;1] at x by:

g# (x; y) = lim inf
x0!x
t#0

sup
y0!y

g (x0 + ty0)� g (x0)
t

8y 2 X:

The (possibly empty) Clarke-Rockafellar di¤erential @CRg (x) at x is de�ned as

@CRg (x) =
�
� 2 X� : 8y 2 X h�; yi � g" (x; y)

	
:

We will say that g is Clarke-Rockafellar di¤erentiable at x if and only if @CRg (x) 6= ;. Similarly, g is Clarke-
Rockafellar di¤erentiable if and only if @CRg (x) 6= ; for all x 2 X (I). If g is locally Lipschitz at x, then

g� (x; �) is a �nite, sublinear, continuous functional and g is Clarke di¤erentiable at x, that is, @Cg (x) 6= ;
where

@Cg (x) = f� 2 X� : 8y 2 X h�; yi � g� (x; y)g :

Remark 1 Rockafellar [26] de�nes g" (x; y), g# (x; y), and @CRg (x), for a function g de�ned over the entire
space X, that is, g : X ! [�1;1]. The de�nitions of lim sup inf and lim inf sup and their characterizations
at [26, p. 260] show that these are local notions. Thus, if g is de�ned on X (I) with I open, any extension

of g will have the same directional derivatives and di¤erential at x 2 X (I). In the proof of Lemmas 4 and
5, we will implicitly use the extension ĝ : X ! [�1;1] such that

ĝ (x) = sup fg (y) : X (I) 3 y � xg 8x 2 X:

We adopt the usual convention sup; = �1. If g is real valued, monotone, and continuous, its extension ĝ
is monotone and lower semicontinuous. If g is also quasiconcave, then ĝ is quasiconcave (see the proof of [5,

Theorem 36]).

The next lemma collects few useful facts about Clarke-Rockafellar di¤erentials contained in Rockafellar

[26].8

8The proof is in the Appendix.
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Lemma 4 Let I be an open interval. If g : X (I) ! R is monotone, continuous, and Clarke-Rockafellar

di¤erentiable at x 2 X (I), then @CRg (x) is a convex and closed subset of X�
+,

@CRg (x) =
�
� 2 X� : 8y 2 X h�; yi � g# (x; y)

	
= f� 2 X� : 8y 2 X h�; yi � g� (x; y)g ; (5)

and

�1 < g" (x; y) = sup
�2@CRg(x)

h�; yi � g� (x; y) 8y 2 X:

In particular, y 7! g� (x; y) is a monotone, lower semicontinuous at 0, and hypolinear functional such that

g� (x; 0) = 0.

3 Results

Before stating the main results, we need an ancillary lemma.

Lemma 5 Let I be an open interval. If g : X (I) ! R is monotone, continuous, and Clarke-Rockafellar

di¤erentiable at x, and such that 0 62 @CRg (x), then

sup
�2@CRg(x)

h�;�ei = g� (x;�e) < 0:

In particular, g satis�es (3).

Proof. By Lemma 4 and since g is monotone, continuous, and Clarke-Rockafellar di¤erentiable at x, we
have that �1 < g" (x;�e) � g� (x;�e) � g� (x; 0) � 0. By an inspection of the proof of [26, Proposition
4], it follows that g is directionally Lipschitzian at x wrt each y 2 � intX+, thus, in particular, wrt �e. By
[26, Theorem 3], we have that g" (x;�e) = g� (x;�e) � 0. By Lemma 4, it follows that

0 � g� (x;�e) = g" (x;�e) = sup
�2@CRg(x)

h�;�ei :

By contradiction, assume that g� (x;�e) = 0, that is,

sup
�2@CRg(x)

h�;�ei = 0:

Consider � = �1. It follows that the set

C = f� 2 @CRg (x) : h�;�ei � �g 6= ;:

Since @CRg (x) is closed and @CRg (x) � X�
+, it is immediate to see that C is closed and contained in�
� 2 X�

+ : h�; ei � 1
	
:

Since this latter set is convex, closed, and k k� bounded, we can conclude that it is compact and so is C. It
follows that @CRg (x) is nonasymptotic relative to �e. By [26, Theorem 6], it follows that

g� (x;�e) = max
�2@CRg(x)

h�;�ei : (6)

Thus, there exists �� 2 @CRg (x) such that


��; e
�
= 0. Since �� 2 X�

+ and e is an order unit, it follows that
�� = 0, a contradiction with 0 62 @CRg (x).

