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Dynamic Consumption Theory

Optimizing models of intertemporal choices are widely used by theoretical and

empirical studies of consumption. This chapter outlines their basic analytical struc-

ture, along with some extensions. The technical tools introduced here aim at

familiarizing the reader with recent applied work on consumption and saving, but

they will also prove useful in the rest of the book, when we shall study investment

and other topics in economic dynamics.

The chapter is organized as follows. Section 1.1 illustrates and solves the basic

version of the intertemporal consumption choice model, deriving theoretical

relationships between the dynamics of permanent income, current income, con-

sumption, and saving. Section 1.2 discusses problems raised by empirical tests of

the theory, focusing on the excess sensitivity of consumption to expected income

changes and on the excess smoothness of consumption following unexpected income

variations. Explanations of the empirical evidence are offered by Section 1.3, which

extends the basic model by introducing a precautionary saving motive. Section 1.4

derives the implications of optimal portfolio allocation for joint determination of

optimal consumption when risky financial assets are available. The Appendix briefly

introduces dynamic programming techniques applied to the optimal consump-

tion choice. Bibliographic references and suggestions for further reading bring the

chapter to a close.

1.1 Permanent Income and Optimal Consumption

The basic model used in the modern literature on consumption and saving

choices is based on two main assumptions:

1. Identical economic agents maximize an intertemporal utility function,

defined on the consumption levels in each period of the optimization

horizon, subject to the constraint given by overall available resources.
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2. Under uncertainty, the maximization is based on expectations of future

relevant variables (for example, income and the rate of interest)

formed rationally by agents, who use optimally all information at their

disposal.

We will therefore study the optimal behavior of a representative agent who

lives in an uncertain environment and has rational expectations. Implications

of the theoretical model will then be used to interpret aggregate data. The

representative consumer faces an infinite horizon (like any aggregate econ-

omy), and solves at time t an intertemporal choice problem of the following

general form:

max
{ct+i ;i=0,1,... }

U (ct , ct+1, . . . ) ≡ Ut ,

subject to the constraint (for i = 0, . . . , ∞)

At+i+1 = (1 + rt+i) At+i + yt+i − ct+i,

where At+i is the stock of financial wealth at the beginning of period t + i; rt+i

is the real rate of return on financial assets in period t + i; yt+i is labor income

earned at the end of period t + i, and ct+i is consumption, also assumed to

take place at the end of the period. The constraint therefore accounts for the

evolution of the consumer’s financial wealth from one period to the next.

Several assumptions are often made in order easily to derive empirically

testable implications from the basic model. The main assumptions (some of

which will be relaxed later) are as follows.

• Intertemporal separability (or additivity over time) The generic utility function

Ut ( · ) is specified as

Ut (ct , ct+1, . . . ) = vt (ct ) + vt+1(ct+1) + . . .

(with v′
t+i > 0 and v′′

t+i < 0 for any i ≥ 0), where vt+i(ct+i) is the valuation at

t of the utility accruing to the agent from consumption ct+i at t + i. Since

vt+i depends only on consumption at t + i, the ratio of marginal utilities

of consumption in any two periods is independent of consumption in any

other period. This rules out goods whose effects on utility last for more than

one period, either because the goods themselves are durable, or because

their consumption creates long-lasting habits. (Habit formation phenomena

will be discussed at the end of this chapter.)

• A way of discounting utility in future periods that guarantees intertemporally

consistent choices. Dynamic inconsistencies arise when the valuation at time

t of the relative utility of consumption in any two future periods, t +k1 and

t+k2 (with t < t+k1 < t+k2 ), differs from the valuation of the same relative
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utility at a different time t+i. In this case the optimal levels of consumption

for t +k1 and t +k2 originally chosen at t may not be considered optimal at

some later date: the consumer would then wish to reconsider his original

choices simply because time has passed, even if no new information has

become available. To rule out this phenomenon, it is necessary that the

ratios of discounted marginal utilities of consumption in t + k1 and t + k2

depend, in addition to ct+k1
and ct+k2

, only on the distance k2 − k1, and

not also on the moment in time when the optimization problem is solved.

With a discount factor for the utility of consumption in t + k of the form

(1 + ρ)−k (called “exponential discounting”), we can write

vt+k(ct+k) =

(

1

1 + ρ

)k

u(ct+k),

and dynamic consistency of preferences is ensured: under certainty, the

agent may choose the optimal consumption plan once and for all at the

beginning of his planning horizon.1

• The adoption of expected utility as the objective function under uncertainty (addi-

tivity over states of nature) In discrete time, a stochastic process specifies a

random variable for each date t , that is a real number associated to the

realization of a state of nature. If it is possible to give a probability to differ-

ent states of nature, it is also possible to construct an expectation of future

income, weighting each possible level of income with the probability of

the associated state of nature. In general, the probabilities used depend on

available information, and therefore change over time when new informa-

tion is made available. Given her information set at t , It , the consumer

maximizes expected utility conditional on It : Ut = E
(
∑∞

i=0 vt+i(ct+i) | It

)

.

Together with the assumption of intertemporal separability (additivity over

periods of time), the adoption of expected utility entails an inverse rela-

tionship between the degree of intertemporal substitutability, measuring

the agent’s propensity to substitute current consumption with future con-

sumption under certainty, and risk aversion, determining the agent’s choices

among different consumption levels under uncertainty over the state of

nature: the latter, and the inverse of the former, are both measured in

absolute terms by −v′′
t (c)/v′

t (c) at time t and for consumption level c. (We

will expand on this point on page 6.)

1 A strand of the recent literature (see the last section of this chapter for references) has explored

the implications of a different discount function: a “hyperbolic”discount factor declines at a

relatively higher rate in the short run (consumers are relatively “impatient” at short horizons)

than in the long run (consumers are “patient” at long horizons, implying dynamic inconsistent

preferences).
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• Finally, we make the simplifying assumption that there exists only one

financial asset with certain and constant rate of return r. Financial wealth

A is the stock of the safe asset allowing the agent to transfer resources

through time in a perfectly forecastable way; the only uncertainty is on

the (exogenously given) future labor incomes y. Stochastic rates of return

on n financial assets are introduced in Section 1.4 below.

Under the set of hypotheses above, the consumer’s problem may be specified

as follows:

max
{ct+i ,i=0,1,... }

Ut = Et

[

∞
∑

i=0

(

1

1 + ρ

)i

u(ct+i)

]

(1.1)

subject to the constraint (for i = 0, . . . , ∞):2

At+i+1 = (1 + r)At+i + yt+i − ct+i, At given. (1.2)

In (1.1) ρ is the consumer’s intertemporal rate of time preference and Et [·] is

the (rational) expectation formed using information available at t : for a generic

variable xt+i we have Etxt+i = E(xt+i | It ). The hypothesis of rational expect-

ations implies that the forecast error xt+i − E(xt+i | It ) is uncorrelated with the

variables in the information set It : Et (xt+i − E(xt+i | It )) = 0 (we will often use

this property below). The value of current income yt in included in It .

In the constraint (1.2) financial wealth A may be negative (the agent is not

liquidity-constrained); however, we impose the restriction that the consumer’s

debt cannot grow at a rate greater than the financial return r by means of the

following condition (known as the no-Ponzi-game condition):

lim
j→∞

(

1

1 + r

)j

At+j ≥ 0. (1.3)

The condition in (1.3) is equivalent, in the infinite-horizon case, to the non-

negativity constraint AT+1 ≥ 0 for an agent with a life lasting until period T :

in the absence of such a constraint, the consumer would borrow to finance

infinitely large consumption levels. Although in its general formulation (1.3) is

an inequality, if marginal utility of consumption is always positive this condi-

tion will be satisfied as an equality. Equation (1.3) with strict equality is called

transversality condition and can be directly used in the problem’s solution.

