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Abstract

A structural break is viewed as a permanent change in the parameter vector of a model.
Using taxonomies of all sources of forecast errors for both conditional mean and con-
ditional variance processes, we consider the impacts of breaks and their relevance
in forecasting models: (a) where the breaks occur after forecasts are announced; and
(b) where they occur in-sample and hence pre-forecasting. The impact on forecasts de-
pends on which features of the models are non-constant. Different models and methods
are shown to fare differently in the face of breaks. While structural breaks induce an
instability in some parameters of a particular model, the consequences for forecasting
are specific to the type of break and form of model. We present a detailed analysis for
cointegrated VARs, given the popularity of such models in econometrics.

We also consider the detection of breaks, and how to handle breaks in a forecasting
context, including ad hoc forecasting devices and the choice of the estimation period.
Finally, we contrast the impact of structural break non-constancies with non-constancies
due to non-linearity. The main focus is on macro-economic, rather than finance, data,
and on forecast biases, rather than higher moments. Nevertheless, we show the relevance
of some of the key results for variance processes. An empirical exercise ‘forecasts’ UK
unemployment after three major historical crises.

Keywords

economic forecasting, structural breaks, break detection, cointegration, non-linear
models

JEL classification: C530
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1. Introduction

A structural break is a permanent change in the parameter vector of a model. We con-
sider the case where such breaks are exogenous, in the sense that they were determined
by events outside the model under study: we also usually assume that such breaks were
unanticipated given the historical data up to that point. We do rule out multiple breaks,
but because breaks are exogenous, each is treated as permanent. To the extent that breaks
are predictable, action can be taken to mitigate the effects we show will otherwise oc-
cur. The main exception to this characterization of breaks will be our discussion of
non-linear models which attempt to anticipate some shifts.

Using taxonomies of all sources of forecast errors, we consider the impacts of breaks
and their relevance in forecasting models:

(a) where the breaks occur after forecasts are announced; and
(b) where they are in-sample and occurred pre-forecasting, focusing on breaks close

to the forecast origin.
New generic (model-free) forecast-error taxonomies are developed to highlight what
can happen in general. It transpires that it matters greatly what features actually break
(e.g., coefficients of stochastic, or of deterministic, variables, or of other aspects of the
model, such as error variances). Also, there are major differences in the effects of these
different forms of breaks on different forecasting methods, in that some devices are ro-
bust, and others non-robust, to various pre-forecasting breaks. Thus, although structural
breaks induce an instability in some parameters of a particular model, the consequences
for forecasting are specific to the type of break and form of model. This allows us to
account for the majority of the findings reported in the major ‘forecasting competitions’
literature. Later, we consider how to detect, and how to handle, breaks, and the impact of
sample size thereon. We will mainly focus on macro-economic data, rather than finance
data where typically one has a much larger sample size. Finally, because the most se-
rious consequences of unanticipated breaks are on forecast biases, we mainly consider
first moment effects, although we also note the effects of breaks in variance processes.

Our chapter builds on a great deal of previous research into forecasting in the face
of structural breaks, and tangentially on related literatures about: forecasting models
and methods; forecast evaluation; sources and effects of breaks; their detection; and
ultimately on estimation and inference in econometric models. Most of these topics
have been thoroughly addressed in previous Handbooks [see Griliches and Intriligator
(1983, 1984, 1986), Engle and McFadden (1994), and Heckman and Leamer (2004)],
and compendia on forecasting [see, e.g., Armstrong (2001) and Clements and Hendry
(2002a)], so to keep the coverage of references within reasonable bounds we assume
the reader refers to those sources inter alia.

As an example of a process subject to a structural break, consider the data generating
process (DGP) given by the structural change model of, e.g., Andrews (1993):
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yt = (μ0 + α1yt−1 + · · · + αpyt−p)

(1)+ (
μ∗

0 + α∗
1yt−1 + · · · + α∗

pyt−p

)
st + εt ,

where εt ∼ IID[0, σ 2
ε ] (that is, Independently, Identically Distributed, mean zero, vari-

ance σ 2
ε ), and st is the indicator variable, st ≡ 1(t>τ) which equals 1 when t > τ and

zero when t � τ . We focus on breaks in the conditional mean parameters, and usu-
ally ignore changes in the variance of the disturbance, as suggested by the form of (1).
A constant-parameter pth-order autoregression (AR(p)) for yt of the form

(2)yt = μ0,1 + α1,1yt−1 + · · · + αp,1yt−p + vt

would experience a structural break because the parameter vector shifts. Let φ =
(μ0 α1 . . . αp)′, φ∗ = (μ∗

0 α∗
1 . . . α∗

p)′ and φ1 = (μ0,1 α1,1 . . . αp,1)
′. Then the AR(p)

model parameters are φ1 = φ for t � τ , but φ1 = φ + φ∗ for t > τ (in Sec-
tion 5, we briefly review testing for structural change when τ is unknown). If instead,
the AR(p) were extended to include terms which interacted the existing regressors
with a step dummy Dt defined by Dt = st = 1(t>τ), the extended model (letting
xt = (1 yt−1 . . . yt−p)′)

(3)yt = φ′
1,dxt + φ′

2,dxtDt + vt,d

exhibits extended parameter constancy – (φ′
1,d φ′

2,d ) = (φ′ φ∗′) for all t = 1, . . . , T ,
matching the DGP [see, e.g., Hendry (1996)]. Whether a model experiences a structural
break is as much a property of the model as of the DGP.

As a description of the process determining {yt }, Equation (1) is incomplete, as the
cause of the shift in the parameter vector from φ to φ + φ∗ is left unexplained. Follow-
ing Bontemps and Mizon (2003), Equation (1) could be thought of as the ‘local’ DGP
(LDGP) for {yt } – namely, the DGP for {yt } given only the variables being modeled
(here, just the history of yt ). The original AR(p) model is mis-specified for the LDGP
because of the structural change. A fully-fledged DGP would include the reason for the
shift at time τ . Empirically, the forecast performance of any model such as (2) will de-
pend on its relationship to the DGP. By adopting a ‘model’ such as (1) for the LDGP,
we are assuming that the correspondence between the LDGP and DGP is close enough
to sustain an empirically relevant analysis of forecasting. Put another way, knowledge
of the factors responsible for the parameter instability is not essential in order to study
the impact of the resulting structural breaks on the forecast performance of models such
as (2).

LDGPs in economics will usually be multivariate and more complicated than (1), so
to obtain results of some generality, the next section develops a ‘model-free’ taxonomy
of errors for conditional first-moment forecasts. This highlights the sources of biases
in forecasts. The taxonomy is then applied to forecasts from a vector autoregression
(VAR). Section 3 presents a forecast-error taxonomy for conditional second-moment
forecasts based on standard econometric volatility models. Section 4 derives the proper-
ties of forecasts for a cointegrated VAR, where it is assumed that the break occurs at the
very end of the in-sample period, and so does not affect the models’ parameter estimates.
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Alternatively, any in-sample breaks have been detected and modeled. Section 5 consid-
ers the detection of in-sample breaks, and Section 6 the selection of the optimal window
of data for model estimation as well as model specification more generally in the pres-
ence of in-sample breaks. Section 7 looks at a number of ad hoc forecasting methods,
and assesses their performance in the face of breaks. When there are breaks, forecast-
ing methods which adapt quickly following the break are most likely to avoid making
systematic forecast errors. Section 8 contrasts breaks as permanent changes with non-
constancies due to neglected non-linearities, from the perspectives of discriminating
between the two, and for forecasting. Section 9 reports an empirical forecasting exercise
for UK unemployment after three crises, namely the post-world-war double-decades of
1919–1938 and 1948–1967, and the post oil-crisis double-decade 1975–1994, to exam-
ine the forecasts of unemployment that would have been made by various devices: it
also reports post-model-selection forecasts over 1992–2001, a decade which witnessed
the ejection of the UK from the exchange-rate mechanism at its commencement. Sec-
tion 10 briefly concludes. Two Appendices A and B, respectively, provide derivations
for the taxonomy Equation (10) and for Section 4.3.

2. Forecast-error taxonomies

2.1. General (model-free) forecast-error taxonomy

In this section, a new general forecast-error taxonomy is developed to unify the discus-
sion of the various sources of forecast error, and to highlight the effects of structural
breaks on the properties of forecasts. The taxonomy distinguishes between breaks af-
fecting ‘deterministic’ and ‘stochastic’ variables, both in-sample and out-of-sample,
as well as delineating other possible sources of forecast error, including model mis-
specification and parameter-estimation uncertainty, which might interact with breaks.

Consider a vector of n stochastic variables {xt }, where the joint density of xt at time
t is Dxt (xt | X1

t−1, qt ), conditional on information X1
t−1 = (x1, . . . , xt−1), where qt de-

notes the relevant deterministic factors (such as intercepts, trends, and indicators). The
densities are time dated to make explicit that they may be changing over time. The object
of the exercise is to forecast xT +h over forecast horizons h = 1, . . . , H , from a forecast
origin at T . A dynamic model Mxt [xt | Xt−s

t−1, q̃t , θ t ], with deterministic terms q̃t , lag
length s, and implicit stochastic specification defined by its parameters θ t , is fitted over
the sample t = 1, . . . , T to produce a forecast sequence {x̂T +h|T }. Parameter estimates
are a function of the observables, represented by:

(4)θ̂ (T ) = fT
(
X̃1

T , Q̃1
T

)
,

where X̃ denotes the measured data and Q̃1
T the in-sample set of deterministic terms

which need not coincide with Q1
T . The subscript on θ̂ (T ) in (4) represents the influence

of sample size on the estimate, whereas that on θ t in Mxt [·] denotes that the derived
parameters of the model may alter over time (perhaps reflected in changed estimates).
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Let θe,(T ) = ET [θ̂ (T )] (where that exists). As shown in Clements and Hendry (2002b),
it is convenient, and without loss of generality, to map changes in the parameters of
deterministic terms into changes in those terms, and we do so throughout.

Since future values of the deterministic terms are ‘known’, but those of stochastic
variables are unknown, the form of the function determining the forecasts will depend
on the horizon

(5)x̂T +h|T = gh

(
X̃T −s+1

T , Q̃T
T +h, θ̂ (T )

)
.

In (5), X̃T −s+1
T enters up to the forecast origin, which might be less well measured than

earlier data; see, e.g., [Wallis (1993)].1 The model will generally be a mis-specified
representation of the LDGP for any of a large number of reasons, even when designed
to be congruent [see Hendry (1995, p. 365)].

The forecast errors of the model are given by eT +h|T = xT +h− x̂T +h|T with expected
value

(6)ET +h

[
eT +h|T

∣∣ X1
T ,

{
Q∗∗}1

T +h

]
,

where we allow that the LDGP deterministic factors (from which the model’s deter-
ministic factors Q̃T

T +h are derived) are subject to in-sample shifts as well as forecast
period shifts, denoted by ∗∗ as follows. If we let τ date an in-sample shift (1 < τ < T ),
the LDGP deterministic factors are denoted by {Q∗∗}1

T +h = [Q1
τ , {Q∗}τ+1

T , {Q∗∗}T +1
T +h].

Thus, the pre-shift in-sample period is 1, . . . , τ , the post-shift in-sample period is
τ + 1, . . . , T , and the forecast period is T + 1, . . . , T + h, where we allow for the
possibility of a shift at T . Absences of ∗∗ and ∗ indicate that forecast and in-sample
period shifts did not occur. Thus, {Q∗}τ+1

T = Qτ+1
T implies no in-sample shifts, de-

noted by Q1
T , and the absence of shifts both in-sample and during the forecast period

gives Q1
T +h. Let {Q∗}1

T +h = [Q1
τ , {Q∗}τ+1

T +H ] refer to an in-sample shift, but no sub-
sequent forecast-period shifts. The deterministic factors Q̃1

T in the model may also
be mis-specified in-sample when the LDGP deterministic factors are given by Q1

T

(‘conventional’ mis-specification). Of more interest, perhaps, is the case when the mis-
specification is induced by an in-sample shift not being modeled. This notation reflects
the important role that shifts in deterministic terms play in forecast failure, defined as
a significant deterioration in forecast performance relative to the anticipated outcome,
usually based on the historical performance of a model.

We define the forecast error from the LDGP as

(7)εT +h|T = xT +h − ET +h

[
xT +h

∣∣ X1
T ,

{
Q∗∗}1

T +h

]
.

By construction, this is the forecast error from using a correctly-specified model of the
mean of Dxt (xt | X1

t−1, qt ), where any structural change (in, or out, of sample) is known
and incorporated, and the model parameters are known (with no estimation error). It

1 The dependence of θ̂ (T ) on the forecast origin is ignored below.
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follows that ET +h[εT +h|T | X1
T , {Q∗∗}1

T +h] = 0, so that εT +h|T is an innovation against
all available information. Practical interest, though, lies in the model forecast error,
eT +h|T = xT +h − x̂T +h|T . The model forecast error is related to εT +h|T as given below,
where we also separately delineate the sources of error due to structural change and
mis-specification, etc.