By contradiction, assume that (3) is violated. By working hypothesis and since g is monotone, there exist

z 2 X (I) and �t > 0 such that z + �te 2 X (I) and g (z + �te) = g (z). If we call x = z + �te, then z = x � �te.
By de�nition of X (I) and since g is monotone, this implies that x � te 2 X (I) and g (x) � g (x� te) �
g (x� �te) = g (x), that is, g (x) = g (x� te) for all t 2 (0; �t). We can conclude that g� (x;�e) � 0, a

contradiction. �
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Proposition 3 Let I be an open interval. If g : X (I) ! R is monotone, continuous, quasiconcave, and

Clarke-Rockafellar di¤erentiable at x 2 X (I), then

@NCRg (x) � @NGP g (x) : (7)

Moreover, if 0 =2 @CRg (x), then
@NGP g (x) � cl

�
@NCRg (x)

�
: (8)

Proof. Consider �� 2 @NCRg (x). By de�nition, there exists � 2 X� such that 0 6= � 2 @CRg (x) and
�� = �= k�k� 2 �. Consider now y 2 X (I). We prove two facts:

1.


��; y
�
<


��; x

�
=) g (y) � g (x). De�ne " = h�; x� yi. By assumption, we have that " > 0. Since

� 2 @CRg (x), g" (x;x� y) � h�; x� yi = " > 0. By de�nition of g" (x;x� y) (see also Rockafellar [26,
p. 260]), we have that there exist ftngn2N � (0;1), fxngn2N � X (I) and fzngn2N � X such that for

n large enough
g (xn + tnzn)� g (xn)

tn
� g" (x;x� y)� "

2
� "

2
> 0

where 0 < tn ! 0, xn ! x, and zn ! x� y. It follows that for n large enough

g (xn + tnzn)� g (xn)
tn

� "

2
:

De�ne fyngn2N to be such that yn = xn � zn for all n 2 N. Note that yn ! y. It follows that for n

large enough
g (xn + tn (xn � yn))� g (xn)

tn
> 0:

We can �nally conclude that for n large enough

g (xn + tn (xn � yn)) > g (xn) : (9)

De�ne �n = (1 + tn)
�1 2 (0; 1) for all n 2 N. Note that xn = �n (xn + tn (xn � yn)) + (1� �n) yn for

all n 2 N. Since g is quasiconcave and by (9), we have that for n large enough

g (xn) � min fg (xn + tn (xn � yn)) ; g (yn)g = g (yn) :

Since g is continuous, it follows that g (y) = limn g (yn) � limn g (xn) = g (x).

2.


��; y
�
=


��; x

�
=) g (y) � g (x). Since � 6= 0, there exists z 2 X (I) such that



��; z
�
< 0. De�ne

yn = y +
1

n
z 8n 2 N:

Since y 2 X (I) and the latter set is open, note that fyngn2N eventually belongs to X (I). It is also
immediate to see that



��; yn

�
<


��; y
�
for all n 2 N. By point 1 and since g is continuous, we have

that g (y) = limn g (yn) � g (x).

By points 1 and 2, we proved that, if y 2 X (I) is such that


��; y
�
�


��; x

�
, then g (y) � g (x). Thus,

�n k�k� = �� 2 @NGP g (x), proving (7).

Suppose 0 =2 @CRg (x). Let �� 2 @NGP g (x). If y 2 ker �� = fz 2 X : h�; zi = 0g, then we have that

��; x+ ty

�
�


��; x

�
for all t � 0. Since �� 2 @NGP g (x), this implies that g (x+ ty) � g (x) for all t � 0 such

that x + ty 2 X (I). It follows that g� (x; y) � 0. Since y was a generic element of ker ��, it follows that

g� (x; y) � 0 for all y 2 ker ��. By Lemma 4, we have that g� (x; 0) = 0. De�ne ~g : X ! [�1;1) to be such

9



that ~g (y) = g� (x; y) for all y 2 Y . De�ne also �g : X ! [�1;1) to be such that �g (y) = inf�2@CRg(x) h�; yi
for all y 2 Y . By Lemma 4 and [26, Theorem 3], we have that ~g is monotone, hyperlinear, and such that

~g (y) � �g (y) 8y 2 X and �g (y) = inf
Y 2N (y)

sup
y02Y

~g (y0) :9

Note also that

0 = ~g (0) � sup
h��;yi=0

~g (y) � 0;

that is, by (2), ~G�� (0) = suph��;yi=0 ~g (y) = 0 = ~g (0). In other words, if


��; y
�
� 0 =



��; 0
�
, then ~g (y) � ~g (0).