Similarly, without imposing (1.3), interests on debt could be paid for by fur-

ther borrowing on an infinite horizon. Formally, from the budget constraint

(1.2) at time t , repeatedly substituting At+i up to period t + j, we get the

2 In addition, a non-negativity constraint on consumption must be imposed: ct+i ≥ 0. We

assume that this constraint is always fulfilled.
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following equation:

1

1 + r

j−1
∑

i=0

(

1

1 + r

)i

ct+i +

(

1

1 + r

)j

At+j =
1

1 + r

j−1
∑

i=0

(

1

1 + r

)i

yt+i + At .

The present value of consumption flows from t up to t + j − 1 can exceed the

consumer’s total available resources, given by the sum of the initial financial

wealth At and the present value of future labor incomes from t up to t + j − 1.

In this case At+j < 0 and the consumer will have a stock of debt at the begin-

ning of period t + j. When the horizon is extended to infinity, the constraint

(1.3) stops the agent from consuming more than his lifetime resources, using

further borrowing to pay the interests on the existing debt in any period up to

infinity. Assuming an infinite horizon and using (1.3) with equality, we get the

consumer’s intertemporal budget constraint at the beginning of period t (in the

absence of liquidity constraints that would rule out, or limit, borrowing):

1

1 + r

∞
∑

i=0

(

1

1 + r

)i

ct+i =
1

1 + r

∞
∑

i=0

(

1

1 + r

)i

yt+i + At . (1.4)

1.1.1 Optimal consumption dynamics

Substituting the consumption level derived from the budget constraint (1.2)

into the utility function, we can write the consumer’s problem as

max Ut = Et

∞
∑

i=0

(

1

1 + ρ

)i

u
(

(1 + r)At+i − At+i+1 + yt+i

)

with respect to wealth At+i for i = 1, 2, . . . , given initial wealth At and subject

to the transversality condition derived from (1.3). The first-order conditions

Et u′(ct+i) =
1 + r

1 + ρ
Et u′(ct+i+1)

are necessary and sufficient if utility u(c) is an increasing and concave function

of consumption (i.e. if u′(c) > 0 and u′′(c) < 0). For the consumer’s choice in

the first period (when i = 0), noting that u′(ct ) is known at time t , we get the

so-called Euler equation:

u′(ct ) =
1 + r

1 + ρ
Etu

′(ct+1). (1.5)

At the optimum the agent is indifferent between consuming immediately one

unit of the good, with marginal utility u′(ct ), and saving in order to consume

1 + r units in the next period, t + 1. The same reasoning applies to any period t
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in which the optimization problem is solved: the Euler equation gives the

dynamics of marginal utility in any two successive periods.3

The evolution over time of marginal utility and consumption is governed

by the difference between the rate of return r and the intertemporal rate of

time preference ρ. Since u′′(ct ) < 0, lower consumption yields higher marginal

utility: if r > ρ, the consumer will find it optimal to increase consumption over

time, exploiting a return on saving higher than the utility discount rate; when

r = ρ, optimal consumption is constant, and when r < ρ it is decreasing. The

shape of marginal utility as a function of c (i.e. the concavity of the utility

function) determines the magnitude of the effect of r − ρ on the time path

of consumption: if |u′′(c)| is large relative to u′(c), large variations of marginal

utility are associated with relatively small fluctuations in consumption, and

then optimal consumption shows little changes over time even when the rate

of return differs substantially from the utility discount rate.

Also, the agent’s degree of risk aversion is determined by the concavity of the

utility function. It has been already mentioned that our assumptions on pref-

erences imply a negative relationship between risk aversion and intertemporal

substitutability (where the latter measures the change in consumption between

two successive periods owing to the difference between r and ρ or, if r is not

constant, to changes in the rate of return). It is easy to find such relationship

for the case of a CRRA (constant relative risk aversion) utility function, namely:

u(ct ) =
c

1−γ

t − 1

1 − γ
, γ > 0,

with u′(c) = c−γ . The degree of relative risk aversion—whose general measure

is the absolute value of the elasticity of marginal utility, −u′′(c) c/u′(c)—is in

3 An equivalent solution of the problem is found by maximizing the Lagrangian function:

Lt = Et

∞
∑

i=0

(

1

1 + ρ

)i

u(ct+i)

− λ

[

∞
∑

i=0

(

1

1 + r

)i

Et ct+i − (1 + r)At −

∞
∑

i=0

(

1

1 + r

)i

Et yt+i

]

,

where λ is the Lagrange multiplier associated with the intertemporal budget constraint (here

evaluated at the end of period t). From the first-order conditions for ct and ct+1, we derive the

Euler equation (1.5). In addition, we get u′(ct ) = λ. The shadow value of the budget constraint,

measuring the increase of maximized utility that is due to an infinitesimal increase of the resources

available at the end of period t , is equal to the marginal utility of consumption at t . At the

optimum, the Euler equation holds: the agent is indifferent between consumption in the current

period and consumption in any future period, since both alternatives provide additional utility

given by u′(ct ). In the Appendix to this chapter, the problem’s solution is derived by means of

dynamic programming techniques.

6



Consumption

this case independent of the consumption level, and is equal to the param-

eter γ .4 The measure of intertemporal substitutability is obtained by solving

the consumer’s optimization problem under certainty. The Euler equation

corresponding to ( 1.5) is

c
−γ

t =
1 + r

1 + ρ
c
−γ

t+1 ⇒

(

ct+1

ct

)γ

=
1 + r

1 + ρ
.

Taking logarithms, and using the approximations log (1 + r) � r and

log (1 + ρ) � ρ, we get

� log ct+1 =
1

γ
(r − ρ).

The elasticity of intertemporal substitution, which is the effect of changes in

the interest rate on the growth rate of consumption � log c, is constant and is

measured by the reciprocal of the coefficient of relative risk aversion γ .

1.1.2 Consumption level and dynamics

Under uncertainty, the expected value of utility may well differ from its

realization. Letting

u′(ct+1) − Etu
′(ct+1) ≡ ηt+1,

we have by definition that Etηt+1 = 0 under the hypothesis of rational

expectations. Then, from (1.5), we get

u′(ct+1) =
1 + ρ

1 + r
u′(ct ) + ηt+1. (1.6)

If we assume also that r = ρ, the stochastic process describing the evolution

over time of marginal utility is

u′(ct+1) = u′(ct ) + ηt+1, (1.7)

and the change of marginal utility from t to t + 1 is given by a stochastic term

unforecastable at time t (Etηt+1 = 0).

In order to derive the implications of the above result for the dynamics of

consumption, it is necessary to specify a functional form for u(c). To obtain a

linear relation like (1.7), directly involving the level of consumption, we can

assume a quadratic utility function u(c) = c − (b/2)c2, with linear marginal

utility u′(c) = 1 − bc (positive only for c < 1/b). This simple and somewhat

4 The denominator of the CRRA utility function is zero if γ = 1, but marginal utility can

nevertheless have unitary elasticity: in fact, u′(c) = c−γ = 1/c if u(c) = log (c). The presence

of the constant term “−1” in the numerator makes utility well defined also when γ → 1. This

limit can be computed, by l’Hôpital’s rule, as the ratio of the limits of the numerator’s derivative,

dc1−γ /dγ = − log (c)c1−γ , and the denominator’s derivative, which is −1.
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restrictive assumption lets us rewrite equation (1.7) as

ct+1 = ct + ut+1, (1.8)

where ut+1 ≡ −(1/b)ηt+1 is such that Etut+1 = 0. If marginal utility is linear in

consumption, as is the case when the utility function is quadratic, the process

(1.8) followed by the level of consumption is a martingale, or a random walk,

with the property:5

Etct+1 = ct . (1.9)

This is the main implication of the intertemporal choice model with rational

expectations and quadratic utility: the best forecast of next period’s consump-

tion is current consumption. The consumption change from t to t + 1 cannot

be forecast on the basis of information available at t : formally, ut+1 is orthogonal

to the information set used to form the expectation Et , including all variables

known to the consumer and dated t , t − 1, . . . This implication has been widely

tested empirically. Such orthogonality tests will be discussed below.