(8)

eT +h|T = xT +h − x̂T +h|T
= (

ET +h

[
xT +h

∣∣ X1
T ,

{
Q∗∗}1

T +h

] − ET +h

[
xT +h

∣∣ X1
T ,

{
Q∗}1

T +h

])
(T1)

+ (
ET +h

[
xT +h

∣∣ X1
T ,

{
Q∗}1

T +h

] − ET

[
xT +h

∣∣ X1
T , {Q∗}1

T +h

])
(T2)

+ (
ET

[
xT +h

∣∣ X1
T ,

{
Q∗}1

T +h

] − ET

[
xT +h

∣∣ X1
T , Q̃1

T +h

])
(T3)

+ (
ET

[
xT +h

∣∣ X1
T , Q̃1

T +h

] − ET

[
xT +h

∣∣ XT −s+1
T , Q̃1

T +h, θ e,(T )

])
(T4)

+ (
ET

[
xT +h

∣∣ XT −s+1
T , Q̃1

T +h, θe,(T )

]
− ET

[
xT +h

∣∣ X̃T −s+1
T , Q̃1

T +h, θ e,(T )

])
(T5)

+ (
ET

[
xT +h

∣∣ X̃T −s+1
T , Q̃1

T +h, θe,(T )

] − gh

(
X̃T −s+1

T , Q̃1
T +h, θ̂ (T )

))
(T6)

+ εT +h|T . (T7)

The first two error components arise from structural change affecting deterministic (T1)
and stochastic (T2) components respectively over the forecast horizon. The third (T3)
arises from model mis-specification of the deterministic factors, both induced by fail-
ing to model in-sample shifts and ‘conventional’ mis-specification. Next, (T4) arises
from mis-specification of the stochastic components, including lag length. (T5) and
(T6) denote forecast error components resulting from data measurement errors, espe-
cially forecast-origin inaccuracy, and estimation uncertainty, respectively, and the last
row (T7) is the LDGP innovation forecast error, which is the smallest achievable in this
class.

Then (T1) is zero if {Q∗∗}1
T +h = {Q∗}1

T +h, which corresponds to no forecast-period
deterministic shifts (conditional on all in-sample shifts being correctly modeled). In
general the converse also holds – (T1) being zero entails no deterministic shifts. Thus,
a unique inference seems possible as to when (T1) is zero (no deterministic shifts), or
non-zero (deterministic shifts).

Next, when ET +h[·] = ET [·], so there are no stochastic breaks over the forecast hori-
zon, entailing that the future distributions coincide with that at the forecast origin, then
(T2) is zero. Unlike (T1), the terms in (T2) could be zero despite stochastic breaks, pro-
viding such breaks affected only mean-zero terms. Thus, no unique inference is feasible
if (T2) is zero, though a non-zero value indicates a change. However, other moments
would be affected in the first case.

When all the in-sample deterministic terms, including all shifts in the LDGP, are
correctly specified, so Q̃1

T +h = {Q∗}1
T +h, then (T3) is zero. Conversely, when (T3)

is zero, then Q̃1
T +h must have correctly captured in-sample shifts in deterministic
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terms, perhaps because there were none. When (T3) is non-zero, the in-sample de-
terministic factors may be mis-specified because of shifts, but this mistake ought to
be detectable. However, (T3) being non-zero may also reflect ‘conventional’ determin-
istic mis-specifications. This type of mistake corresponds to omitting relevant deter-
ministic terms, such as an intercept, seasonal dummy, or trend, and while detectable
by an appropriately directed test, also has implications for forecasting when not cor-
rected.

For correct stochastic specification, so θe,(T ) correctly summarizes the effects of X1
T ,

then (T4) is zero, but again the converse is false – (T4) can be zero in mis-specified
models. A well-known example is approximating a high-order autoregressive LDGP
for mean zero data with symmetrically distributed errors, by a first-order autoregression,
where forecasts are nevertheless unbiased as discussed below for a VAR.

Next, when the data are accurate (especially important at the forecast origin), so
X̃ = X, then (T5) is zero, but the converse is not entailed: (T5) can be zero just be-
cause the data are mean zero.

Continuing, (T6) concerns the estimation error, and arises when θ̂ (T ) does not coin-
cide with θe,(T ). Biases in estimation could, but need not, induce such an effect to be
systematic, as might non-linearities in models or LDGPs. When estimated parameters
have zero variances, so x̂T +h|T = ET [xT +h | · , θe,(T )], then (T6) is zero, and con-
versely (except for events of probability zero). Otherwise, its main impacts will be on
variance terms.

The final term (T7), εT +h|T , is unlikely to be zero in any social science, although
it will have a zero mean by construction, and be unpredictable from the past of the
information in use. As with (T6), the main practical impact is through forecast error
variances.

The taxonomy in (8) includes elements for the seven main sources of forecast error,
partitioning these by whether or not the corresponding expectation is zero. However,
several salient features stand out. First, the key distinction between whether the ex-
pectations in question are zero or non-zero. In the former case, forecasts will not be
systematically biased, and the main impact of any changes or mis-specifications is on
higher moments, especially forecast error variances. Conversely, if a non-zero mean
error results from any source, systematic forecast errors will ensue. Secondly, and a
consequence of the previous remark, some breaks will be easily detected because at
whatever point in time they happened, ‘in-sample forecasts’ immediately after a change
will be poor. Equally, others may be hard to detect because they have no impact on
the mean forecast errors. Thirdly, the impacts of any transformations of a model on its
forecast errors depend on which mistakes have occurred. For example, it is often argued
that differencing doubles the forecast-error variance: this is certainly true of εT +h|T ,
but is not true in general for eT +h|T . Indeed, it is possible in some circumstances to
reduce the forecast-error variance by differencing; see, e.g., Hendry (2005). Finally, the
taxonomy applies to any model form, but to clarify some of its implications, we turn to
its application to the forecast errors from a VAR.
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2.2. VAR model forecast-error taxonomy

We illustrate with a first-order VAR, and for convenience assume the absence of in-
sample breaks so that the VAR is initially correctly specified. We also assume that the
n × 1 vector of variables yt is an I(0) transformation of the original variables xt : Sec-
tion 4.1 considers systems of cointegrated I(1) variables. Thus,

yt = φ + �yt−1 + εt ,

with εt ∼ INn[0,�ε], for an in-sample period t = 1, . . . , T . The unconditional mean
of yt is E[yt ] = (In − �)−1φ ≡ ϕ, and hence the VAR(1) can be written as

yt − ϕ = �(yt−1 − ϕ) + εt .

The h-step ahead forecasts conditional upon period T are given by, for h = 1, . . . , H ,

(9)ŷT +h − ϕ̂ = �̂(ŷT +h−1 − ϕ̂) = �̂
h
(ŷT − ϕ̂),

where ϕ̂ = (In − �̂)−1φ̂, and ‘ˆ’s denote estimators for parameters, and forecasts for
random variables. After the forecasts have been made at time T , (φ,�) change to
(φ∗,�∗), where �∗ still has all its eigenvalues less than unity in absolute value, so
the process remains I(0). But from T + 1 onwards, the data are generated by

yT +h = ϕ∗ + �∗(yT +h−1 − ϕ∗) + εT +h

= ϕ∗ + (
�∗)h(yT − ϕ∗) +

h−1∑
i=0

(
�∗)i

εT +h−i ,

so both the slope and the intercept may alter. The forecast-error taxonomy for ε̂T +h|T =
yT +h − ŷT +h|T is then given by

(10)

ε̂T +h|T �(
In − (

�∗)h)(
ϕ∗ − ϕ

)
(ia) equilibrium-mean change

+ ((
�∗)h − �h

)
(yT − ϕ) (ib) slope change

+ (
In − �h

p

)
(ϕ − ϕp) (iia) equilibrium-mean mis-specification

+ (
�h − �h

p

)
(yT − ϕ) (iib) slope mis-specification

+ (
�h

p + Ch

)
(yT − ŷT ) (iii) forecast-origin uncertainty

− (
In − �h

p

)
(ϕ̂ − ϕp) (iva) equilibrium-mean estimation

− Fh

(
�̂ − �p

)ν (ivb) slope estimation

+ ∑h−1
i=0

(
�∗)i

εT +h−i (v) error accumulation.

The matrices Ch and Fh are complicated functions of the whole-sample data, the
method of estimation, and the forecast-horizon, defined in (A.1) and (A.2) below –
see, e.g., Calzolari (1981). (·)ν denotes column vectoring, and the subscript p denotes
a plim (expected values could be used where these exist). Details of the derivations
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are given in Clements and Hendry (1999, Chapter 2.9) and are noted for convenience
in Appendix A.

This taxonomy conflates some of the distinctions in the general formulation
above (e.g., mis-specification of deterministic terms other than intercepts) and dis-
tinguishes others (equilibrium-mean and slope estimation effects). Thus, the model
mis-specification terms (iia) and (iib) may result from unmodeled in-sample structural
change, as in the general taxonomy, but may also arise from the omission of relevant
variables, or the imposition of invalid restrictions.

In (10), terms involving yT − ϕ have zero expectations even under changed parame-
ters (e.g., (ib) and (iib)). Moreover, for symmetrically-distributed shocks, biases in �̂

for � will not induce biased forecasts [see, e.g., Malinvaud (1970), Fuller and Hasza
(1980), Hoque, Magnus and Pesaran (1988), and Clements and Hendry (1998) for re-
lated results]. The εT +h have zero means by construction. Consequently, the primary
sources of systematic forecast failure are (ia), (iia), (iii), and (iva). However, on ex post
evaluation, (iii) will be removed, and in congruent models with freely-estimated inter-
cepts and correctly modeled in-sample breaks, (iia) and (iva) will be zero on average.
That leaves changes to the ‘equilibrium mean’ ϕ (not necessarily the intercept φ in a
model, as seen in (10)), as the primary source of systematic forecast error; see Hendry
(2000) for a detailed analysis.

3. Breaks in variance

3.1. Conditional variance processes

The autoregressive conditional heteroskedasticity (ARCH) model of Engle (1982), and
its generalizations, are commonly used to model time-varying conditional processes;
see, inter alia, Engle and Bollerslev (1987), Bollerslev, Chou and Kroner (1992), and
Shephard (1996); and Bera and Higgins (1993) and Baillie and Bollerslev (1992) on
forecasting. The forecast-error taxonomy construct can be applied to variance processes.
We show that ARCH and GARCH models can in general be solved for long-run vari-
ances, so like VARs, are a member of the equilibrium-correction class. Issues to do with
the constancy of the long-run variance are then discussed.

The simplest ARCH(1) model for the conditional variance of ut is ut = ηtσt , where
ηt is a standard normal random variable and

(11)σ 2
t = ω + αu2

t−1,

where ω, α > 0. Letting σ 2
t = u2

t − vt , substituting in (11) gives

(12)u2
t = ω + αu2

t−1 + vt .

From vt = u2
t − σ 2

t = σ 2
t (η2

t − 1), E[vt | Yt−1] = σ 2
t E[(η2

t − 1) | Yt−1] = 0, so that
the disturbance term {vt } in the AR(1) model (12) is uncorrelated with the regressor,
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as required. From the AR(1) representation, the condition for covariance stationarity of
{u2

t } is |α| < 1, whence

E
[
u2

t

] = ω + αE
[
u2

t−1

]
,

and so the unconditional variance is

σ 2 ≡ E
[
u2

t

] = ω

1 − α
.

Substituting for ω in (11) gives the equilibrium-correction form

σ 2
t − σ 2 = α

(
u2

t−1 − σ 2).
More generally, for an ARCH(p), p > 1,

(13)σ 2
t = ω + α1u

2
t−1 + α2u

2
t−2 + · · · + αpu2

t−p

provided the roots of (1 − α1z − α2z
2 + · · · + αpzp) = 0 lie outside the unit circle, we

can write

(14)σ 2
t − σ 2 = α1

(
u2

t−1 − σ 2) + α2
(
u2

t−2 − σ 2) + · · · + αp

(
u2

t−p − σ 2),
where

σ 2 ≡ E
[
u2

t

] = ω

1 − α1 − · · · − αp

.

The generalized ARCH [GARCH; see, e.g., Bollerslev (1986)] process

(15)σ 2
t = ω + αu2

t−1 + βσ 2
t−1

also has a long-run solution. The GARCH(1, 1) implies an ARMA(1, 1) for {u2
t }. Let-

ting σ 2
t = u2

t − vt , substitution into (15) gives

(16)u2
t = ω + (α + β)u2

t−1 + vt − βvt−1.

The process is stationary provided α + β < 1. When that condition holds

σ 2 ≡ E
[
u2

t

] = ω

1 − (α + β)
,

and combining the equations for σ 2
t and σ 2 for the GARCH(1, 1) delivers

(17)σ 2
t − σ 2 = α

(
u2

t−1 − σ 2) + β
(
σ 2

t−1 − σ 2).
Thus, the conditional variance responds to the previous period’s disequilibria between
the conditional variance and the long-run variance and between the squared disturbance
and the long-run variance, exhibiting equilibrium-correction type behavior.
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3.2. GARCH model forecast-error taxonomy

As it is an equilibrium-correction model, the GARCH(1, 1) is not robust to shifts in σ 2,
but may be resilient to shifts in ω, α and β which leave σ 2 unaltered. As an alternative
to (17), express the process as

(18)σ 2
t = σ 2 + α

(
u2

t−1 − σ 2
t−1

) + (α + β)
(
σ 2

t−1 − σ 2).
In either (17) or (18), α and β multiply zero-mean terms provided σ 2 is unchanged by
any shifts in these parameters. The forecast of next period’s volatility based on (18) is
given by

(19)σ̂ 2
T +1|T = σ̂ 2 + α̂

(
û2

T − σ̂ 2
T

) + (
α̂ + β̂

)(
σ̂ 2

T − σ̂ 2)
recognizing that {α, β, σ 2} will be replaced by in-sample estimates. The ‘ˆ’ on uT de-
notes this term is the residual from modeling the conditional mean. When there is little
dependence in the mean of the series, such as when {ut } is a financial returns series
sampled at a high-frequency, uT is the observed data series and replaces ûT (barring
data measurement errors).