This implies that

~g (y) > 0 =)


��; y
�
> 0: (10)

Consider y 2 X such that �g (y) > 0. It follows that for each n 2 N there exists y0n 2 B 1
n
(y) such that

~g (y0n) > 0. It is immediate to see that y
0
n ! y. By (10), we have that

~g (y0n) > 0 8n 2 N =)


��; y0n

�
> 0 8n 2 N =)



��; y
�
� 0:

We proved that

�g (y) > 0 =)


��; y
�
� 0: (11)

By Lemma 5 and since 0 =2 @CRg (x) 6= ;, we have that 1 > ~g (e) = �g� (x;�e) = inf�2@CRg(x) h�; ei =
�g (e) > 0. If �g (y) = 0, then

1 > �g

�
y +

1

n
e

�
� �g (y) + �g

�
1

n
e

�
= �g (y) +

1

n
�g (e) > 0:

By (11), this implies that if �g (y) = 0, then for each n 2 N

�g

�
y +

1

n
e

�
> 0 =)

�
��; y +

1

n
e

�
� 0;

that is,

�g (y) = 0 =)


��; y
�
� 0:

We can thus conclude that

�g (y) � 0 =)


��; y
�
� 0: (12)

This implies that

�g (y) � 0 () h�; yi � 0 8� 2 @gCR (x) () h�; yi � 0 8� 2 @NCRg (x) :

By (12), it follows that

h�; yi � 0 8� 2 @NCRg (x) =)


��; y
�
� 0:

By Lemma 1, we can conclude that �� 2 co
�
@NCRg (x)

�
. By point 1 of Lemma 2 and Lemma 4, we have

that cl
�
@NCRg (x)

�
is a convex and closed set. This yields that co

�
@NCRg (x)

�
= cl

�
@NCRg (x)

�
, proving the

statement. �

Theorem 1 Let I be an open interval. If g : X (I) ! R is monotone, continuous, quasiconcave, and

Clarke-Rockafellar di¤erentiable at x 2 X (I), with 0 =2 @CRg (x), then

@NGP g (x) = cl
�
@NCRg (x)

�
:

9N (y) is the collection of open neighbourhoods of y.

10



Proof. By Proposition 2, @NGP g (x) is closed. By (7), we have that @
N
CRg (x) � @NGP g (x). Since the latter

set is closed, it follows that cl
�
@NCRg (x)

�
� @NGP g (x). By (8), the opposite inclusion follows, proving the

statement. �

Theorem 2 Let I be an open interval. If g : X (I) ! R is monotone, continuous, quasiconcave, and

Clarke-Rockafellar di¤erentiable at x 2 X (I), with 0 =2 @CRg (x), then

cl (@GP g (x)) = cl (cone (@CRg (x))) :

Proof. First note that, g satis�es (3). This implies that 0 62 @GP g (x). By point 3 of Lemma 2 and Theorem
1, we have that

@GP g (x) = cone (@GP g (x)) = cone
�
@NGP g (x)

�
= cone

�
cl
�
@NCRg (x)

��
: (13)

It follows that

cl (@GP g (x)) = cl (cone (cl (@CRg (x)))) :

At the same time, cl (cone (cl (@CRg (x)))) = cl (cone (@CRg (x))). For, it is immediate to see that

cl (cone (cl (@CRg (x)))) � cl (cone (@CRg (x))) :

Viceversa, observe that

cl (cone (@CRg (x))) � cl (@CRg (x)) ;

proving the statement. �

Corollary 1 Let I be an open interval. If g : X (I)! R is monotone, continuous, quasiconcave, and locally
Lipschitz at x 2 X (I), with 0 =2 @Cg (x), then

@GP g (x) = cone (@Cg (x)) and @NGP g (x) = @NC g (x) :