The solution of the consumer’s intertemporal choice problem given by (1.8)

cannot be interpreted as a consumption function. Indeed, that equation does

not link consumption in each period to its determinants (income, wealth, rate

of interest), but only describes the dynamics of consumption from one period

to the next. The assumptions listed above, however, make it possible to derive

the consumption function, combining what we know about the dynamics of

optimal consumption and the intertemporal budget constraint (1.4). Since the

realizations of income and consumption must fulfill the constraint, (1.4) holds

also with expected values:

1

1 + r

∞
∑

i=0

(

1

1 + r

)i

Etct+i =
1

1 + r

∞
∑

i=0

(

1

1 + r

)i

Etyt+i + At . (1.10)

Linearity of the marginal utility function, and a discount rate equal to the

interest rate, imply that the level of consumption expected for any future period

is equal to current consumption. Substituting Etct+i with ct on the left-hand side

of (1.10), we get

1

r
ct = At +

1

1 + r

∞
∑

i=0

(

1

1 + r

)i

Etyt+i ≡ At + Ht . (1.11)

The last term in (1.11), the present value at t of future expected labor incomes,

is the consumer’s “human wealth” Ht . The consumption function can then be

5 A martingale is a stochastic process xt with the property Et xt+1 = xt . With r = ρ, marginal

utility and, under the additional hypothesis of quadratic utility, the level of consumption have

this property. No assumptions have been made about the distribution of the process xt+1 − xt , for

example concerning time-invariance, which is a feature of a random walk process.
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written as

ct = r(At + Ht ) ≡ y P
t (1.12)

Consumption in t is now related to its determinants, the levels of financial

wealth At and human wealth Ht . The consumer’s overall wealth at the begin-

ning of period t is given by At +Ht . Consumption in t is then the annuity value

of total wealth, that is the return on wealth in each period: r(At + Ht ). That

return, that we define as permanent income (y P
t ), is the flow that could be earned

for ever on the stock of total wealth. The conclusion is that the agent chooses

to consume in each period exactly his permanent income, computed on the basis

of expectations of future labor incomes.

1.1.3 Dynamics of income, consumption, and saving

Given the consumption function (1.12), we note that the evolution through

time of consumption and permanent income coincide. Leading (1.12) one

period, we have

y P
t+1 = r(At+1 + Ht+1). (1.13)

Taking the expectation at time t of y P
t+1, subtracting the resulting expression

from (1.13), and noting that EtAt+1 = At+1 from (1.2), since realized income yt

is included in the consumer’s information set at t , we get

y P
t+1 − Ety

P
t+1 = r(Ht+1 − EtHt+1). (1.14)

Permanent income calculated at time t + 1, conditional on information avail-

able at that time, differs from the expectation formed one period earlier,

conditional on information at t , only if there is a “surprise” in the agent’s

human wealth at time t+1. In other words, the “surprise” in permanent income

at t + 1 is equal to the annuity value of the “surprise” in human wealth arising

from new information on future labor incomes, available only at t + 1.

Since ct = y P
t , from (1.9) we have

Ety
P
t+1 = y P

t .

All information available at t is used to calculate permanent income y P
t , which

is also the best forecast of the next period’s permanent income. Using this result,

the evolution over time of permanent income can be written as

y P
t+1 = y P

t + r

[

1

1 + r

∞
∑

i=0

(

1

1 + r

)i

(Et+1 − Et )yt+1+i

]

,

where the “surprise” in human wealth in t + 1 is expressed as the revision in

expectations on future incomes: yP can change over time only if those expect-

ations change, that is if, when additional information accrues to the agent in
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t + 1, (Et+1 − Et )yt+1+i ≡ Et+1yt+1+i − Etyt+1+i is not zero for all i. The evolution

over time of consumption follows that of permanent income, so that we can

write

ct+1 = ct + r

[

1

1 + r

∞
∑

i=0

(

1

1 + r

)i

(Et+1 − Et )yt+1+i

]

= ct + ut+1. (1.15)

It can be easily verified that the change of consumption between t and t + 1

cannot be foreseen as of time t (since it depends only on information available

in t + 1): Etut+1 = 0. Thus, equation (1.15) enables us to attach a well defined

economic meaning and a precise measure to the error term ut+1 in the Euler

equation (1.8).

Intuitively, permanent income theory has important implications not only

for the optimal consumption path, but also for the behavior of the agent’s

saving, governing the accumulation of her financial wealth. To discover these

implications, we start from the definition of disposable income y D, the sum of

labor income, and the return on the financial wealth:

y D
t = rAt + yt .

Saving st (the difference between disposable income and consumption) is eas-

ily derived by means of the main implication of permanent income theory

(ct = y P
t ):

st ≡ y D
t − ct = y D

t − y P
t = yt − rHt . (1.16)

The level of saving in period t is then equal to the difference between current

(labor) income yt and the annuity value of human wealth rHt . Such a differ-

ence, being transitory income, does not affect consumption: if it is positive it is

entirely saved, whereas, if it is negative it determines a decumulation of finan-

cial assets of an equal amount. Thus, the consumer, faced with a variable labor

income, changes the stock of financial assets so that the return earned on it

(rA) allows her to keep consumption equal to permanent income.

Unfolding the definition of human wealth Ht in (1.16), we can write saving

at t as

st = yt −
r

1 + r

∞
∑

i=0

(

1

1 + r

)i

Etyt+i

=
1

1 + r
yt −

[

1

1 + r
−

(

1

1 + r

)2
]

Etyt+1

−

[

(

1

1 + r

)2

−

(

1

1 + r

)3
]

Etyt+2 + . . .

= −

∞
∑

i=1

(

1

1 + r

)i

Et�yt+i, (1.17)
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where �yt+i = yt+i − yt+i−1. Equation (1.17) sheds further light on the motiv-

ation for saving in this model: the consumer saves, accumulating financial

assets, to face expected future declines of labor income (a “saving for a rainy day”

behavior). Equation (1.17) has been extensively used in the empirical literature,

and its role will be discussed in depth in Section 1.2.

1.1.4 Consumption, saving, and current income

Under certainty on future labor incomes, permanent income does not change

over time. As a consequence, with r = ρ, consumption is constant and unre-

lated to current income yt . On the contrary, when future incomes are uncertain,

permanent income changes when new information causes a revision in expect-

ations. Moreover, there is a link between current income and consumption

if changes in income cause revisions in the consumer’s expected permanent

income. To explore the relation between current and permanent income, we

assume a simple first-order autoregressive process generating income y:

yt+1 = λyt + (1 − λ)ȳ + εt+1, Etεt+1 = 0, (1.18)

where 0 ≤ λ ≤ 1 is a parameter and ȳ denotes the unconditional mean of

income. The stochastic term εt+1 is the component of income at t + 1 that

cannot be forecast on the basis of information available at t (i.e. the income

innovation). Suppose that the stochastic process for income is in the consumer’s

information set. From ( 1.18) we can compute the revision, between t and t +1,

of expectations of future incomes caused by a given realization of the stochastic

term εt+1. The result of this calculation will then be substituted into (1.15) to

obtain the effect on consumption ct+1.