Then (19) confronts every problem noted above for forecasts of means: potential
breaks in σ 2, α, β, mis-specification of the variance evolution (perhaps an incorrect
functional form), estimation uncertainty, etc. The 1-step ahead forecast-error taxonomy
takes the following form after a shift in ω, α, β to ω∗, α∗, β∗ at T to:

σ 2
T +1 = σ 2∗ + α∗(u2

T − σ 2
T

) + (
α∗ + β∗)(σ 2

T − σ 2∗),
so that letting the subscript p denote the plim:

(20)

σ 2
T +1−σ̂ 2

T +1|T
= (

1 − (
α∗ + β∗))(σ 2∗ − σ 2

)
[1] long-run mean shift

+ (
1 − (

α̂ + β̂
))(

σ 2 − σ 2
p

)
[2] long-run mean inconsistency

+ (
1 − (

α̂ + β̂
))(

σ 2
p − σ̂ 2

)
[3] long-run mean variability

+ (
α∗ − α

)(
u2

T − σ 2
T

)
[4] α shift

+ (α − αp)
(
u2

T − σ 2
T

)
[5] α inconsistency

+ (αp − α̂)
(
u2

T − σ 2
T

)
[6] α variability

+ α̂
(
u2

T − ET

[
û2

T

])
[7] impact inconsistency

+ α̂
(
ET

[
û2

T

] − û2
T

)
[8] impact variability

+ [(
α∗ + β∗) − (α + β)

](
σ 2

T − σ 2
)

[9] variance shift

+ [
(α + β) − (αp + βp)

](
σ 2

T − σ 2
)

[10] variance inconsistency

+ [
(αp + βp) − (

α̂ + β̂
)](

σ 2
T − σ 2

)
[11] variance variability

+ β̂
(
σ 2

T − ET

[
σ̂ 2

T

])
[12] σ 2

T inconsistency

+ β̂
(
ET

[
σ̂ 2

T

] − σ̂ 2
T

)
[13] σ 2

T variability.
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The first term is zero only if no shift occurs in the long-run variance and the second
only if a consistent in-sample estimate is obtained. However, the next four terms are zero
on average, although the seventh possibly is not. This pattern then repeats, since the next
block of four terms again is zero on average, with the penultimate term possibly non-
zero, and the last zero on average. As with the earlier forecast error taxonomy, shifts in
the mean seem pernicious, whereas those in the other parameters are much less serious
contributors to forecast failure in variances. Indeed, even assuming a correct in-sample
specification, so terms [2], [5], [7], [10], [12] all vanish, the main error components
remain.

4. Forecasting when there are breaks

4.1. Cointegrated vector autoregressions

The general forecast-error taxonomy in Section 2.1 suggests that structural breaks in
non-zero mean components are the primary cause of forecast biases. In this section, we
examine the impact of breaks in VAR models of cointegrated I(1) variables, and also
analyze models in first differences, because models of this type are commonplace in
macroeconomic forecasting. The properties of forecasts made before and after the struc-
tural change has occurred are analyzed, where it is assumed that the break occurs close
to the forecast origin. As a consequence, the comparisons are made holding the models’
parameters constant. The effects of in-sample breaks are identified in the forecast-error
taxonomies, and are analyzed in Section 6, where the choice of data window for model
estimation is considered. Forecasting in cointegrated VARs (in the absence of breaks) is
discussed by Engle and Yoo (1987), Clements and Hendry (1995), Lin and Tsay (1996),
and Christoffersen and Diebold (1998), while Clements and Hendry (1996) (on which
this section is based) allow for breaks.

The VAR is a closed system so that all non-deterministic variables are forecast within
the system. The vector of all n variables is denoted by xt and the VAR is assumed to be
first-order for convenience:

(21)xt = τ 0 + τ 1t + ϒxt−1 + νt ,

where νt ∼ INn[0,�], and τ 0 and τ 1 are the vectors of intercepts and coefficients on
the time trend, respectively. The system is assumed to be integrated, and to satisfy r < n

cointegration relations such that [see, for example, Johansen (1988)]

ϒ = In + αβ ′,

where α and β are n× r matrices of rank r . Then (21) can be reparametrized as a vector
equilibrium-correction model (VECM)

(22)�xt = τ 0 + τ 1t + αβ ′xt−1 + νt .
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Assuming that n > r > 0, the vector xt consists of I(1) variables of which r linear com-
binations are I(0). The deterministic components of the stochastic variables xt depend
on α, τ 0 and τ 1. Following Johansen (1994), we can decompose τ 0 + τ 1t as

(23)τ 0 + τ 1t = α⊥ζ 0 − αλ0 − αλ1t + α⊥ζ 1t,

where λi = −(α′α)−1α′τ i and ζ i = (α′⊥α⊥)−1α′⊥τ i with α′α⊥ = 0, so that αλi and
α⊥ζ i are orthogonal by construction. The condition that α⊥ζ 1 = 0 rules out quadratic
trends in the levels of the variables, and we obtain

(24)�xt = α⊥ζ 0 + α
(
β ′xt−1 − λ0 − λ1t

) + νt .

It is sometimes more convenient to parameterize the deterministic terms so that the
system growth rate γ = E[�xt ] is explicit, so in the following we will adopt

(25)�xt = γ + α
(
β ′xt−1 − μ0 − μ1t

) + νt ,

where one can show that γ = α⊥ζ 0 + αψ , μ0 = ψ + λ0 and μ1 = λ1 with ψ =
(β ′α)−1(λ1 − β ′α⊥ζ 0) and β ′γ = μ1.

Finally, a VAR in differences (DVAR) may be used, which within sample is mis-
specified relative to the VECM unless r = 0. The simplest is

(26)�xt = γ + ηt ,

so when α = 0, the VECM and DVAR coincide. In practice, lagged �xt may be used
to approximate the omitted cointegrating vectors.

4.2. VECM forecast errors

We now consider dynamic forecasts and their errors under structural change, abstracting
from the other sources of error identified in the taxonomy, such as parameter-estimation
error. A number of authors have looked at the effects of parameter estimation on
forecast-error moments [including, inter alia, Schmidt (1974, 1977), Calzolari (1981,
1987), Bianchi and Calzolari (1982), and Lütkepohl (1991)]. The j -step ahead fore-
casts for the levels of the process given by x̂T +j |T = ET [xT +j | xT ] for j = 1, . . . , H

are

(27)x̂T +j |T = τ 0 + τ 1(T + j) + ϒx̂T +j−1|T =
j−1∑
i=0

ϒiτ(i) + ϒj xT ,

where we let τ 0 +τ 1(T +j − i) = τ(i) for notational convenience, with forecast errors
ν̂T +j |T = xT +j − x̂T +j |T . Consider a one-off change of (τ 0 : τ 1 : ϒ) to (τ ∗

0 : τ ∗
1 : ϒ∗)

which occurs either at period T (before the forecast is made) or at period T + 1 (after
the forecast is made), but with the variance, autocorrelation, and distribution of the
disturbance term remaining unaltered. Then the data generated by the process for the
next H periods is given by

xT +j = τ ∗
0 + τ ∗

1(T + j) + ϒ∗xT +j−1 + νT +j
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(28)=
j−1∑
i=0

(
ϒ∗)i

τ ∗(i) +
j−1∑
i=0

(
ϒ∗)i

νT +j−i + (
ϒ∗)j xT .

Thus, the j -step ahead forecast error can be written as

ν̂T +j |T =
(

j−1∑
i=0

(
ϒ∗)i

τ ∗(i) −
j−1∑
i=0

ϒiτ (i)

)
+

j−1∑
i=0

(
ϒ∗)i

νT +j−i

(29)+ ((
ϒ∗)j − ϒj

)
xT .

The expectation of the j -step forecast error conditional on xT is

(30)E
[
ν̂T +j |T

∣∣ xT

] =
(

j−1∑
i=0

(
ϒ∗)i

τ ∗(i) −
j−1∑
i=0

ϒiτ(i)

)
+ ((

ϒ∗)j − ϒj
)
xT

so that the conditional forecast error variance is

V
[
ν̂T +j |T

∣∣ xT

] =
j−1∑
i=0

(
ϒ∗)i

�
(
ϒ∗)i ′

.

We now consider a number of special cases where only the deterministic components
change. With the assumption that ϒ∗ = ϒ, we obtain

E[ν̂T +j |T ] = E[ν̂T +j |T | xT ]

=
j−1∑
i=0

ϒi
([

τ∗
0 + τ ∗

1(T + j − i)
] − [

τ 0 + τ 1(T + j − i)
])

(31)=
j−1∑
i=0

ϒi
[(

γ ∗ − γ
) + α

(
μ0 − μ∗

0

) + α
(
μ1 − μ∗

1

)
(T + j − i)

]
,

so that the conditional and unconditional biases are the same. The bias is increasing in j

due to the shift in γ (the first term in square brackets) whereas the impacts of the shifts
in μ0 and μ1 eventually level off because

lim
i→∞ ϒi = In − α

(
β ′α

)−1
β ′ ≡ K,

and Kα = 0. When the linear trend is absent and the constant term can be restricted
to the cointegrating space (i.e., τ 1 = 0 and ζ 0 = 0, which implies λ1 = 0 and there-
fore μ1 = γ = 0), then only the second term appears, and the bias is O(1) in j . The
formulation in (31) assumes that ϒ, and therefore the cointegrating space, remains unal-
tered. Moreover, the coefficient on the linear trend alters but still lies in the cointegrating
space. Otherwise, after the structural break, xt would be propelled by quadratic trends.
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4.3. DVAR forecast errors

Consider the forecasts from a simplified DVAR. Forecasts from the DVAR for �xt are
defined by setting �xT +j equal to the population growth rate γ ,

(32)�x̃T +j = γ

so that j -step ahead forecasts of the level of the process are obtained by integrating (32)
from the initial condition xT ,

(33)x̃T +j = x̃T +j−1 + γ = xT + jγ for j = 1, . . . , H.

When ϒ is unchanged over the forecast period, the expected value of the conditional
j -step ahead forecast error ν̃T +j |T is

(34)E[ν̃T +j |T | xT ] =
j−1∑
i=0

ϒi
[
τ ∗

0 + τ ∗
1(T + j − i)

] − jγ + (
ϒj − In

)
xT .

By averaging over xT we obtain the unconditional bias E[ν̃T +j ].
Appendix B records the algebra for the derivation of (35):

(35)E[ν̃T +j |T ] = j
(
γ ∗ − γ

) + Ajα
[(

μa
0 − μ∗

0

) − β ′(γ ∗ − γ a
)
(T + 1)

]
.

In the same notation, the VECM results from (31) are

(36)E[ν̂T +j |T ] = j
(
γ ∗ − γ

) + Ajα
[(

μ0 − μ∗
0

) − β ′(γ ∗ − γ
)
(T + 1)

]
.

Thus, (36) and (35) coincide when μa
0 = μ0, and γ a = γ as will occur if either there is

no structural change, or the change occurs after the start of the forecast period.

4.4. Forecast biases under location shifts

We now consider a number of interesting special cases of (35) and (36) which highlight
the behavior of the DVAR and VECM under shifts in the deterministic terms. Viewing
(τ 0, τ 1) as the primary parameters, we can map changes in these parameters to changes
in (γ ,μ0,μ1) via the orthogonal decomposition into (ζ 0,λ0,λ1). The interdependen-
cies can be summarized as γ (ζ 0,λ1), μ0(ζ 0,λ0,λ1), μ1(λ1).

Case I: τ ∗
0 = τ 0, τ ∗

1 = τ 1. In the absence of structural change, μa
0 = μ0 and γ a = γ

and so

(37)E[ν̂T +j |T ] = E[ν̃T +j |T ] = 0

as is evident from (35) and (36). The omission of the stationary I(0) linear combinations
does not render the DVAR forecasts biased.

Case II: τ ∗
0 
= τ 0, τ ∗

1 = τ 1, but ζ ∗
0 = ζ 0. Then μ∗

0 
= μ0 but γ ∗ = γ :

(38)E[ν̂T +j |T ] = Ajα
(
μ0 − μ∗

0

)
,
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(39)E[ν̃T +j |T ] = Ajα
(
μa

0 − μ∗
0

)
.

The biases are equal if μa
0 = μ0; i.e., the break is after the forecast origin. However,

E[ν̃T +j ] = 0 when μa
0 = μ∗

0, and hence the DVAR is unbiased when the break oc-
curs prior to the commencement of forecasting. In this example the component of the
constant term orthogonal to α (ζ 0) is unchanged, so that the growth rate is unaffected.

Case III: τ ∗
0 
= τ 0, τ ∗

1 = τ 1 (as in Case II), but now λ∗
0 = λ0 which implies ζ ∗

0 
= ζ 0
and therefore μ∗

0 
= μ0 and γ ∗ 
= γ . However, β ′γ ∗ = β ′γ holds (because τ ∗
1 = τ 1)

so that

(40)E[ν̂T +j |T ] = j
(
γ ∗ − γ

) + Ajα
(
μ0 − μ∗

0

)
,

(41)E[ν̃T +j |T ] = j
(
γ ∗ − γ

) + Ajα
(
μa

0 − μ∗
0

)
.