Proof. By [26, Corollary 1 p.268 and Corollary 2 p.275] and since g is locally Lipschitz at x, we have
that @Cg (x) is nonempty, compact, and coincides with @CRg (x). By point 2 of Lemma 2, we have that

@NC g (x) is also compact. By Theorem 1, we can conclude that @NGP g (x) = @NC g (x). Since g satis�es (3),

we have that 0 62 @GP g (x). By point 3 of Lemma 2, we can conclude that @GP g (x) = cone (@GP g (x)) =

cone
�
@NGP g (x)

�
= cone

�
@NC g (x)

�
= cone (@Cg (x)). �

Remark 2 The corollary above can be proved also using the following results. By Penot [22, Proposition
16], we have that @GP g (x) � cone (@Cg (x)). Viceversa, in the Banach space case, by Daniilidis, Hadjisav-
vas, and Martinez-Legaz [11, Proposition 7 and Corollary 12], we have that @Cg (x) � @GP g (x)), that is,

cone (@Cg (x)) � cone (@GP g (x)) = @GP g (x).

If g is strictly di¤erentiable (in the full limit sense), then @CRg (x) is a singleton that we denote by rg (x)
(see Rockafellar [27, Proposition 4 and p. 340]).

Corollary 2 Let I be an open interval. If g : X (I)! R is monotone, continuous, quasiconcave, and strictly
di¤erentiable, with rg (x) 6= 0, then

@GP g (x) = f�rg (x) : � > 0g :

11



Proof. By the proof of Theorem 2, we can conclude that @GP g (x) = cone
�
cl
�
@NCRg (x)

��
. Since g is strictly

di¤erentiable, @CRg (x) is a singleton. Thus, cl
�
@NCRg (x)

�
= @NCRg (x) = frg (x) n krg (x)k�g. By point 3

of Lemma 2, the statement follows. �
The last corollary presents a di¤erential characterization of quasiconcavity which generalizes the one

established by Arrow and Enthoven [2] in the case of di¤erentiable g (see also Komlosi [19, Theorem 10.4]

for a characterization in terms of Dini derivatives).

Corollary 3 Let I be an open interval and g : X (I)! R a monotone, continuous, and Clarke-Rockafellar
di¤erentiable function with 0 =2 [x2X(I)@CRg (x). The following statements are equivalent:

(i) g is quasiconcave;

(ii) For each x 2 X (I) and for each � 2 @CRg (x)

g (y) > g (x) =) h�; yi > h�; xi ; (14)

(iii) For each x 2 X (I) and for each � 2 @CRg (x)

g (y) � g (x) =) h�; yi � h�; xi ; (15)

(iv) @NGP g (x) 6= ; for all x 2 X (I).

Proof. (i) implies (ii). Let x 2 X (I) and � 2 @CRg (x). Since 0 62 @CRg (x), we have that �n k�k� 2 @NCRg (x).
By Proposition 3, this implies that �n k�k� 2 @NGP g (x) � @GP g (x). Since @GP g (x) is a cone, it follows that

� 2 @GP g (x), yielding (14).

(ii) implies (iii). Let x 2 X (I) and � 2 @CRg (x). Since � 6= 0 satis�es (14), it follows that �n k�k� 2
@NGP g (x). By Lemma 5 and Lemma 3, we have that �n k�k� satis�es (4), that is, it satis�es (15) and so does
�.

(iii) implies (iv). Let x 2 X (I) and � 2 @CRg (x). Since � satis�es (15), it follows that �n k�k� satis�es
(4). By Lemma 5 and Lemma 3, we have that �n k�k� 2 @NGP g (x).

(iv) implies (i). Let x 2 X (I). Observe that for each � 2 �

G� (h�; xi) = sup fg (y) : y 2 X (I) and h�; yi � h�; xig � g (x) :

In particular, we have that

g (x) � inf
�2�

G� (h�; xi) :

Let �x 2 @NGP g (x) 6= ;. It follows that G�x (h�x; xi) = sup fg (y) : y 2 X (I) and h�x; yi � h�x; xig � g (x),

that is,

g (x) � inf
�2�

G� (h�; xi) � G�x (h�x; xi) � g (x) :

Since x was arbitrarily chosen, we have that g (x) = inf�2�G� (h�; xi) for all x 2 X (I). Since, for each