The revision in expectations of future incomes is given by

Et+1yt+1+i − Etyt+1+i = λiεt+1, ∀i ≥ 0.

Substituting this expression into (1.15) for each period t + 1 + i, we have

r

[

1

1 + r

∞
∑

i=0

(

1

1 + r

)i

λiεt+1

]

=

[

εt+1
r

1 + r

∞
∑

i=0

(

λ

1 + r

)i
]

, (1.19)

and solving the summation, we get6

ct+1 = ct +

(

r

1 + r − λ

)

εt+1, (1.20)

which directly links current income innovation εt+1 to current consumption

6 The right-hand side expression in (1.19) can be written εt+1(r/1 + r)S∞(λ/1 + r) if we denote

by SN (α) a geometric series with parameter α, of order N. Since SN (α) − αSN (α) = (1 + α + α2 + . . . +

αN ) − (α + α2 + α3 + . . . + αN+1) = 1 + αN+1, such a series takes values SN (α) = (1 + αN+1)/(1 − α)

and, as long as α < 1, converges to S∞(α) = (1 − α)−1 as N tends to infinity. Using this formula in

(1.19) yields the result.

11



Consumption

ct+1. Like equation (1.8), (1.20 ) is a Euler equation; the error term is the inno-

vation in permanent income, here expressed in terms of the current income

innovation. Given an unexpected increase of income in period t + 1 equal to

εt+1, the consumer increases consumption in t + 1 and expected consumption

in all future periods by the annuity value of the increase in human wealth,

rεt+1/(1 + r − λ). The portion of additional income that is not consumed, i.e.

εt+1 −
r

1 + r − λ
εt+1 =

1 − λ

1 + r − λ
εt+1,

is saved and added to the outstanding stock of financial assets. Starting from the

next period, the return on this saving will add to disposable income, enabling

the consumer to keep the higher level of consumption over the whole infinite

future horizon.

It is important to notice that the magnitude of the consumption change

between t and t + 1 resulting from an innovation in current income εt+1

depends, for a given interest rate r, on the parameter λ, capturing the degree of

persistence of an innovation in t + 1 on future incomes. To see the role of this

parameter, it is useful to consider two polar cases.

1. λ = 0. In this case yt+1 = ȳ + εt+1. The innovation in current income is

purely transitory and does not affect the level of income in future periods.

Given an innovation εt+1, the consumer’s human wealth, calculated at the

beginning of period t + 1, changes by εt+1/(1 + r). This change in Ht+1

determines a variation of permanent income—and consumption—equal

to rεt+1/(1 + r). In fact, from (1.20) with λ = 0, we have

ct+1 = ct +

(

r

1 + r

)

εt+1. (1.21)

2. λ = 1. In this case yt+1 = yt + εt+1. The innovation in current income is

permanent, causing an equal change of all future incomes. The change in

human wealth is then εt+1/r and the variation in permanent income and

consumption is simply εt+1. From (1.20), with λ = 1, we get

ct+1 = ct + εt+1.

Exercise 1 In the two polar cases λ = 0 and λ = 1, find the effect of εt+1 on saving

in t + 1 and on saving and disposable income in the following periods.

Exercise 2 Using the stochastic process for labor income in (1.18), prove that the

consumption function that holds in this case (linking ct to its determinants At , yt ,

and ȳ) has the following form:

ct = rAt +
r

1 + r − λ
yt +

1 − λ

1 + r − λ
ȳ.

What happens if λ = 1 and if λ = 0?
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1.2 Empirical Issues

The dynamic implications of the permanent income model of consumption

illustrated above motivated many recent empirical studies on consump-

tion. Similarly, the life-cycle theory of consumption developed mainly by

F. Modigliani has been subjected to empirical scrutiny. The partial-equilibrium

perspective of this chapter makes it difficult to discuss the relationship between

long-run saving and growth rates at the aggregate level: as we shall see in

Chapter 4, the link between income growth and saving depends also on the

interest rate, and becomes more complicated when the assumption of an

exogenously given income process is abandoned. But even empirical studies

based on cross-sectional individual data show that saving, if any, occurs only in

the middle and old stages of the agent’s life: consumption tracks income too

closely to explain wealth accumulation only on the basis of a life-cycle motive.

As regards aggregate short-run dynamics, the first empirical test of the fun-

damental implication of the permanent income/rational expectations model

of consumption is due to R. E. Hall (1978), who tests the orthogonality of the

error term in the Euler equation with respect to past information. If the theory

is correct, no variable known at time t −1 can explain changes in consumption

between t −1 and t . Formally, the test is carried out by evaluating the statistical

significance of variables dated t−1 in the Euler equation for time t . For example,

augmenting the Euler equation with the income change that occurred between

t − 2 and t − 1, we get

�ct = α�yt−1 + et , (1.22)

where α = 0 if the permanent income theory holds. Hall’s results for the USA

show that the null hypothesis cannot be rejected for several past aggregate

variables, including income. However, some lagged variables (such as a stock

index) are significant when added to the Euler equation, casting some doubt

on the validity of the model’s basic version.

Since Hall’s contribution, the empirical literature has further investigated the

dynamic implications of the theory, focusing mainly on two empirical regular-

ities apparently at variance with the model: the consumption’s excess sensitivity

to current income changes, and its excess smoothness to income innovations.

The remainder of this section illustrates these problems and shows how they

are related.

1.2.1 Excess sensitivity of consumption to current income

A different test of the permanent income model has been originally proposed by

M. Flavin (1981). Flavin’s test is based on (1.15) and an additional equation for
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the stochastic process for income yt . Consider the following stochastic process

for income (AR(1) in first differences):

�yt = µ + λ�yt−1 + εt , (1.23)

where εt is the change in current income, �yt , that is unforecastable using

past income realizations. According to the model, the change in consumption

between t − 1 and t is due to the revision of expectations of future incomes

caused by εt . Letting θ denote the intensity of this effect, the behavior of

consumption is then

�ct = θεt . (1.24)

Consumption is excessively sensitive to current income if ct reacts to changes

of yt by more than is justified by the change in permanent income, measured

by θεt .

Empirically, the Excess Sensitivity Hypothesis is formalized by augmenting

(1.24) with the change in current income,

�ct = β�yt + θεt + vt , (1.25)

where β (if positive) measures the overreaction of consumption to a change

in current income, and vt captures the effect on consumption of informa-

tion about permanent income, available to agents at t but unrelated to current

income changes.

According to the permanent income model, an increase in current income

causes a change in consumption only by the amount warranted by the revi-

sion of permanent income. Only innovations (that is, unpredictable changes)

in income cause consumption changes: the term θεt in (1.25) captures pre-

cisely this effect. An estimated value for β greater than zero is then interpreted

as signaling an overreaction of consumption to anticipated changes in income.