Consequently, the errors coincide when μa
0 = μ0, but differ when μa

0 = μ∗
0.

Case IV: τ ∗
0 = τ 0, τ ∗

1 
= τ 1. All of μ0, μ1 and γ change. If β ′γ ∗ 
= β ′γ then we
have (35) and (36), and otherwise the biases of Case III.

4.5. Forecast biases when there are changes in the autoregressive parameters

By way of contrast, changes in autoregressive parameters that do not induce changes in
means are relatively benign for forecasts of first moments. Consider the VECM forecast
errors given by (29) when E[xt ] = 0 for all t , so that τ 0 = τ ∗

0 = τ 1 = τ ∗
1 = 0 in (21):

(42)ν̂T +j |T =
j−1∑
i=0

ϒ∗iνT +j−i + (
ϒ∗j − ϒj

)
xT .

The forecasts are unconditionally unbiased, E[ν̂T +j |T ] = 0, and the effect of the break
is manifest in higher forecast error variances

V[ν̂T +j |T | xT ] =
j−1∑
i=0

ϒ∗i�ϒ∗i′ + (
ϒ∗j − ϒj

)
xT x′

T

(
ϒ∗j − ϒj

)′
.

The DVAR model forecasts are also unconditionally unbiased, from

ν̃T +j |T =
j−1∑
i=0

ϒ∗iνT +j−i + (
ϒ∗j − In

)
xT ,

since E[ν̃T +j |T ] = 0 provided E[xT ] = 0.
When E[xT ] 
= 0, but is the same before and after the break (as when changes in

the autoregressive parameters are offset by changes in intercepts) both models’ forecast
errors are unconditionally unbiased.
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4.6. Univariate models

The results for n = 1 follow immediately as a special case of (21):

(43)xt = τ0 + τ1t + Υ xt−1 + νt .

The forecasts from (43) and the ‘unit-root’ model xt = xt−1+γ +υt are unconditionally
unbiased when Υ shifts provided E [xt ] = 0 (requiring τ0 = τ1 = 0). When τ1 = 0,
the unit-root model forecasts remain unbiased when τ0 shifts provided the shift occurs
prior to forecasting, demonstrating the greater adaptability of the unit-root model. As in
the multivariate setting, the break is assumed not to affect the model parameters (so that
γ is taken to equal its population value of zero).

5. Detection of breaks

5.1. Tests for structural change

In this section, we briefly review testing for structural change or non-constancy in the
parameters of time-series regressions. There is a large literature on testing for struc-
tural change. See, for example, Stock (1994) for a review. Two useful distinctions can
be drawn: whether the putative break point is known, and whether the change in the
parameters is governed by a stochastic process. Section 8 considers tests against the
alternative of non-linearity.

For a known break date, the traditional method of testing for a one-time change in the
model’s parameters is the Chow (1960) test. That is, in the model

(44)yt = α1yt−1 + · · · + αpyt−p + εt

when the alternative is a one-off change:

H1(π): α =
{
α1(π) for t = 1, 2, . . . , πT ,

α2(π) for t = πT + 1, . . . , T ,

where α′ = (α1 α2 . . . αp), π ∈ (0, 1), a test of parameter constancy can be imple-
mented as an LM, Wald or LR test, all of which are asymptotically equivalent. For
example, the Wald test has the form

FT (π) = RSS1,T − (RSS1,πT + RSSπT +1,T )

(RSS1,πT + RSSπT +1,T )/(T − 2p)
,

where RSS1,T is the ‘restricted’ residual sum of squares from estimating the model on
all the observations, RSS1,πT is the residual sum of squares from estimating the model
on observations 1 to πT , etc. These tests also apply when the model is not purely
autoregressive but contains other explanatory variables, although for FT (π) to be as-
ymptotically chi-squared all the variables need to be I(0) in general.
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When the break is not assumed known a priori, the testing procedure cannot take
the break date π as given. The testing procedure is then non-standard, because π is
identified under the alternative hypothesis but not under the null [Davies (1977, 1987)].
Quandt (1960) suggested taking the maximal FT (π) over a range of values of π ∈ Π ,
for Π a pre-specified subset of (0, 1). Andrews (1993) extended this approach to non-
linear models, and Andrews and Ploberger (1994) considered the ‘average’ and ‘expo-
nential’ test statistics. The asymptotic distributions are tabulated by Andrews (1993),
and depend on p and Π . Diebold and Chen (1996) consider bootstrap approximations
to the finite-sample distributions.

Andrews (1993) shows that the sup tests have power against a broader range of al-
ternatives than H1(π), but will not have high power against ‘structural change’ caused
by the omission of a stationary variable. For example, suppose the DGP is a stationary
AR(2):

yt = α1yt−1 + α2yt−2 + εt

and the null is φ1,t = φ1,0 for all t in the model yt = φ1,t yt−1 + εt , versus H∗
1: φ1,t

varies with t . The omission of the second lag can be viewed as causing structural change
in the model each period, but this will not be detectable as the model is stationary under
the alternative for all t = 1, . . . , T . Stochastic forms of model mis-specification of this
sort were shown in Section 2.1 not to cause forecast bias.

In addition, Bai and Perron (1998) consider testing for multiple structural breaks, and
Bai, Lumsdaine and Stock (1998) consider testing and estimating break dates when the
breaks are common to a number of time series. Hendry, Johansen and Santos (2004)
propose testing for this form of non-constancy by adding a complete set of impulse
indicators to a model using a two-step process, and establish the null distribution in a
location-scale IID distribution.

Tests for structural change can also be based on recursive coefficient estimates and
recursive residuals. The CUSUM test of Brown, Durbin and Evans (1975) is based
on the cumulation of the sequence of 1-step forecast errors obtained by recursively
estimating the model. As shown by Krämer, Ploberger and Alt (1988) and discussed
by Stock (1994), the CUSUM test only has local asymptotic power against breaks in
non-zero mean regressors. Therefore, CUSUM test rejections are likely to signal more
specific forms of change than the sup tests. Unlike sup tests, CUSUM tests will not have
good local asymptotic power against H1(π) when (44) does not contain an intercept (so
that yt is zero-mean).

As well as testing for ‘non-stochastic’ structural change, one can test for randomly
time-varying coefficients. Nyblom (1989) tests against the alternative that the coeffi-
cients follow a random walk, and Breusch and Pagan (1979) against the alternative that
the coefficients are random draws from a distribution with a constant mean and finite
variance.

From a forecasting perspective, in-sample tests of parameter instability may be used
in a number of ways. The finding of instability may guide the selection of the window
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of data to be used for model estimation, or lead to the use of rolling windows of ob-
servations to allow for gradual change, or to the adoption of more flexible models, as
discussed in Sections 6 and 7.

As argued by Chu, Stinchcombe and White (1996), the ‘one shot’ tests discussed so
far may not be ideal in a real-time forecasting context as new data accrue. The tests are
designed to detect breaks on a given historical sample of a fixed size. Repeated applica-
tion of the tests as new data becomes available, or repeated application retrospectively
moving through the historical period, will result in the asymptotic size of the sequence
of tests approaching one if the null rejection frequency is held constant. Chu, Stinch-
combe and White (1996, p. 1047) illustrate with reference to the Ploberger, Krämer and
Kontrus (1989) retrospective fluctuation test. In the simplest case that {Yt } is an inde-
pendent sequence, the null of ‘stability in mean’ is H0: E[Yt ] = 0, t = 1, 2, . . . versus
H1: E[Yt ] 
= 0 for some t . For a given n,

FLn = max
k<n

σ−1
0

√
n(k/n)

∣∣∣∣∣1

k

k∑
t=1

yt

∣∣∣∣∣
is compared to a critical value c determined from the hitting probability of a Brownian
motion. But if FLn is implemented sequentially for n+1, n+2, . . . then the probability
of a type 1 error is one asymptotically. Similarly if a Chow test is repeatedly calculated
every time new observations become available.

Chu, Stinchcombe and White (1996) suggest monitoring procedures for CUSUM and
parameter fluctuation tests where the critical values are specified as boundary functions
such that they are crossed with the prescribed probability under H0. The CUSUM im-
plementation is as follows. Define

Q̃m
n = σ̂−1

m+n∑
i=m

ωi,

where m is the end of the historical period, so that monitoring starts at m+1, and n � 1.
The ωi are the recursive residuals, ωi = ε̂i/

√
υi , where ε̂i = yi − x′

i β̂ i−1, and

υi = 1 + x′
i

(
i−1∑
j=1

xj x′
j

)−1

xi ,

with

β̂ i =
(

i∑
j=1

xj x′
j

)−1( i∑
j=1

xj yj

)
,

for the model

yt = x′
tβ + εt ,
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where xt is k × 1, say, and Xj = (x1 . . . xj ), etc. σ̂ 2 is a consistent estimator of
E[ε2

t ] = σ 2. The boundary is given by

√
n + m − k

√
c + ln

(
n + m − k

m − k

)
(where c depends on the size of the test). Hence, beginning with n = 1, |Q̃m

n | is com-
pared to the boundary, and so on for n = 2, n = 3, etc. until |Q̃m

n | crosses the boundary,
signalling a rejection of the null hypothesis H0: β t = β for t = n + 1, n + 2, . . . . As
for the one-shot tests, rejection of the null may lead to an attempt to revise the model or
the adoption of a more ‘adaptable’ model.

5.2. Testing for level shifts in ARMA models

In addition to the tests for structural change in regression models, the literature on the
detection of outliers and level shifts in ARMA models [following on from Box and
Jenkins (1976)] is relevant from a forecasting perspective; see, inter alia, Tsay (1986,
1988), Chen and Tiao (1990), Chen and Liu (1993), Balke (1993), Junttila (2001), and
Sánchez and Peña (2003). In this tradition, ARMA models are viewed as being com-
posed of a ‘regular component’ and possibly a component which represents anomalous
exogenous shifts. The latter can be either outliers or permanent shifts in the level of the
process. The focus of the literature is on the problems caused by outliers and level shifts
on the identification and estimation of the ARMA model, viz., the regular component
of the model. The correct identification of level shifts will have an important bearing
on forecast performance. Methods of identifying the type and estimating the timing of
the exogenous shifts are aimed at ‘correcting’ the time series prior to estimating the
ARMA model, and often follow an iterative procedure. That is, the exogenous shifts are
determined conditional on a given ARMA model, the data are then corrected and the
ARMA model re-estimated, etc.; see Tsay (1988) [Balke (1993) provides a refinement]
and Chen and Liu (1993) for an approach that jointly estimates the ARMA model and
exogenous shifts.

Given an ARMA model

yt = f (t) + [
θ(L)

/
φ(L)

]
εt ,

where εt ∼ IN[0, σ 2
ε ], θ(L) = 1 − θ1L − · · · − θqLq , φ(L) = 1 − φ1L − · · · − φpLp,

then [θ(L)/φ(L)]εt is the regular component. For a single exogenous shift, let

f (t) = ω0

[
ω(L)

δ(L)

]
ξ

(d)
t ,

where ξ
(d)
t = 1 when t = d and ξ

(d)
t = 0 when t 
= d . The lag polynomials ω(L) and

δ(L) define the type of exogenous event. ω(L)/δ(L) = 1 corresponds to an additive
outlier (AO), whereby yd is ω0 higher than would be the case were the exogenous com-
ponent absent. When ω(L)/δ(L) = θ(L)/φ(L), we have an innovation outlier (IO).
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The model can be written as

yt = θ(L)

φ(L)

(
εt + ω0ξ

(d)
t

)
,

corresponding to the period d innovation being drawn from a Gaussian distribution with
mean ω0. Of particular interest from a forecasting perspective is when ω(L)/δ(L) =
(1 − L)−1, which represents a permanent level shift (LS):

yt = [
θ(L)

/
φ(L)

]
εt , t < d,

yt − ω0 = [
θ(L)

/
φ(L)

]
εt , t � d.

Letting π(L) = φ(L)/θ(L), we obtain the following residual series for the three speci-
fications of f (t):

IO: et = π(L)yt = ω0ξ
(d)
t + εt ,

AO: et = π(L)yt = ω0π(L)ξ
(d)
t + εt ,

LS: et = π(L)yt = ω0π(L)(1 − L)−1ξ
(d)
t + εt .

Hence the least-squares estimate of an IO at t = d can be obtained by regressing et on
ξ

(d)
t : this yields ω̂0,IO = et . Similarly, the least-squares estimate of an AO at t = d can

be obtained by regressing et on a variable that is zero for t < d , 1 for t = d , −πk for
t = d + k, k > 1, to give ω̂0,AO. Similarly for LS.

The standardized statistics:

IOs: τIO(d) = ω̂0,IO(d)/σ̂ε,

AOs: τAO(d) = (
ω̂0,AO(d)/σ̂ε

)√∑T
t=d

(
π(L)ξ

(d)
t

)2
,

LSs: τLS(d) = (
ω̂0,LS(d)/σ̂ε

)√∑T
t=d

(
π(L)(1 − L)−1ξ

(d)
t

)2

are discussed by Chan and Wei (1988) and Tsay (1988). They have approximately nor-
mal distributions. Given that d is unknown, as is the type of the shift, the suggestion is
to take:

τmax = max{τIO,max, τAO,max, τLS,max},
where τj,max = max1�d�T {τj (d)}, and compare this to a pre-specified critical value.
Exceedance implies an exogenous shift has occurred.