� 2 �, x 7! G� (h�; xi) is a monotonic transformation of an a¢ ne function, x 7! G� (h�; xi)) is quasiconcave
for all � 2 �. This implies that g is quasiconcave. �
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4 Appendix

Proof of Lemma 1. Let i 2 f1; 2g. Consider x 2 X. It is immediate to see that

h�; xi � 0 8� 2 Ci () h�; xi � 0 8� 2 co (Ci) :

So in what follows, wlog, we will think of C1 and C2 as convex and closed. By contradiction, assume that

C2 6� C1. It follows that there exists �� 2 C2 which does not belong to C1. By [28, Theorem 3.4] and since

C1 is convex and closed, it follows that there exists x 2 X and "1; "2 2 R such that

��; x

�
< "1 < "2 < h�; xi 8� 2 C1:

Since �� 2 � and C1 � �, if we choose x̂ = x� "2e, it follows that there exists " > 0 such that

��; x̂

�
< �" < 0 < h�; x̂i 8� 2 C1;

but x̂ violates (1), a contradiction. �
Proof of Lemma 2. 1. Consider �01; �

0
2 2 CN . By construction, there exist �1; �2 2 C such that �0i =

�in k�ik� for i 2 f1; 2g. De�ne �i = k�ik� > 0 for i 2 f1; 2g. Since C is convex, it follows that

� =
�2

�1 + �2
�1 +

�1
�1 + �2

�2 2 C:

At the same time, k�k� = h�; ei = 2�1�2= (�1 + �2) > 0. We thus have that

C 3 �

k�k�
=

�2�1
2�1�2

+
�1�2
2�1�2

=
1

2
�01 +

1

2
�02;

proving that CN is a midpoint convex set. It is routine to check that cl
�
CN

�
is also midpoint convex. By

[29, p. 701], we can conclude that cl
�
CN

�
is convex and closed. Since � is compact, so is cl

�
CN

�
� �.

2. In light of point 1, it is enough to prove that CN is closed. Consider a net
�
�0�
	
�2A � CN such that

�0� ! �0. By construction, there exists a net f��g�2A � C such that �0� = ��n k��k� for all � 2 A. Since C is
compact, there exists a subnet

n
���

o
�2B

� f��g�2A such that ��� ! �� 2 C. In particular, since C � X�
+,

we have that



���


� = D��� ; eE! 


��; e
�
=


��

�. Since 0 62 C and �� 2 C, we have that



��

� 6= 0. It follows
that �0�� = ���n




���


� ! ��n


��

�. By the uniqueness of the limit and since �0� ! �0, we can conclude that

�0�� ! �0 =
��

��

� 2 CN ;

proving the statement.

3. Let �00 2 coneC. By construction, it follows that there exist � 2 C and � > 0 such that �00 = ��.

Since 0 62 C, we have that k�k� > 0. It follows that CN 3 �0 = �n k�k� and � k�k� > 0. We can conclude

that �00 = (� k�k�) �
0, proving that �00 2 coneCN . Viceversa, let �00 2 coneCN . By construction, it follows

that there exist �0 2 CN and � > 0 such that �00 = ��0. At the same time, there exists � 2 C such that

�0 = �n k�k�. It follows that �n k�k� > 0. We can conclude that �
00 =

�
�

k�k�

�
�, proving that �00 2 coneC. �

Proof of Lemma 4. By Rockafellar [26, Theorem 4], @CRg (x) is convex and closed. By Rockafellar [26,

Corollary 3] and since g is monotone and �nite at x, @CRg (x) � X�
+. By Rockafellar [26, Proposition 4] and

since g is monotone and �nite at x, g is directionally Lipschitzian at x. By [26, Theorem 6], equation (5)

follows. By [26, Theorem 4] and (5) and since g is Clarke-Rockafellar di¤erentiable at x, it follows that

�1 < g" (x; y) = sup
�2@CRg(x)

h�; yi � g� (x; y) 8y 2 Y:
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Since g is monotone, it is immediate to verify that g� (x; y) � 0 for all y 2 �X+. In particular, g� (x; 0) � 0.
By [26, Theorem 3], we can conclude that y 7! g� (x; y) is hypolinear.10 By [3, Lemma 1.7], it follows that

y 7! g� (x; y) is monotone. By [3, Theorem 5.1], it follows that y 7! g� (x; y) is also lower semicontinuous at

0. �
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