The test on β in (1.25) is equivalent to Hall’s orthogonality test in (1.22). In

fact, substituting the stochastic process for income (1.23) into (1.25), we get

�ct = βµ + βλ �yt−1 + (θ + β)εt + vt . (1.26)

From this expression for the consumption change, we note that the hypothesis

β = 0 in (1.25) implies that α = 0 in (1.22): if consumption is excessively

sensitive to income, then the orthogonality property of the error term in the

equation for �ct does not hold. Equation (1.26) highlights a potential difficulty

with the orthogonality test. Indeed, �ct may be found to be uncorrelated with

�yt−1 if the latter does not forecast future income changes. In this case λ = 0

and the orthogonality test fails to reject the theory, even though consumption

is excessively sensitive to predictable changes in income. Thus, differently from

Hall’s test, the approach of Flavin provides an estimate of the excess sensitivity

14
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of consumption, measured by β, which is around 0.36 on US quarterly data

over the 1949–79 period.7

Among the potential explanations for the excess sensitivity of consump-

tion, a strand of the empirical literature focused on the existence of liquidity

constraints, which limit the consumer’s borrowing capability, thus prevent-

ing the realization of the optimal consumption plan. With binding liquidity

constraints, an increase in income, though perfectly anticipated, affects

consumption only when it actually occurs.8 A different rationale for excess

sensitivity, based on the precautionary saving motive, will be analyzed in

Section 1.3.9

1.2.2 Relative variability of income and consumption

One of the most appealing features of the permanent income theory, since the

original formulation due to M. Friedman, is a potential explanation of why

consumption typically is less volatile than current income: even in simple text-

book Keynesian models, a marginal propensity to consume c < 1 in aggregate

consumption functions of the form C = c̄ + cY is crucial in obtaining the

basic concept of multiplier of autonomous expenditure. By relating consump-

tion not to current but to permanent, presumably less volatile, income, the

limited reaction of consumption to changes in current income is theoretically

motivated. The model developed thus far, adopting the framework of intertem-

poral optimization under rational expectations, derived the implications of this

original intuition, and formalized the relationship between current income,

consumption, and saving. (We shall discuss in the next chapter formalizations

of simple textbook insights regarding investment dynamics: investment, like

changes in consumption, is largely driven by revision of expectations regarding

future variables.)

In particular, according to theory, the agent chooses current consump-

tion on the basis of all available information on future incomes and changes

optimal consumption over time only in response to unanticipated changes

7 However, Flavin’s test cannot provide an estimate of the change in permanent income result-

ing from a current income innovation θ , if ε and v in (1.26) have a non-zero covariance. Using

aggregate data, any change in consumption due to vt is also reflected in innovations in current

income εt , since consumption is a component of aggregate income. Thus, the covariance between

ε and v tends to be positive.
8 Applying instrumental variables techniques to (1.25), Campbell and Mankiw (1989, 1991)

directly interpret the estimated β as the fraction of liquidity-constrained consumers, who simply

spend their current income.
9 While we do not focus in this chapter on aggregate equilibrium considerations, it is worth

mentioning that binding liquidity constraints and precautionary savings both tend to increase

the aggregate saving rate: see Aiyagari (1994), Jappelli and Pagano (1994).
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(innovations) in current income, causing revisions in permanent income.

Therefore, on the empirical level, it is important to analyze the relation-

ship between current income innovations and changes in permanent income,

taking into account the degree of persistence over time of such innovations.

The empirical research on the properties of the stochastic process generating

income has shown that income y is non-stationary: an innovation at time t does

not cause a temporary deviation of income from trend, but has permanent

effects on the level of y, which does not display any tendency to revert to a

deterministic trend. (For example, in the USA the estimated long-run change in

income is around 1.6 times the original income innovation.10) The implication

of this result is that consumption, being determined by permanent income,

should be more volatile than current income.

To clarify this point, consider again the following process for income:

�yt+1 = µ + λ�yt + εt+1, (1.27)

where µ is a constant, 0 < λ < 1, and Etεt+1 = 0. The income change between

t and t+1 follows a stationary autoregressive process; the income level is perma-

nently affected by innovations ε.11 To obtain the effect on permanent income

and consumption of an innovation εt+1 when income is governed by (1.27), we

can apply the following property of ARMA stochastic processes, which holds

whether or not income is stationary (Deaton, 1992). For a given stochastic

process for y of the form

a(L)yt = µ + b(L)εt ,

where a(L) = a0 + a1L + a2L2 + . . . and b(L) = b0 + b1L + b2L2 + . . . are two

polynomials in the lag operator L (such that, for a generic variable x, we have

Lixt = xt−i), we derive the following expression for the variance of the change

in permanent income (and consequently in consumption):12

r

1 + r

∞
∑

i=0

(

1

1 + r

)i

(Et+1 − Et )yt+1+i =
r

1 + r

∑∞
i=0

(

1
1+r

)i
bi

∑∞
i=0

(

1
1+r

)i
ai

εt+1. (1.28)

In the case of (1.27), we can write

yt = µ + (1 + λ)yt−1 − λyt−2 + εt ;

10 The feature of non-stationarity of income (in the USA and in other countries as well) is still

an open issue. Indeed, some authors argue that, given the low power of the statistical tests used to

assess the non-stationarity of macroeconomic time series, it is impossible to distinguish between

non-stationarity and the existence of a deterministic time trend on the basis of available data.
11 A stochastic process of this form, with λ = 0.44, is a fairly good statistical description of

the (aggregate) income dynamics for the USA, as shown by Campbell and Deaton (1989) using

quarterly data for the period 1953–84.
12 The following formula can also be obtained by computing the revisions in expectations of

future incomes, as has already been done in Section 1.1.
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hence we have a(L) = 1 − (1 + λ)L + λL2 and b(L) = 1. Applying the general

formula (1.28) to this process, we get

�ct+1 =
r

1 + r

(

r(1 + r − λ)

(1 + r)2

)−1

εt+1 =
1 + r

1 + r − λ
εt+1.

This is formally quite similar to (1.20), but, because the income process is

stationary only in first differences, features a different numerator on the

right-hand side: the relation between the innovation εt+1 and the change in

consumption �ct+1 is linear, but the slope is greater than 1 if λ > 0 (that is if,

as is realistic in business-cycle fluctuations, above-average growth tends to be

followed by still fast—if mean-reverting—growth in the following period). The

same coefficient measures the ratio of the variability of consumption (given

by the standard deviation of the consumption change) and the variability of

income (given by the standard deviation of the innovation in the income

process):

σ�c

σε

=
1 + r

1 + r − λ
.

For example, λ = 0.44 and a (quarterly) interest rate of 1% yield a coefficient

of 1.77. The implied variability of the (quarterly) change of consumption would

be 1.77 times that of the income innovation. For non-durable goods and ser-

vices, Campbell and Deaton (1989) estimate a coefficient of only 0.64. Then, the

response of consumption to income innovations seems to be at variance with

the implications of the permanent income theory: the reaction of consumption

to unanticipated changes in income is too smooth (this phenomenon is called

excess smoothness). This conclusion could be questioned by considering that the

estimate of the income innovation, ε, depends on the variables included in the

econometric specification of the income process. In particular, if a univariate

process like (1.27) is specified, the information set used to form expectations of

future incomes and to derive innovations is limited to past income values only.

If agents form their expectations using additional information, not available to

the econometrician, then the “true” income innovation, which is perceived by

agents and determines changes in consumption, will display a smaller variance

than the innovation estimated by the econometrician on the basis of a limited

information set. Thus, the observed smoothness of consumption could be made

consistent with theory if it were possible to measure the income innovations

perceived by agents.13

A possible solution to this problem exploits the essential feature of the per-

manent income theory under rational expectations: agents choose optimal

consumption (and saving) using all available information on future incomes.

13 Relevant research includes Pischke (1995) and Jappelli and Pistaferri (2000).
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It is the very behavior of consumers that reveals their available information. If

such behavior is observed by the econometrician, it is possible to use it to con-

struct expected future incomes and the associated innovations. This approach

has been applied to saving, which, as shown by ( 1.17), depends on expected

future changes in income.