As φ(L) and θ(L) are unknown, these tests require a pre-estimate of the ARMA
model. Balke (1993) notes that when level shifts are present, the initial ARMA model
will be mis-specified, and that this may lead to level shifts being identified as IOs, as
well as reducing the power of the tests of LS.
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Suppose φ(L) = 1 − φL and θ(L) = 1, so that we have an AR(1), then in the
presence of an unmodeled level shift of size μ at time d , the estimate of φ is inconsistent:

(45)plim
T →∞

φ̂ = φ +
[

(1 − φ)μ2(T − d)d/T 2

σ 2
ε /(1 − φ2) + μ2(T − d)d/T 2

]
;

see, e.g., Rappoport and Reichlin (1989), Reichlin (1989), Chen and Tiao (1990), Perron
(1990), and Hendry and Neale (1991). Neglected structural breaks will give the appear-
ance of unit roots. Balke (1993) shows that the expected value of the τLS(d) statistic will
be substantially reduced for many combinations of values of the underlying parameters,
leading to a reduction in power.

The consequences for forecast performance are less clear-cut. The failure to detect
structural breaks in the mean of the series will be mitigated to some extent by the in-
duced ‘random-walk-like’ property of the estimated ARMA model. An empirical study
by Junttila (2001) finds that intervention dummies do not result in the expected gains in
terms of forecast performance when applied to a model of Finnish inflation.

With this background, we turn to detecting the breaks themselves when these occur
in-sample.

6. Model estimation and specification

6.1. Determination of estimation sample for a fixed specification

We assume that the break date is known, and consider the choice of the estimation
sample. In practice the break date will need to be estimated, and this will often be given
as a by-product of testing for a break at an unknown date, using one of the procedures
reviewed in Section 5. The remaining model parameters are estimated, and forecasts
generated, conditional on the estimated break point(s); see, e.g., Bai and Perron (1998).2

Consequently, the properties of the forecast errors will depend on the pre-test for the
break date. In the absence of formal frequentist analyses of this problem, we act as if
the break date were known.3

Suppose the DGP is given by

(46)yt+1 = 1(t�τ)β
′
1xt + (1 − 1(t�τ))β

′
2xt + ut+1

so that the pre-break observations are t = 1, . . . , τ , and the post-break t = τ+1, . . . , T .
There is a one-off change in all the slope parameters and the disturbance variance, from
σ 2

1 to σ 2
2 .

2 In the context of assessing the predictability of stock market returns, Pesaran and Timmermann (2002a)
choose an estimation window by determining the time of the most recent break using reversed ordered
CUSUM tests. The authors also determine the latest break using the method in Bai and Perron (1998).
3 Pastor and Stambaugh (2001) adopt a Bayesian approach that incorporates uncertainty about the locations

of the breaks, so their analysis does not treat estimates of breakpoints as true values and condition upon them.
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First, we suppose that the explanatory variables are strongly exogenous. Pesaran and
Timmermann (2002b) consider the choice of m, the first observation for the model es-
timation period, where m = τ + 1 corresponds to only using post-break observations.
Let Xm,T be the (T − m + 1) × k matrix of observations on the k explanatory variables
for the periods m to T (inclusive), Qm,T = X′

m,T Xm,T , and Ym,T and um,T contain the
latest T − m + 1 observations on y and u, respectively. The OLS estimator of β in

Ym,T = Xm,T β(m) + vm,T

is given by

β̂T (m) = Q−1
m,T X′

m,T Ym,T

= Q−1
m,T

(
X′

m,τ : X′
τ+1,T

) (
Ym,τ

Yτ+1,T

)
= Q−1

m,T Qm,τβ1 + Q−1
m,T Qτ+1,T β2 + Q−1

m,T X′
m,T um,T ,

where, e.g., Qm,τ is the second moment matrix formed from Xm,τ , etc. Thus β̂T (m) is
a weighted average of the pre and post-break parameter vectors. The forecast error is

eT +1 = yT +1 − β̂T (m)′xT

(47)= uT +1 + (β2 − β1)
′Qm,τ Q−1

m,T xT − u′
m,T Xm,T Q−1

m,T xT ,

where the second term is the bias that results from using pre-break observations, which
depends on the size of the shift δβ = (β2 − β1), amongst other things. The conditional
MSFE is

E
[
e2
T +1

∣∣ IT

] = σ 2
2 + (

δ′
βQm,τ Q−1

m,T xT

)2

(48)+ x′
T Q−1

m,T X′
m,T Dm,T Xm,T Q−1

m,T xT ,

where Dm,T = E[um,T u′
m,T ], a diagonal matrix with σ 2

1 in the first τ −m+ 1 elements,

and σ 2
2 in the remainder. When σ 2

2 = σ 2
1 = σ 2 (say), Dm,T is proportional to the identity

matrix, and the conditional MSFE simplifies to

E
[
e2
T +1

∣∣ IT

] = σ 2 + (
δ′
βQm,τ Q−1

m,T xT

)2 + σ 2x′
T Q−1

m,T xT .

Using only post-break observations corresponds to setting m = τ + 1. Since Qm,τ = 0
when m > τ , from (48) we obtain

E
[
e2
T +1

∣∣ IT

] = σ 2
2 + σ 2

2

(
x′
T Q−1

τ+1,T xT

)
since Dτ+1,T = σ 2

2 IT −τ .
Pesaran and Timmermann (2002b) consider k = 1 so that

(49)eT +1 = uT +1 + (β2 − β1)θmxT − vmxT ,
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where

θm = Qm,τ

Qm,T

=
∑τ

t=m x2
t−1∑T

t=m x2
t−1

and vm = u′
m,T Xm,T Q−1

m,T =
∑T

t=m utxt−1∑T
t=m x2

t−1

.

Then the conditional MSFE has a more readily interpretable form:

E
[
e2
T +1

∣∣ IT

] = σ 2
2 + σ 2

2 x2
T

(
σ 2

2 δ2
βθ2

m + ψθm + 1∑T
t=m x2

t−1

)
,

where ψ = (σ 2
1 − σ 2

2 )/σ 2
2 . So decreasing m (including more pre-break observations)

increases θm and therefore the squared bias (via σ 2
2 δ2

βθ2
m) but the overall effect on the

MSFE is unclear.
Including some pre-break observations is more likely to lower the MSFE the smaller

the break, |δβ |; when the variability increases after the break period, σ 2
2 > σ 2

1 , and the
fewer the number of post-break observations (the shorter the distance T −τ ). Given that
it is optimal to set m < τ + 1, the optimal window size m∗ is chose to satisfy

m∗ = argmin
m=1,...,τ+1

{
E
[
e2
T +1

∣∣ IT

]}
.

Unconditionally (i.e., on average across all values of xt ) the forecasts are unbiased
for all m when E[xt ] = 0. From (49):

(50)E[eT +1 | IT ] = (β2 − β1)θmxT − vmxT

so that

(51)E[eT +1] = E
(
E[eT +1 | IT ]) = (β2 − β1)θmE[xT ] − vmE[xT ] = 0.

The unconditional MSFE is given by

E
[
e2
T +1

] = σ 2 + ω2(β2 − β1)
2 ν1(ν1 + 2)

ν(ν + 2)
+ σ 2

ν − 2

for conditional mean breaks (σ 2
1 = σ 2

2 = σ 2) with zero-mean regressors, and where
E[x2

t ] = ω2 and ν1 = τ − m + 1, ν = T − m + 1.
The assumption that xt is distributed independently of all the disturbances {ut , t =

1, . . . , T } does not hold for autoregressive models. The forecast error remains uncon-
ditionally unbiased when the regressors are zero-mean, as is evident with E[xt ] = 0
in the case of k = 1 depicted in Equation (51), and consistent with the forecast-error
taxonomy in Section 2.1. Pesaran and Timmermann (2003) show that including pre-
break observations is more likely to improve forecasting performance than in the case
of fixed regressors because of the finite small-sample biases in the estimates of the para-
meters of autoregressive models. They conclude that employing an expanding window
of data may often be as good as employing a rolling window when there are breaks.
Including pre-break observations is more likely to reduce MSFEs when the degree of
persistence of the AR process declines after the break, and when the mean of the process
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is unaffected. A reduction in the degree of persistence may favor the use of pre-break
observations by offsetting the small-sample bias. The small-sample bias of the AR pa-
rameter in the AR(1) model is negative:

E
[
β̂1

] − β1 = −(1 + 3β1)

T
+ O

(
T −3/2)

so that the estimate of β1 based on post-break observations is on average below the true
value. The inclusion of pre-break observations will induce a positive bias (relative to
the true post-break value, β2). When the regressors are fixed, finite-sample biases are
absent and the inclusion of pre-break observations will cause bias, other things being
equal. Also see Chong (2001).

6.2. Updating

Rather than assuming that the break has occurred some time in the past, suppose that the
change happens close to the time that the forecasts are made, and may be of a continuous
nature. In these circumstances, parameter estimates held fixed for a sequence of fore-
cast origins will gradually depart from the underlying LDGP approximation. A moving
window seeks to offset that difficulty by excluding distant observations, whereas up-
dating seeks to ‘chase’ the changing parameters: more flexibly, ‘updating’ could allow
for re-selecting the model specification as well as re-estimating its parameters. Alter-
natively, the model’s parameters may be allowed to ‘drift’. An assumption sometimes
made in the empirical macro literature is that VAR parameters evolve as driftless random
walks (with zero-mean, constant-variance Gaussian innovations) subject to constraints
that rule out the parameters drifting into non-stationary regions [see Cogley and Sar-
gent (2001, 2005) for recent examples]. In modeling the equity premium, Pastor and
Stambaugh (2001) allow for parameter change by specifying a process that alternates
between ‘stable’ and ‘transition’ regimes. In their Bayesian approach, the timing of the
break points that define the regimes is uncertain, but the use of prior beliefs based on
economics (e.g., the relationship between the equity premium and volatility, and with
price changes) allows the current equity premium to be estimated. The next section notes
some other approaches where older observations are down weighted, or when only the
last few data points play a role in the forecast (as with double-differenced devices).

Here we note that there is evidence of the benefits of jointly re-selecting the model
specification and re-estimating its resulting parameters in Phillips (1994, 1995, 1996),
Schiff and Phillips (2000), and Swanson and White (1997), for example. However,
Stock and Watson (1996) find that the forecasting gains from time-varying coefficient
models appear to be rather modest. In a constant parameter world, estimation efficiency
dictates that all available information should be incorporated, so updating as new data
accrue is natural. Moreover, following a location shift, re-selection could allow an ad-
ditional unit root to be estimated to eliminate the break, and thereby reduce systematic
forecast failure, as noted at the end of Section 5.2; also see Osborn (2002, pp. 420–421)
for a related discussion in a seasonal context.
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7. Ad hoc forecasting devices

When there are structural breaks, forecasting methods which adapt quickly following
the break are most likely to avoid making systematic forecast errors in sequential real-
time forecasting. Using the tests for structural change discussed in Section 5, Stock and
Watson (1996) find evidence of widespread instability in the postwar US univariate and
bivariate macroeconomic relations that they study. A number of authors have noted that
empirical-accuracy studies of univariate time-series forecasting models and methods of-
ten favor ad hoc forecasting devices over properly specified statistical models [in this
context, often the ARMA models of Box and Jenkins (1976)].4 One explanation is the
failure of the assumption of parameter constancy, and the greater adaptivity of the fore-
casting devices. Various types of exponential smoothing (ES), such as damped trend
ES [see Gardner and McKenzie (1985)], tend to be competitive with ARMA models,
although it can be shown that ES only corresponds to the optimal forecasting device for
a specific ARMA model, namely the ARIMA(0, 1, 1) [see, for example, Harvey (1992,
Chapter 2)]. In this section, we consider a number of ad hoc forecasting methods and
assess their performance when there are breaks. The roles of parameter estimation up-
dating, rolling windows and time-varying parameter models have been considered in
Sections 6.1 and 6.2.

7.1. Exponential smoothing

We discuss exponential smoothing for variance processes, but the points made are
equally relevant for forecasting conditional means. The ARMA(1, 1) equation for u2

t

for the GARCH(1, 1) indicates that the forecast function will be closely related to ex-
ponential smoothing. Equation (17) has the interpretation that the conditional variance
will exceed the long-run (or unconditional) variance if last period’s squared returns
exceed the long-run variance and/or if last period’s conditional variance exceeds the
unconditional. Some straightforward algebra shows that the long-horizon forecasts ap-
proach σ 2. Writing (17) for σ 2

T +j , we have

σ 2
T +j − σ 2 = α

(
u2

T +j−1 − σ 2) + β
(
σ 2

T +j−1 − σ 2)
= α

(
σ 2

T +j−1ν
2
T +j−1 − σ 2) + β

(
σ 2

T +j−1 − σ 2).
Taking conditional expectations

σ 2
T +j |T − σ 2 = α

(
E
[
σ 2

T +j−1ν
2
T +j−1

∣∣ YT

] − σ 2) + β
(
E
[
σ 2

T +j−1

∣∣ YT

] − σ 2)
= (α + β)

(
E
[
σ 2

T +j−1

∣∣ YT

] − σ 2)
4 One of the earliest studies was Newbold and Granger (1974). Fildes and Makridakis (1995) and Fildes

and Ord (2002) report on the subsequent ‘M-competitions’, Makridakis and Hibon (2000) present the latest
‘M-competition’, and a number of commentaries appear in International Journal of Forecasting 17.
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using

E
[
σ 2

T +j−1ν
2
T +j−1

∣∣ YT

] = E
[
σ 2

T +j−1

∣∣ YT

]
E
[
ν2

T +j−1

∣∣ YT

] = E
[
σ 2

T +j−1

∣∣ YT

]
,

for j > 2. By backward substitution (j > 0),

σ 2
T +j |T − σ 2 = (α + β)j−1(σ 2

T +1 − σ 2)
(52)= (α + β)j−1[α(

u2
T − σ 2) + β

(
σ 2

T − σ 2)]
(given E[σ 2

T +1 | YT ] = σ 2
T +1). Therefore σ 2

T +j |T → σ 2 as j → ∞.
Contrast the EWMA formula for forecasting T + 1 based on YT :

σ̃ 2
T +1|T = 1∑∞

s=0 λs

(
u2

T + λu2
T −1 + λ2u2

T −2 + · · ·)
(53)= (1 − λ)

∞∑
s=0

λsu2
T −s ,

where λ ∈ (0, 1), so the largest weight is given to the most recent squared return, (1−λ),
and thereafter the weights decline exponentially. Rearranging gives

σ̃ 2
T +1|T = u2

T + λ
(
σ̃ 2

T |T −1 − u2
T

)
.

The forecast is equal to the squared return plus/minus the difference between the esti-
mate of the current-period variance and the squared return. Exponential smoothing cor-
responds to a restricted GARCH(1, 1) model with ω = 0 and α + β = (1 − λ) + λ = 1.
From a forecasting perspective, these restrictions give rise to an ARIMA(0, 1, 1) for u2

t

(see (16)). As an integrated process, the latest volatility estimate is extrapolated, and
there is no mean-reversion. Thus the exponential smoother will be more robust than the
GARCH(1, 1) model’s forecasts to breaks in σ 2 when λ is close to zero: there is no
tendency for a sequence of 1-step forecasts to move toward a long-run variance. When
σ 2 is constant (i.e., when there are no breaks in the long-run level of volatility) and
the conditional variance follows an ‘equilibrium’ GARCH process, this will be undesir-
able, but in the presence of shifts in σ 2 may avoid the systematic forecast errors from a
GARCH model correcting to an inappropriate equilibrium.

Empirically, the estimated value of α + β in (15) is often found to be close to 1, and
estimates of ω close to 0. α + β = 1 gives rise to the Integrated GARCH (IGARCH)
model. The IGARCH model may arise through the neglect of structural breaks in
GARCH models, paralleling the impact of shifts in autoregressive models of means,
as summarized in (45). For a number of daily stock return series, Lamoureux and Las-
trapes (1990) test standard GARCH models against GARCH models which allow for
structural change through the introduction of a number of dummy variables, although
Maddala and Li (1996) question the validity of their bootstrap tests.
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7.2. Intercept corrections

The widespread use of some macro-econometric forecasting practices, such as intercept
corrections (or residual adjustments), can be justified by structural change. Published
forecasts based on large-scale macro-econometric models often include adjustments for
the influence of anticipated events that are not explicitly incorporated in the specifi-
cation of the model. But in addition, as long ago as Marris (1954), the ‘mechanistic’
adherence to models in the generation of forecasts when the economic system changes
was questioned. The importance of adjusting purely model-based forecasts has been
recognized by a number of authors [see, inter alia, Theil (1961, p. 57), Klein (1971),
Klein, Howrey and MacCarthy (1974), and the sequence of reviews by the UK ESRC
Macroeconomic Modelling Bureau in Wallis et al. (1984, 1985, 1986, 1987), Turner
(1990), and Wallis and Whitley (1991)]. Improvements in forecast performance after
intercept correction (IC) have been documented by Wallis et al. (1986, Table 4.8, 1987,
Figures 4.3 and 4.4) and Wallis and Whitley (1991), inter alia.

To illustrate the effects of IC on the properties of forecasts, consider the simplest
adjustment to the VECM forecasts in Section 4.2, whereby the period T residual ν̂T =
xT − x̂T = (τ ∗

0 − τ 0) + (τ ∗
1 − τ 1)T + νT is used to adjust subsequent forecasts. Thus,

the adjusted forecasts are given by

(54)ẋT +h = τ 0 + τ 1(T + h) + ϒẋT +h−1 + ν̂T ,

where ẋT = xT , so that

(55)ẋT +h = x̂T +h +
h−1∑
i=0

ϒi ν̂T = x̂T +h + Ahν̂T .

Letting ν̂T +h denote the h-step ahead forecast error of the unadjusted forecast, ν̂T +h =
xT +h − x̂T +h, the conditional (and unconditional) expectation of the adjusted-forecast
error is

(56)E[ν̇T +h | xT ] = E[ν̂T +h − Ahν̂T ] = [hAh − Dh]
(
τ∗

1 − τ 1
)
,

where we have used

E[ν̂T ] = (
τ∗

0 − τ 0
) + (

τ ∗
1 − τ 1

)
T .

The adjustment strategy yields unbiased forecasts when τ ∗
1 = τ 1 irrespective of any

shift in τ 0. Even if the process remains unchanged there is no penalty in terms of bias
from intercept correcting. The cost of intercept correcting is in terms of increased un-
certainty. The forecast error variance for the type of IC discussed here is

(57)V[ν̇T +h] = 2V[ν̂T +h] +
h−1∑
j=0

h−1∑
i=0

ϒj�ϒi ′, j 
= i,
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which is more than double the conditional expectation forecast error variance,
V[ν̂T +h | xT ]. Clearly, there is a bias-variance trade-off: bias can be reduced at the
cost of an inflated forecast-error variance. Notice also that the second term in (57) is of
the order of h2, so that this trade-off should be more favorable to intercept correcting
at short horizons. Furthermore, basing ICs on averages of recent errors (rather than the
period T error alone) may provide more accurate estimates of the break and reduce the
inflation of the forecast-error variance. For a sufficiently large change in τ 0, the adjusted
forecasts will be more accurate than those of unadjusted forecasts on squared-error loss
measures. Detailed analyses of ICs can be found in Clements and Hendry (1996, 1998,
Chapter 8, 1999, Chapter 6).

7.3. Differencing

Section 4.3 considered the forecast performance of a DVAR relative to a VECM when
there were location shifts in the underlying process. Those two models are related by the
DVAR omitting the disequilibrium feedback of the VECM, rather than by a differencing
operator transforming the model used to forecast [see, e.g., Davidson et al. (1978)]. For
shifts in the equilibrium mean at the end of the estimation sample, the DVAR could out-
perform the VECM. Nevertheless, both models were susceptible to shifts in the growth
rate. Thus, a natural development is to consider differencing once more, to obtain a
DDVAR and a DVECM, neither of which includes any deterministic terms when linear
deterministic trends are the highest needed to characterize data.

The detailed algebra is presented in Hendry (2005), who shows that the simplest
double-differenced forecasting device, namely:

(58)�2xT +1|T = 0

can outperform in a range of circumstances, especially if the VECM omits important
explanatory variables and experiences location shifts. Indeed, the forecast-error vari-
ance of (58) need not be doubled by differencing, and could even be less than that
of the VECM, so (58) would outperform in both mean and variance. In that setting, the
DVECM will also do well, as (in the simplest case again) it augments (58) by αβ ′�xT −1
which transpires to be the most important observable component missing in (58), pro-
vided the parameters α and β do not change. For example, consider (25) when μ1 = 0,
then differencing all the terms in the VECM but retaining their parameter estimates
unaltered delivers

(59)�2xt = �γ + α�
(
β ′xt−1 − μ0

) + ξ t = αβ ′�xt−1 + ξ t .

Then (59) has no deterministic terms, so does not equilibrium correct, thereby reducing
the risks attached to forecasting after breaks. Although it will produce noisy forecasts,
smoothed variants are easily formulated. When there are no locations shifts, the ‘insur-
ance’ of differencing must worsen forecast accuracy and precision, but if location shifts
occur, differencing will pay.



Ch. 12: Forecasting with Breaks 635

7.4. Pooling

Forecast pooling is a venerable ad hoc method of improving forecasts; see, inter alia,
Bates and Granger (1969), Newbold and Granger (1974), Granger (1989), and Clements
and Galvão (2005); Diebold and Lopez (1996) and Newbold and Harvey (2002) provide
surveys, and Clemen (1989) an annotated bibliography. Combining individual forecasts
of the same event has often been found to deliver a smaller MSFE than any of the
individual forecasts. Simple rules for combining forecasts, such as averages, tend to
work as well as more elaborate rules based on past forecasting performance; see Stock
and Watson (1999) and Fildes and Ord (2002). Hendry and Clements (2004) suggest that
such an outcome may sometimes result from location shifts in the DGP differentially
affecting different models at different times. After each break, some previously well-
performing model does badly, certainly much worse than the combined forecast, so
eventually the combined forecast dominates on MSFE, even though at each point in
time, it was never the best.

An improved approach might be obtained by trying to predict which device is most
likely to forecast best at the relevant horizon, but the unpredictable nature of many
breaks makes its success unlikely – unless the breaks themselves can be forecast. In
particular, during quiescent periods, the DDV will do poorly, yet will prove a robust
predictor when a sudden change eventuates. Indeed, encompassing tests across models
would reveal the DDV to be dominated over ‘normal’ periods, so it cannot be established
that dominated models should be excluded from the pooling combination.

Extensions to combining density and interval forecasts have been proposed by, e.g.,
Granger, White and Kamstra (1989), Taylor and Bunn (1998), Wallis (2005), and Hall
and Mitchell (2005), inter alia.

8. Non-linear models

In previous sections, we have considered structural breaks in parametric linear dynamic
models. The break is viewed as a permanent change in the value of the parameter vector.
Non-linear models are characterized by dynamic properties that vary between two or
more regimes, or states, in a way that is endogenously determined by the model. For
example, non-linear models have been used extensively in empirical macroeconomics to
capture differences in dynamic behavior between the expansion and contraction phases
of the business cycle, and have also been applied to financial time series [see, inter alia,
Albert and Chib (1993), Diebold, Lee and Weinbach (1994), Goodwin (1993), Hamilton
(1994), Kähler and Marnet (1994), Kim (1994), Krolzig and Lütkepohl (1995), Krolzig
(1997), Lam (1990), McCulloch and Tsay (1994), Phillips (1991), Potter (1995), and
Tiao and Tsay (1994), as well as the collections edited by Barnett et al. (2000), and
Hamilton and Raj (2002)]. Treating a number of episodes of parameter instability in
a time series as non-random events representing permanent changes in the model will
have different implications for characterizing and understanding the behavior of the
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time series, as well as for forecasting, compared to treating the time series as being
governed by a non-linear model. Forecasts from non-linear models will depend on the
phase of the business cycle and will incorporate the possibility of a switch in regime
during the period being forecast, while forecasts from structural break models imply no
such changes during the future.5

Given the possibility of parameter instability due to non-linearities, the tests of para-
meter instability in linear dynamic models (reviewed in Section 5) will be misleading
if non-linearities cause rejections. Similarly, tests of non-linearities against the null of a
linear model may be driven by structural instabilities. Carrasco (2002) addresses these
issues, and we outline some of her main findings in Section 8.1. Noting the difficulties
of comparing non-linear and structural break models directly using classical techniques,
Koop and Potter (2000) advocate a Bayesian approach.

In Section 8.2, we compare forecasts from a non-linear model with those from a
structural break model.

8.1. Testing for non-linearity and structural change

The structural change (SC) and two non-linear regime-switching models can be cast in
a common framework as

yt = (μ0 + α1yt−1 + · · · + αpyt−p)

(60)+ (
μ∗

0 + α∗
1yt−1 + · · · + α∗

pyt−p

)
st + εt ,

where εt is IID[0, σ 2] and st is the indicator variable. When st = 1 (t � τ ), we have
an SC model in which potentially all the mean parameters undergo a one-off change
at some exogenous date, τ . The first non-linear model is the Markov-switching model
(MS). In the MS model, st is an unobservable and exogenously determined Markov
chain. In the 2-regime case, st takes the values of 1 and 0, defined by the transition
probabilities

(61)pij = Pr(st+1 = j | st = i),

1∑
j=0

pij = 1, ∀i, j ∈ {0, 1}.

The assumption of fixed transition probabilities pij can be relaxed [see, e.g., Diebold,
Rudebusch and Sichel (1993), Diebold, Lee and Weinbach (1994), Filardo (1994),
Lahiri and Wang (1994), and Durland and McCurdy (1994)] and the model can be
generalized to allow more than two states [e.g., Clements and Krolzig (1998, 2003)].

The second non-linear model is a self-exciting threshold autoregressive model
[SETAR; see, e.g., Tong (1983, 1995)] for which st = 1(yt−d�r), where d is a posi-

5 Pesaran, Pettenuzzo and Timmermann (2004) use a Bayesian approach to allow for structural breaks over
the forecast period when a variable has been subject to a number of distinct regimes in the past. Longer
horizon forecasts tend to be generated from parameters drawn from the ‘meta distribution’ rather than those
that characterize the latest regime.
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tive integer. That is, the regime depends on the value of the process d periods earlier
relative to a threshold r .