To formalize this point, we start from the definition of saving and make

explicit the information set used by agents at time t to forecast future

incomes, It :

st = −

∞
∑

i=1

(

1

1 + r

)i

E(�yt+i | It ). (1.29)

The information set available to the econometrician is �t , with �t ⊆ It (agents

know everything the econometrician knows but the reverse is not necessarily

true). Moreover, we assume that saving is observed by the econometrician:

st ∈ �t . Then, taking the expected value of both sides of (1.29) with respect to

the information set �t and applying the “law of iterated expectations,” we get

E(st | �t ) = −

∞
∑

i=1

(

1

1 + r

)i

E [E(�yt+i | It ) | �t ]

=⇒ st = −

∞
∑

i=1

(

1

1 + r

)i

E(�yt+i | �t ), (1.30)

where we use the assumption that saving is included in �t . According to theory,

then, saving is determined by the discounted future changes in labor incomes,

even if they are forecast on the basis of the smaller information set �t .

Since saving choices, according to (1.29), are made on the basis of all informa-

tion available to agents, it is possible to obtain predictions on future incomes

that do not suffer from the limited information problem typical of the uni-

variate models widely used in the empirical literature. Indeed, predictions can

be conditioned on past saving behavior, thus using the larger information set

available to agents. This is equivalent to forming predictions of income changes

�yt by using not only past changes, �yt−1, but also past saving, st−1.

In principle, this extension of the forecasting model for income could reduce

the magnitude of the estimated innovation variance σε. In practice, as is shown

in some detail below, the evidence of excess smoothness of consumption

remains unchanged after this extension.

1.2.3 Joint dynamics of income and saving

Studying the implications derived from theory on the joint behavior of income

and saving usefully highlights the connection between the two empirical puz-

zles mentioned above (excess sensitivity and excess smoothness). Even though the
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two phenomena focus on the response of consumption to income changes of

a different nature (consumption is excessively sensitive to anticipated income

changes, and excessively smooth in response to unanticipated income varia-

tions), it is possible to show that the excess smoothness and excess sensitivity

phenomena are different manifestations of the same empirical anomaly.

To outline the connection between the two, we proceed in three successive

steps.

1. First, we assume a stochastic process jointly governing the evolution of

income and saving over time and derive its implications for equations like

(1.22), used to test the orthogonality property of the consumption change

with respect to lagged variables. (Recall that the violation of the orthog-

onality condition entails excess sensitivity of consumption to predicted

income changes.)

2. Then, given the expectations of future incomes based on the assumed

stochastic process, we derive the behavior of saving implied by theory

according to (1.17), and obtain the restrictions that must be imposed on

the estimated parameters of the process for income and saving to test the

validity of the theory.

3. Finally, we compare such restrictions with those required for the orthog-

onality property of the consumption change to hold.

We start with a simplified representation of the bivariate stochastic pro-

cess governing income—expressed in first differences as in (1.27) to allow for

non-stationarity, and imposing µ = 0 for simplicity—and saving:

�yt = a11�yt−1 + a12st−1 + u1t , (1.31)

st = a21�yt−1 + a22st−1 + u2t . (1.32)

With st−1 in the model, it is now possible to generate forecasts on future income

changes by exploiting the additional informational value of past saving. Insert-

ing the definition of saving (st = rAt + yt − ct ) into the accumulation constraint

(1.2), we get

At+1 = At + (rAt + yt − ct ) ⇒ st = At+1 − At . (1.33)

Obviously, the flow of saving is the change of the stock of financial assets

from one period to the next, and this makes it possible to write the change

in consumption by taking the first difference of the definition of saving

used above:

�ct = �yt + r�At − �st

= �yt + rst−1 − st + st−1

= �yt + (1 + r)st−1 − st . (1.34)
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Finally, substituting for �yt and st from (1.31) and ( 1.32), we obtain the

following expression for the consumption change �ct :

�ct = γ1�yt−1 + γ2st−1 + vt , (1.35)

where

γ1 = a11 − a21, γ2 = a12 − a22 + (1 + r), vt = u1t − u2t .

The implication of the permanent income theory is that the consumption

change between t − 1 and t cannot be predicted on the basis of information

available at time t − 1. This entails the orthogonality restriction γ1 = γ2 = 0,

which in turn imposes the following restrictions on the coefficients of the joint

process generating income and savings:

a11 = a21, a22 = a12 + (1 + r). (1.36)

If these restrictions are fulfilled, the consumption change �ct = u1t − u2t

is unpredictable using lagged variables: the change in consumption (and in

permanent income) is equal to the current income innovation (u1t ) less the

innovation in saving (u2t ), which reflects the revision in expectations of future

incomes calculated by the agent on the basis of all available information. Now,

from the definition of savings (1.17), using the expectations of future income

changes derived from the model in (1.31) and (1.32), it is possible to obtain the

restrictions imposed by the theory on the stochastic process governing income

and savings. Letting

xt ≡

(

�yt

st

)

, A ≡

(

a11 a12

a21 a22

)

, ut =

(

u1t

u2t

)

,

we can rewrite the process in (1.31)–(1.32) as

xt = Axt−1 + ut . (1.37)

From (1.37), the expected values of �yt+i can be easily derived:

Etxt+i = A
i
xt , i ≥ 0;

hence (using a matrix algebra version of the geometric series formula)

−

∞
∑

i=1

(

1

1 + r

)i

Etxt+i = −

∞
∑

i=1

(

1

1 + r

)i

A
i
xt

= −

[

(

I −
1

1 + r
A

)−1

− I

]

xt . (1.38)
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The element of vector x we are interested in (saving s) can be “extracted” by

applying to x a vector e2 ≡ (0 1)′, which simply selects the second element of

x. Similarly, to apply the definition in (1.17), we have to select the first element

of the vector in (1.38) using e1 ≡ (1 0)′. Then we get

e
′
2xt = −e

′
1

[

(

I −
1

1 + r
A

)−1

− I

]

xt ⇒ e
′
2 = −e

′
1

[

(

I −
1

1 + r
A

)−1

− I

]

,

yielding the relation

e
′
2 = (e′

2 − e
′
1)

1

1 + r
A. (1.39)

Therefore, the restrictions imposed by theory on the coefficients of matrix A are

a11 = a21, a22 = a12 + (1 + r). (1.40)

These restrictions on the joint process for income and saving, which rule

out the excess smoothness phenomenon, are exactly the same as those—in

equation (1.35)—that must be fulfilled for the orthogonality property to hold,

and therefore also ensure elimination of excess sensitivity.14 Summarizing, the

phenomena of excess sensitivity and excess smoothness, though related to

income changes of a different nature (anticipated and unanticipated, respec-

tively), signal the same deviation from the implications of the permanent

income theory. If agents excessively react to expected income changes, they

must necessarily display a lack of reaction to unanticipated income changes.

In fact, any variation in income is made up of a predicted component and a

(unpredictable) innovation: if the consumer has an “excessive” reaction to the

former component, the intertemporal budget constraint forces him to react in

an “excessively smooth” way to the latter component of the change in current

income.