In Section 5, we noted that testing for a structural break is complicated by the struc-
tural break date τ being unknown – the timing of the change is a nuisance parameter
which is unidentified under the null that [μ∗

0 α∗
1 . . . α∗

p]′ = 0. For both the MS and SE-
TAR models, there are also nuisance parameters which are unidentified under the null
of linearity. For the MS model, these are the transition probabilities {pij }, and for the
SETAR model, the value of the threshold, r . Testing procedures for non-linear models
against the null of linearity have been developed by Chan (1990, 1991), Hansen (1992,
1996a), Garcia (1998), and Hansen (1996b).

The main findings of Carrasco (2002) can be summarized as:
(a) Tests of SC will have no power when the process is stationary, as in the case of

the MS and SETAR models [see Andrews (1993)] – this is demonstrated for the
‘sup’ tests.

(b) Tests of SETAR non-linearity will have asymptotic power of one when the
process is SC or MS (or SETAR), but only power against local alternatives which
are T 1/4, rather than the usual T 1/2.

Thus, tests of SC will not be useful in detecting parameter instability due to non-
linearity, whilst testing for SETAR non-linearity might be viewed as a portmanteau
pre-test of instability. Tests of SETAR non-linearity will not be able to detect small
changes.

8.2. Non-linear model forecasts

Of the two non-linear models, only the MS model minimum MSFE predictor can be
derived analytically, and we focus on forecasting with this model.6 To make matters
concrete, consider the original Hamilton (1989) model of the US business cycle. This
posits a fourth-order (p = 4) autoregression for the quarterly percentage change in US
real GNP {yt } from 1953 to 1984:

(62)yt − μ(st ) = α1
(
yt−1 − μ(st−1)

) + · · · + α4
(
yt−4 − μ(st−4)

) + ut ,

where εt ∼ IN[0, σ 2
ε ] and

(63)μ(st ) =
{
μ1 > 0 if st = 1 (‘expansion’ or ‘boom’),
μ0 < 0 if st = 0 (‘contraction’ or ‘recession’).

6 Exact analytical solutions are not available for multi-period forecasts from SETAR models. Exact numer-
ical solutions require sequences of numerical integrations [see, e.g., Tong (1995, §4.2.4 and §6.2)] based on
the Chapman–Kolmogorov relation. As an alternative, one might use Monte Carlo or bootstrapping [e.g., Tiao
and Tsay (1994) and Clements and Smith (1999)], particularly for high-order autoregressions, or the normal
forecast-error method (NFE) suggested by Al-Qassam and Lane (1989) for the exponential-autoregressive
model, and adapted by De Gooijer and De Bruin (1997) to forecasting with SETAR models. See also Chapter 8
by Teräsvirta in this Handbook.

http://dx.doi.org/10.1016/S1574-0706(05)01008-6
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Relative to (60), [α∗
1 . . . α∗

p] = 0 so that the autoregressive dynamics are constant
across regimes, and when p = 0 (no autoregressive dynamics) μ0 + μ∗

0 in (60) is equal
to μ1. The model (62) has a switching mean rather than intercept, so that for p > 0
the correspondence between the two sets of ‘deterministic’ terms is more complicated.
Maximum likelihood estimation of the model is by the EM algorithm [see Hamilton
(1990)].7

To obtain the minimum MSFE h-step predictor, we take the conditional expectation
of yT +h given YT = {yT , yT −1, . . .}. Letting ŷT +j |T = E[yT +j | YT ] gives rise to the
recursion

(64)ŷT +h|T = μ̂T +h|T +
4∑

k=1

αk(ŷT +h−k|T − μ̂T +h−k|T )

with ŷT +h|T = yT +h for h � 0 and where the predicted mean is given by

(65)μ̂T +h|T =
2∑

j=1

μj Pr(sT +h = j | YT ).

The predicted regime probabilities

Pr(sT +h = j | YT ) =
1∑

i=0

Pr(sT +h = j | sT = i) Pr(sT = i | YT )

only depend on the transition probabilities Pr(sT +h = j | sT +h−1 = i) = pij , i, j =
0, 1, and the filtered regime probabilities Pr(sT = i | YT ) [see, e.g., Hamilton (1989,
1990, 1993, 1994) for details].

The optimal predictor of the MS-AR model is linear in the last p observations and
the last regime inference. The optimal forecasting rule becomes linear in the limit when
Pr(st | st−1) = Pr(st ) for st , st−1 = 0, 1, since then Pr(sT +h = j | YT ) = Pr(st = j)

and from (65), μ̂T +h = μy , the unconditional mean of yt . Then

(66)ŷT +h|T = μy +
4∑

k=1

αk(ŷT +h−k|T − μy),

so to a first approximation, apart from differences arising from parameter estimation,
forecasts will match those from linear autoregressive models.

Further insight can be obtained by writing the MS process yt − μ(st ) as the sum of
two independent processes:

yt − μy = μt + zt ,

7 The EM algorithm of Dempster, Laird and Rubin (1977) is used because the observable time series depends
on the st , which are unobservable stochastic variables.
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such that E[μt ] = E[zt ] = 0. Assuming p = 1 for convenience, zt is

zt = αzt−1 + εt , εt ∼ IN
[
0, σ 2

ε

]
,

a linear autoregression with Gaussian disturbances. μt represents the contribution of the
Markov chain:

μt = (μ2 − μ1)ζt ,

where ζt = 1 − Pr(st = 0) if st = 0 and − Pr(st = 0) otherwise. Pr(st = 0) =
p10/(p10 + p01) is the unconditional probability of regime 0. Using the autoregressive
representation of a Markov chain:

ζt = (p11 + p00 − 1)ζt−1 + vt ,

then predictions of the hidden Markov chain are given by

ζ̂T +h|T = (p11 + p00 − 1)hζ̂T |T ,

where ζ̂T |T = E[ζT | YT ] = Pr(sT = 0 | YT ) − Pr(sT = 0) is the filtered probability
Pr(sT = 0 | YT ) of being in regime 0 corrected for the unconditional probability. Thus
ŷT +h|T − μy can be written as

ŷT +h|T − μy = μ̂T +h|T + ẑT +h|T
= (μ0 − μ1)(p00 + p11 − 1)hζ̂T |T

+ αh
[
yT − μy − (μ0 − μ1)ζ̂T |T

]
(67)= αh(yT − μy) + (μ0 − μ1)

[
(p00 + p11 − 1)h − αh

]
ζ̂T |T .

This expression shows how the difference between the MS model forecasts and forecasts
from a linear model depends on a number of characteristics such as the persistence of
{st }. Specifically, the first term is the optimal prediction rule for a linear model. The
contribution of the Markov regime-switching structure is given by the term multiplied
by ζ̂T |T , where ζ̂T |T contains the information about the most recent regime at the time
the forecast is made. Thus, the contribution of the non-linear part of (67) to the overall
forecast depends on both the magnitude of the regime shifts, |μ0 − μ1|, and on the
persistence of regime shifts p00 + p11 − 1 relative to the persistence of the Gaussian
process, given by α.

8.3. Empirical evidence

There are a large number of studies comparing the forecast performance of linear and
non-linear models. There is little evidence for the superiority of non-linear models
across the board. For example, Stock and Watson (1999) compare smooth-transition
models [see, e.g., Teräsvirta (1994)], neural nets [e.g., White (1992)], and linear autore-
gressive models for 215 US macro time series, and find mixed evidence – the non-linear
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models sometimes record small gains at short horizons, but at longer horizons the lin-
ear models are preferred. Swanson and White (1997) forecast nine US macro series
using a variety of fixed-specification linear and non-linear models, as well as flexible
specifications of these which allow the specification to vary as the in-sample period
is extended. They find little improvement from allowing for non-linearity within the
flexible-specification approach.

Other studies focus on a few series, of which US output growth is one of the most
popular. For example, Potter (1995) and Tiao and Tsay (1994) find that the forecast
performance of the SETAR model relative to a linear model is markedly improved when
the comparison is made in terms of how well the models forecast when the economy
is in recession. The reason is easily understood. Since a majority of the sample data
points (approximately 78%) fall in the upper regime, the linear AR(2) model will be
largely determined by these points, and will closely match the upper-regime SETAR
model. Thus the forecast performance of the two models will be broadly similar when
the economy is in the expansionary phase of the business cycle. However, to the extent
that the data points in the lower regime are characterized by a different process, there
will be gains to the SETAR model during the contractionary phase.

Clements and Krolzig (1998) use (67) to explain why MS models of post war US
output growth [such as those of Hamilton (1989)] do not forecast markedly more accu-
rately than linear autoregressions. Namely, they find that p00 + p11 − 1 = 0.65 in their
study, and that the largest root of the AR polynomial is 0.64. Because p00 +p11 −1 � α

in (67), the conditional expectation collapses to a linear prediction rule.

9. Forecasting UK unemployment after three crises

The times at which causal-model based forecasts are most valuable are when consider-
able change occurs. Unfortunately, that is precisely when causal models are most likely
to suffer forecast failure, and robust forecasting devices to outperform, at least rela-
tively. We are not suggesting that prior to any major change, some methods are better
at anticipating such shifts, nor that anyone could forecast the unpredictable: what we
are concerned with is that even some time after a shift, many model types, in particular
members of the equilibrium-correction class, will systematically mis-forecast.

To highlight this property, we consider three salient periods, namely the post-world-
war double-decades of 1919–1938 and 1948–1967, and the post oil-crisis double-decade
1975–1994, to examine forecasts of the UK unemployment rate (denoted Ur,t ). Figure 1
records the historical time-series of Ur,t from 1875 to 2001 within which our three
episodes lie. The data are discussed in detail in Hendry (2001), and the ‘structural’
equation for unemployment is taken from that paper.

The dramatically different epochs pre World War I (panel a), inter war (b), post World
War II (c), and post the oil crisis (d) are obvious visually as each panel unfolds. In (b)
there is an upward mean shift in 1920–1940. Panel (c) shows a downward mean shift and
lower variance for 1940–1980. In the last panel there is an upward mean shift and higher
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Figure 1. Shifts in unemployment.

variance from 1980 onwards. The unemployment rate time series seems distinctly non-
stationary from shifts in both mean and variance at different times, but equally does not
seem to have a unit root, albeit there is considerable persistence. Figure 2a records the
changes in the unemployment rate.

The difficulty in forecasting after the three breaks is only partly because the preceding
empirical evidence offers little guidance as to the subsequent behavior of the time series
at each episode, since some ‘naive’ methods do not have great problems after breaks.
Rather, it is the lack of adaptability of a forecasting device which seems to be the culprit.

The model derives the disequilibrium unemployment rate (denoted Ud
t ) as a positive

function of the difference between Ur,t and the real interest rate (Rl,t − �pt ) minus
the real growth rate (�yt ). Then Ur,t and (Rl,t − �pt − �yt) = Rr

t are ‘cointegrated’
[using the PcGive test, tc = −3.9∗∗; see Banerjee and Hendry (1992) and Ericsson and
MacKinnon (2002)], or more probably, co-breaking [see Clements and Hendry (1999)
and Hendry and Massmann (2006)]. Figure 2b plots the time series of Rr

t . The derived
excess-demand for labor measure, Ud

t , is the long-run solution from an AD(2, 1) of Ur,t

on Rr
t with σ̂ = 0.012, namely,

(68)
Ud

t = Ur,t − 0.05
(0.01)

− 0.82
(0.22)

Rr
t ,

T = 1875–2001.
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Figure 2. Unemployment with fitted values, (Rl,t − �pt − �yt ), and excess demand for labor.

The derived mean equilibrium unemployment is slightly above the historical sample
average of 4.8%. Ud

t is recorded in Figure 2d.
Technically, given (68), a forecasting model for Ur,t becomes a four-dimensional

system for Ur,t , Rl,t , �pt , and �yt , but these in turn depend on other variables, rapidly
leading to a large system. Instead, since the primary interest is illustrating forecasts from
the equation for unemployment, we have chosen just to model Ur,t and Rr

t as a bivariate
VAR, with the restrictions implied by that formulation. That system was converted to
an equilibrium-correction model (VECM) with the long-run solution given by (68) and
Rr = 0. The full-sample FIML estimates from PcGive [see Hendry and Doornik (2001)]
till 1991 were

�Ur,t = 0.24
(0.07)

�Rr
t − 0.14

(0.037)
Ud

t−1 + 0.16
(0.078)

�Ur,t−1,

(69)
�Rr

t = − 0.43
(0.077)

Rr
t−1,

σ̂Ur = 1.27%, σ̂Rr = 4.65%, T = 1875–1991,

χ2
nd(4) = 76.2∗∗, Far(8, 218) = 0.81, Fhet(27, 298) = 1.17.

In (69), σ̂ denotes the residual standard deviation, and coefficient standard errors are
shown in parentheses. The diagnostic tests are of the form Fj (k, T − l) which denotes
an approximate F-test against the alternative hypothesis j for: second-order vector serial
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correlation [Far, see Guilkey (1974)] vector heteroskedasticity [Fhet, see White (1980)];
and a chi-squared test for joint normality [χ2

nd(4), see Doornik and Hansen (1994)].
∗ and ∗∗ denote significance at the 5% and 1% levels, respectively. All coefficients are
significant with sensible signs and magnitudes, and the first equation is close to the OLS
estimated model used in Hendry (2001). The likelihood ratio test of over-identifying
restrictions of the VECM against the initial VAR yielded χ2

Id(8) = 2.09. Figure 2c
records the fitted values from the dynamic model in (69).

9.1. Forecasting 1992–2001

We begin with genuine ex ante forecasts. Since the model was selected from the sam-
ple T = 1875–1991, there are 10 new annual observations available since publication
that can be used for forecast evaluation. This decade is picked purely because it is
the last; there was in fact one major event, albeit not quite on the scale of the other
three episodes to be considered, namely the ejection of the UK from the exchange rate
mechanism (ERM) in the autumn of 1992, just at the forecast origin. Nevertheless, by
historical standards the period transpired to be benign, and almost any method would
have avoided forecast failure over this sample, including those considered here. In fact,
the 1-step forecast test over 10 periods for (69), denoted FChow [see Chow (1960)],
delivered FChow(20, 114) = 0.15, consistent with parameter constancy over the post-
selection decade. Figure 3 shows the graphical output for 1-step and 10-step forecasts

Figure 3. VECM 1-step and 10-step forecasts of Ur,t and Rr
t , 1992–2001.
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Figure 4. DVECM 1-step forecasts of Ur,t , Rr
t , and 10-step forecasts of �2Ur,t , �2Rr

t , 1992–2001.

of Ur,t and Rr
t over 1992–2001. As can be seen, all the outcomes lie well inside the

interval forecasts (shown as ±2σ̂f ) for both sets of forecasts. Notice the equilibrium-
correction behavior manifest in the 10-step forecasts, as Ur converges to 0.05 and Rr

to 0: such must occur, independently of the outcomes for Ur,t and Rr
t .

On all these criteria, the outcome is successful on the out-of-selection-sample evalu-
ation. While far from definitive, as shown in Clements and Hendry (2005), these results
demonstrate that the model merits its more intensive scrutiny over the three salient his-
torical episodes.

By way of comparison, we also record the corresponding forecasts from the differ-
enced models discussed in Section 7.3. First, we consider the VECM (denoted DVECM)
which maintains the parameter estimates, but differences all the variables [see Hendry
(2005)]. Figure 4 shows the graphical output for 1-step forecasts of Ur,t and Rr

t and
the 10-step forecasts of �2Ur,t and �2Rr

t over 1992–2001 (throughout, the interval
forecasts for multi-step forecasts from mis-specified models are not adjusted for the –
unknown – mis-specification). In fact, there was little discernible difference between the
forecasts produced by the DVECM and those from a double-difference VAR [DDVAR,
see Clements and Hendry (1999) and Section 7.3].

The 1-step forecasts are close to those from the VECM, but the entailed multi-step
levels forecasts from the DVECM are poor, as the rise in unemployment prior to the
forecast origin turns to a fall throughout the remainder of the period, but the forecasts
continue to rise: there is no free lunch when insuring against forecast failure.
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Figure 5. VECM 1-step and 10-step forecasts of Ur,t and Rr
t , 1919–1938.

9.2. Forecasting 1919–1938

Over this sample, FChow(40, 41) = 2.81∗∗, strongly rejecting the model re-estimated,
but not re-selected, up to 1918. The graphs in Figure 5 confirm the forecast failure, for
both 1-step and 10-step forecasts of Ur,t and Rr

t . As well as missing the post-World-
War I dramatic rise in unemployment, there is systematic under-forecasting throughout
the Great Depression period, consistent with failing to forecast the substantial increase
in Rr

t on both occasions. Nevertheless, the results are far from catastrophic in the face
of such a large, systematic, and historically unprecedented, rise in unemployment.

Again using our comparator of the DVECM, Figure 6 shows the 1-step forecasts,
with a longer historical sample to highlight the substantial forecast-period change (the
entailed multi-step levels’ forecasts are poor). Despite the noticeable level shift in Ur,t ,
the differenced model forecasts are only a little better initially, overshooting badly after
the initial rise, but perform well over the Great Depression, which is forecasting long
after the earlier break. FChow(40, 42) = 2.12∗∗ is slightly smaller overall despite the
initial ‘bounce’.

9.3. Forecasting 1948–1967

The model copes well with the post-World-War II low level of unemployment, with
FChow(40, 70) = 0.16, with the outcomes shown in Figure 7. However, there is sys-
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Figure 6. DVECM 1-step forecasts of Ur,t and Rr
t , 1919–1938.

Figure 7. VECM 1-step and 10-step forecasts of Ur,t and Rr
t , 1948–1967.
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Figure 8. VECM 1-step and 10-step forecasts of Ur,t and Rr
t , 1975–1994.

tematic over-forecasting of the level of unemployment, unsurprisingly given its excep-
tionally low level. The graph here emphasizes the equilibrium-correction behavior of
Ur converging to 0.05 even though the outcome is now centered around 1.5%. The
DVECM delivers FChow(40, 71) = 0.12 so is closely similar. The forecasts are also
little different, although the forecast intervals are somewhat wider.

9.4. Forecasting 1975–1994

Finally, after the first oil crisis, we find FChow(40, 97) = 0.61, so surprisingly no fore-
cast failure results, although the outcomes are poor as Figure 8 shows for both 1-step
and 10-step forecasts of Ur,t and Rr

t . There is systematic under-forecasting of the level
of unemployment, but the trend is correctly discerned as upwards. Over this period,
FChow(40, 98) = 0.53 for the DVECM, so again there is little impact from removing
the equilibrium-correction term.

9.5. Overview

Despite the manifest non-stationarity of the UK unemployment rate over the last century
and a quarter, with location and variance shifts evident in the historical data, the em-
pirical forecasting models considered here only suffered forecast failure occasionally,
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although they were often systematically adrift, under- or over-forecasting. The differ-
enced VECM did not perform much better even when the VECM failed. A possible
explanation may be the absence of deterministic components from the VECM in (69)
other than that embedded in the long-run for unemployment. Since σ̂Ur = 1.27%,
a 95% forecast interval spans just over 5% points of unemployment so larger shifts
are needed to reject the model.

It is difficult to imagine how well real-time forecasting might have performed his-
torically: the large rise in unemployment during 1919–1920 seems to have been unan-
ticipated at the time, and induced real hardship, leading to considerable social unrest.
Conversely, while the Beveridge Report (Social Insurance and Allied Services, HMSO,
1942, followed by his Full Employment in a Free Society and The Economics of Full
Employment, both in 1944) essentially mandated UK Governments to keep a low level
of unemployment using Keynesian policies, nevertheless the outturn of 1.5% on average
over 1946–1966 was unprecedented. And the Thatcher reforms of 1979 led to an unex-
pectedly large upturn in unemployment, commensurate with inter-war levels. Since the
historical period delivered many unanticipated ‘structural breaks’, across many very dif-
ferent policy regimes (from the Gold Standard, floating, Bretton Woods currency pegs,
back to a ‘dirty’ floating – just to note exchange-rate regimes), overall, the forecasting
performance of the unemployment model considered here is really quite creditable.

10. Concluding remarks

Structural breaks in the form of unforeseen location shifts are likely to lead to sys-
tematic forecast biases. Other factors matter, as shown in the various taxonomies of
forecast errors above, but breaks play a dominant role. The vast majority of forecast-
ing models in regular use are members of the equilibrium-correction class, including
VARs, VECMs, and DSGEs, as well as many popular models of conditional variance
processes. Other types of models might be more robust to breaks. We have also noted
issues to do with the choice of estimation sample, and the updating of the models’ para-
meter estimates and of the model specification, as possible ways of mitigating the effects
of some types of breaks. Some ad hoc forecasting devices exhibit greater adaptability
than standard models, which may account for their successes in empirical forecasting
competitions. Finally, we have contrasted non-constancies due to breaks with those due
to non-linearities.

Appendix A: Taxonomy derivations for Equation (10)

We let δϕ = ϕ̂ − ϕp, where ϕp = (In − �p)−1φp, δΠ = �̂ − �p, and ŷT − yT = δy .
First, we use the approximation:

(A.1)�̂
h = (�p + δΠ)h � �h

p +
h−1∑
i=0

�i
pδΠ�h−i−1

p � �h
p + Ch.
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Let (·)ν denote a vectorizing operator which stacks the columns of an m × n matrix A
in an mn × 1 vector a, after which (a)ν = a. Also, let ⊗ be the associated Kronecker
product, so that when B is p × q, then A ⊗ B is an mp × nq matrix of the form {bij A}.
Consequently, when ABC is defined,

(ABC)ν = (
A ⊗ C′)Bν .

Using these, from (A.1),

Ch(yT − ϕp) = (
Ch(yT − ϕp)

)ν

=
(

h−1∑
i=0

�i
p ⊗ (yT − ϕp)′�h−i−1 ′

p

)
δν
Π

(A.2)� Fhδ
ν
Π .

To highlight components due to different effects (parameter change, estimation incon-
sistency, and estimation uncertainty), we decompose the term (�∗)h(yT − ϕ∗) into(

�∗)h(yT − ϕ∗) = (
�∗)h

(yT − ϕ) + (
�∗)h(

ϕ − ϕ∗),
whereas �̂

h
(ŷT − ϕ̂) equals(

�h
p + Ch

)
δy − (ϕ̂ − ϕp) + (yT − ϕp)

= (
�h

p + Ch

)
δy − (

�h
p + Ch

)
δϕ + (

�h
p + Ch

)
(yT − ϕp)

�
(
�h

p + Ch

)
δy − (

�h
p + Ch

)
δϕ + Fhδ

ν
Π + �h

p(yT − ϕ) − �h
p(ϕp − ϕ).

Thus, (�∗)h(yT − ϕ∗) − �̂
h
(ŷT − ϕ̂) yields

(A.3)
((

�∗)h − �h
p

)
(yT − ϕ) − Fhδ

ν
Π − (

�h
p + Ch

)
δy

− (
�∗)h(

ϕ∗ − ϕ
) + �h

p(ϕp − ϕ) + (
�h

p + Ch

)
δϕ.

The interaction Chδϕ is like a ‘covariance’, but is omitted from the table. Hence (A.3)
becomes((

�∗)h − �h
)
(yT − ϕ) + (

�h − �h
p

)
(yT − ϕ)

− (
�∗)h(

ϕ∗ − ϕ
) + �h

p(ϕp − ϕ)

− (
�h

p + Ch

)
δy − Fhδ

ν
Π + �h

pδϕ.

The first and third rows have expectations of zero, so the second row collects the ‘non-
central’ terms.

Finally, for the term ϕ∗ − ϕ̂ we have (on the same principle):(
ϕ∗ − ϕ

) + (ϕ − ϕp) − δϕ.
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Appendix B: Derivations for Section 4.3

Since ϒ = In + αβ ′, for j > 0,

ϒj = (
In + αβ ′)j = ϒj−1(In + αβ ′) = ϒj−1 + ϒj−1αβ ′ = · · ·

(B.1)= In +
j−1∑
i=0

ϒiαβ ′,

so

(B.2)
(
ϒj − In

) =
j−1∑
i=0

ϒiαβ ′ = Ajαβ ′

defines Aj = ∑j−1
i=0 ϒi . Thus,

(B.3)E
[(

ϒj − In

)
wT

] = AjαE
[
β ′xT

] = Ajαf T ,

where fT = E[β ′xT ] = μa
0 + β ′γ a(T + 1), say, where the values of μa

0 = μ0 and
γ a = γ if the change occurs after period T , and μa

0 = μ∗
0 and γ a = γ ∗ if the change

occurs before period T .
Substituting from (B.3) into (34):

(B.4)E[ν̃T +j ] =
j−1∑
i=0

ϒi
[
γ ∗ − αμ∗

0 − αμ∗
1(T + j − i)

] − jγ + Ajαf T .

From (B.1), as ϒ i = In + Aiαβ ′,

(B.5)Aj =
j−1∑
k=0

ϒk =
j−1∑
k=0

(
In + Akαβ ′) = jIn +

(
j−1∑
k=0

Ak

)
αβ ′ = jIn + Bjαβ ′.

Thus from (B.4), since β ′γ = μ1 and β ′γ ∗ = μ∗
1,

E[ν̃T +j ] = Ajγ
∗ − Ajαμ∗

0 − Ajαβ ′γ ∗(T + j) +
j−1∑
i=1

iϒ iαβ ′γ ∗ − jγ

+ Ajαf T

= j
(
γ ∗ − γ

) + Ajαf T − μ∗
0 − β ′γ ∗T

+
(

j−1∑
i=1

iϒ i − jAj + Bj

)
αβ ′γ ∗

= j
(
γ ∗ − γ

) + Ajα
(
μa

0 − μ∗
0 − β ′[γ ∗ − γ a

]
(T + 1)

)
(B.6)+ Cjαβ ′γ ∗,
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where Cj = (Dj + Bj − (j − 1)Aj ) when Dj = ∑j−1
i=1 iϒ i . However, Cjαβ ′ = 0 as

follows. Since ϒj = In + Ajαβ ′ from (B.2), then

jAjαβ ′ = jϒj − jIn,

and so eliminating jIn using (B.5):

(Bj − jAj )αβ ′ = Aj − jϒj .

Also,

Dj =
j∑

i=1

iϒi − jϒj =
j∑

i=1

ϒi − jϒj +
(

j−1∑
i=1

iϒ i

)
ϒ = Ajϒ − jϒj + Djϒ.

Since ϒ = In + αβ ′,

Djαβ ′ = jϒj − Aj − Ajαβ ′.

Combining these results,

Cjαβ ′ = (
Dj + Bj − (j − 1)Aj

)
αβ ′

(B.7)= jϒj − Aj − Ajαβ ′ + Aj − jϒj + Ajαβ ′ = 0.
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