1.3 The Role of Precautionary Saving

Recent developments in consumption theory have been aimed mainly at

solving the empirical problems illustrated above. The basic model has been

extended in various directions, by relaxing some of its most restrictive assump-

tions. On the one hand, as already mentioned, liquidity constraints can prevent

14 The coincidence of the restrictions necessary for orthogonality and for ruling out excess

smoothness is obtained only in the special case of a first-order stochastic process for income

and saving. In the more general case analyzed by Flavin (1993), the orthogonality restrictions

are nested in those necessary to rule out excess smoothness. Then, in general, orthogonality

conditions analogous to (1.36) imply—but are not implied by—those analogous to (1.40).
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the consumer from borrowing as much as required by the optimal consumption

plan. On the other hand, it has been recognized that in the basic model saving

is motivated only by a rate of interest higher than the rate-of-time preference

and/or by the need for redistributing income over time, when current incomes

are unbalanced between periods. Additional motivations for saving may be

relevant in practice, and may contribute to the explanation of, for example,

the apparently insufficient decumulation of wealth by older generations, the

high correlation between income and consumption of younger agents, and

the excess smoothness of consumption in reaction to income innovations.

This section deals with the latter strand of literature, studying the role of a

precautionary saving motive in shaping consumers’ behavior.

First, we will spell out the microeconomic foundations of precautionary sav-

ing, pointing out which assumption of the basic model must be relaxed to

allow for a precautionary saving motive. Then, under the new assumptions,

we shall derive the dynamics of consumption and the consumption function,

and compare them with the implications of the basic version of the permanent

income model previously illustrated.

1.3.1 Microeconomic foundations

Thus far, with a quadratic utility function, uncertainty has played only a lim-

ited role. Indeed, only the expected value of income y affects consumption

choices—other characteristics of the income distribution (e.g. the variance) do

not play any role.

With quadratic utility, marginal utility is linear and the expected value of the

marginal utility of consumption coincides with the marginal utility of expected

consumption. An increase in uncertainty on future consumption, with an

unchanged expected value, does not cause any reaction by the consumer.15 As

we shall see, if marginal utility is a convex function of consumption, then the

consumer displays a prudent behavior, and reacts to an increase in uncertainty

by saving more: such saving is called precautionary, since it depends on the

uncertainty about future consumption.

Convexity of the marginal utility function u′(c) implies a positive sign of

its second derivative, corresponding to the third derivative of the utility func-

tion: u′′′(c) > 0. A precautionary saving motive, which does not arise with

quadratic utility (u′′′(c) = 0), requires the use of different functional forms, such

15 In the basic version of the model, the consumer is interested only in the certainty equivalent

value of future consumption.
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as exponential utility.16 With risk aversion (u′′(c) < 0) and convex marginal

utility (u′′′(c) > 0), under uncertainty about future incomes (and consumption),

unfavorable events determine a loss of utility greater than the gain in utility

obtained from favorable events of the same magnitude. The consumer fears

low-income states and adopts a prudent behavior, saving in the current period

in order to increase expected future consumption.

An example can make this point clearer. Consider a consumer living for two

periods, t and t +1, with no financial wealth at the beginning of period t . In the

first period labor income is ȳ with certainty, whereas in the second period it can

take one of two values—y A
t+1 or y B

t+1 < y A
t+1—with equal probability. To focus

on the precautionary motive, we rule out any other motivation for saving by

assuming that Et (yt+1) = ȳ and r = ρ = 0. In equilibrium the following relation

holds: Etu
′(ct+1) = u′(ct ). At time t the consumer chooses saving st (equal to

ȳ − ct ) and his consumption at time t + 1 will be equal to saving st plus realized

income. Considering actual realizations of income, we can write the budget

constraint as

c A
t+1

c B
t+1

}

= ȳ − ct +

{

y A
t+1

y B
t+1

= st +

{

y A
t+1

y B
t+1

.

Using the definition of saving, st ≡ ȳ − ct , the Euler equation becomes

Et (u
′( yt+1 + st )) = u′( ȳ − st ). (1.41)

Now, let us see how the consumer chooses saving in two different cases, begin-

ning with that of linear marginal utility (u′′′(c) = 0). In this case we have

Etu
′( · ) = u′(Et ( · )). Recalling that Et ( yt+1) = ȳ, condition ( 1.41) becomes

u′( ȳ + st ) = u′( ȳ − st ), (1.42)

and is fulfilled by st = 0. The consumer does not save in the first period,

and his second-period consumption will coincide with current income. The

uncertainty on income in t + 1 reduces overall utility but does not induce the

consumer to modify his choice: there is no precautionary saving. On the con-

trary, if, as in Figure 1.1, marginal utility is convex (u′′′(c) > 0), then, from

“Jensen’s inequality,” Etu
′(ct+1) > u′(Et (ct+1)).17 If the consumer were to choose

16 A quadratic utility function has another undesirable property: it displays increasing absolute

risk aversion. Formally, −u′′(c)/u′(c) is an increasing function of c. This implies that, to avoid

uncertainty, the agent is willing to pay more the higher is his wealth, which is not plausible.
17 Jensen’s inequality states that, given a strictly convex function f (x) of a random variable x,

then E(f (x)) > f (Ex).
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Figure 1.1. Precautionary savings

zero saving, as was optimal under a linear marginal utility, we would have (for

st = 0, and using Jensen’s inequality)

Et (u
′(ct+1)) > u′(ct ). (1.43)

The optimality condition would be violated, and expected utility would not

be maximized. To re-establish equality in the problem’s first-order condition,

marginal utility must decrease in t +1 and increase in t : as shown in the figure,

this may be achieved by shifting an amount of resources st from the first to the

second period. As the consumer saves more, decreasing current consumption ct

and increasing ct+1 in both states (good and bad), marginal utility in t increases

and expected marginal utility in t + 1 decreases, until the optimality condition

is satisfied. Thus, with convex marginal utility, uncertainty on future incomes

(and consumption levels) entails a positive amount of saving in the first period

and determines a consumption path trending upwards over time (Etct+1 > ct ),

even though the interest rate is equal to the utility discount rate. Formally, the

relation between uncertainty and the upward consumption path depends on

the degree of consumer’s prudence, which we now define rigorously. Approxi-

mating (by means of a second-order Taylor expansion) around ct the left-hand

side of the Euler equation Etu
′(ct+1) = u′(ct ), we get

Et (ct+1 − ct ) = −
1

2

u′′′(ct )

u′′(ct )
Et (ct+1 − ct )

2 ≡
1

2
aEt (ct+1 − ct )

2, (1.44)

where a ≡ −u′′′(c)/u′′(c) is the coefficient of absolute prudence. Greater

uncertainty, increasing Et ((ct+1−ct )
2), induces a larger increase in consumption
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between t and t +1. The definition of the coefficient measuring prudence is for-

mally similar to that of risk-aversion coefficients: however, the latter is related

to the curvature of the utility function, whereas prudence is determined by

the curvature of marginal utility. It is also possible to define the coefficient of

relative prudence, −u′′′(c)c/u′′(c). Dividing both sides of (1.44) by ct , we get

Et

(

ct+1 − ct

ct

)

= −
1

2

u′′′(ct ) · ct

u′′(ct )
Et

(

ct+1 − ct

ct

)2

=
1

2
pEt

(

ct+1 − ct

ct

)2

,

where p ≡ −(u′′′(c) · c/u′′(c)) is the coefficient of relative prudence. Readers can

check that this is constant for a CRRA function, and determine its relationship

to the coefficient of relative risk aversion.

Exercise 3 Suppose that a consumer maximizes

log(c1) + E[log(c2)]

under the constraint c1+c2 = w1+w2 (i.e., the discount rate of period 2 utility and the

rate of return on saving w1 −c1 are both zero). When c1 is chosen, there is uncertainty

about w2: the consumer will earn w2 = x or w2 = y with equal probability. What is

the optimal level of c1?

1.3.2 Implications for the consumption function

We now solve the consumer’s optimization problem in the case of a non-

quadratic utility function, which motivates precautionary saving. The setup

of the problem is still given by (1.1) and (1.2), but the utility function in each

period is now of the exponential form:

u(ct+i) = −
1

γ
e−γ ct+i , (1.45)

where γ > 0 is the coefficient of absolute prudence (and also, for such a constant

absolute risk aversion—CARA—utility function, the coefficient of absolute risk

aversion).18 Assume that labor income follows the AR(1) stochastic process:

yt+i = λyt+i−1 + (1 − λ)ȳ + εt+i, (1.46)

where εt+i are independent and identically distributed (i.i.d.) random variables,

with zero mean and variance σ 2
ε . We keep the simplifying hypothesis that r = ρ.

18 Since for the exponential utility function u′(0) = 1 < ∞, in order to rule out negative values

for consumption it would be necessary to explicitly impose a non-negativity constraint; however,

a closed-form solution to the problem would not be available if that constraint were binding.
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The problem’s first-order condition, for i = 0, is given by

e−γ ct = Et (e
−γ ct+1 ). (1.47)

To proceed, we guess that the stochastic process followed by consumption over

time has the form

ct+i = ct+i−1 + Kt+i−1 + vt+i, (1.48)

where Kt+i−1 is a deterministic term (which may however depend on the

period’s timing within the individual’s life cycle) and vt+i is the innovation

in consumption (Et+i−1vt+i = 0). Both the sequence of Kt terms and the fea-

tures of the distribution of v must be determined so as to satisfy the Euler

equation (1.47) and the intertemporal budget constraint (1.4). Using (1.48),

from the Euler equation, after eliminating the terms in ct , we get

eγ Kt = Et (e
−γ vt+1 ) ⇒ Kt =

1

γ
log Et (e

−γ vt+1 ). (1.49)

The value of K depends on the characteristics of the distribution of v, yet to be

determined. Using the fact that log E(·)>E( log (·)) by Jensen’s inequality and the

property of consumption innovations Etvt+1 = 0, we can however already write

Kt =
1

γ
log Et (e

−γ vt+1 ) >
1

γ
Et ( log (e−γ vt+1 )) =

1

γ
Et ( − γ vt+1) = 0 ⇒ Kt > 0.

(1.50)

The first result is that the consumption path is increasing over time: the con-

sumption change between t and t +1 is expected to equal Kt > 0, whereas with

quadratic utility (maintaining the assumption ρ = r) consumption changes

would have zero mean. Moreover, from (1.49) we interpret −Kt as the “certainty

equivalent” of the consumption innovation vt+1, defined as the (negative) cer-

tain change of consumption from t to t + 1 that the consumer would accept to

avoid the uncertainty on the marginal utility of consumption in t + 1.

To obtain the consumption function (and then to determine the effect of the

precautionary saving motive on the level of consumption) we use the intertem-

poral budget constraint (1.10) computing the expected values Etct+i from (1.48).

Knowing that Etvt+i = 0, we have

1

1 + r

∞
∑

i=0

(

1

1 + r

)i

ct +
1

1 + r

∞
∑

i=1

(

1

1 + r

)i i
∑

j=1

Kt+j−1 = At + Ht . (1.51)

Solving for ct , we finally get

ct = r(At + Ht ) −
r

1 + r

∞
∑

i=1

(

1

1 + r

)i i
∑

j=1

Kt+j−1. (1.52)

The level of consumption is made up of a component analogous to the def-

inition of permanent income, r(At + Ht ), less a term that depends on the
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constants K and captures the effect of the precautionary saving motive: since

the individual behaves prudently, her consumption increases over time, but

(consistently with the intertemporal budget constraint) the level of consump-

tion in t is lower than in the case of quadratic utility.

As the final step of the solution, we derive the form of the stochastic term

vt+i, and its relationship to the income innovation εt+i . To this end we use the

budget constraint (1.4), where ct+i and yt+i are realizations and not expected

values, and write future realized incomes as the sum of the expected value at

time t and the associated “surprise”: yt+i = Etyt+i + ( yt+i − Etyt+i). The budget

constraint becomes

1

1 + r

∞
∑

i=0

(

1

1 + r

)i

ct+i = At + Ht +
1

1 + r

∞
∑

i=1

(

1

1 + r

)i

( yt+i − Etyt+i).

Substituting for ct+i (with i > 0) from (1.48) and for ct from the consumption

function (1.52), we get

∞
∑

i=1

(

1

1 + r

)i i
∑

j=1

vt+j =

∞
∑

i=1

(

1

1 + r

)i

( yt+i − Etyt+i).

Given the stochastic process for income (1.46) we can compute the income

“surprises,”

yt+i − Etyt+i =

i−1
∑

k=0

λkεt+i−k,

and insert them into the previous equation, to obtain

∞
∑

i=1

(

1

1 + r

)i i
∑

j=1

vt+j =

∞
∑

i=1

(

1

1 + r

)i i−1
∑

k=0

λkεt+i−k. (1.53)

Developing the summations, collecting terms containing v and ε with the same

time subscript, and using the fact that v and ε are serially uncorrelated processes,

we find the following condition that allows us to determine the form of vt+i:

∞
∑

i=1

(

1

1 + r

)i

(vt+h − λi−1εt+h) = 0, ∀h ≥ 1. (1.54)

Solving the summation in (1.54), we arrive at the final form of the stochastic

terms of the Euler equation guessed in (1.48): at all times t + h,

vt+h =
r

1 + r − λ
εt+h. (1.55)

As in the quadratic utility case (1.20), the innovation in the Euler equation can

be interpreted as the annuity value of the revision of the consumer’s human

wealth arising from an innovation in income for the assumed stochastic

process.
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Expression (1.55) for vt+1 can be substituted in the equation for Kt (1.49).

The fact that the innovations ε are i.i.d. random variables implies that Kt does

not change over time: Kt+i−1 = K in (1.48). The evolution of consumption over

time is then given by

ct+1 = ct + K +
r

1 + r − λ
εt+1. (1.56)

Substituting the constant value for K into (1.52), we get a closed-form

consumption function:19

ct = r(At + Ht ) −
r

1 + r

∞
∑

i=1

(

1

1 + r

)i

i · K

= r(At + Ht ) −
r

1 + r
K

1 + r

r2

= r(At + Ht ) −
K

r
.

Finally, to determine the constant K and its relationship with the uncertainty

about future labor incomes, some assumptions on the distribution of ε have to

be made. If ε is normally distributed, ε ∼ N(0, σ 2
ε ), then, letting θ ≡ r/(1+ r −λ),

we have20

Kt =
1

γ
log Et (e

−γ θεt+1 ) =
1

γ
log e

γ 2θ2σ2
ε

2 =
γ θ2σ 2

ε

2
. (1.57)

The dynamics of consumption over time and its level in each period are then

given by

ct+1 = ct +
γ θ2σ 2

ε

2
+ θεt+1,

ct = r(At + Ht ) −
1

r

γ θ2σ 2
ε

2
.

19 To verify this result, note that

∞
∑

i=1

αii =

∞
∑

i=1

αi +

∞
∑

i=2

αi +

∞
∑

i=3

αi + ...

=

∞
∑

i=1

αi + α

∞
∑

i=1

αi + α2
∞
∑

i=1

αi + ...

= (1 + α + α2 + ...)

∞
∑

i=1

αi

=

∞
∑

i=0

αi

(

∞
∑

i=0

αi − 1

)

,

which equals 1
1−α

α
1−α

= α/(1 − α)2 as long as α < 1, which holds true in the relevant α = 1/(1 + r)

case with r > 0.
20 To derive (1.57) we used the following statistical fact: if x ∼ N(E(x), σ 2), then ex is a lognormal

random variable with mean E(ex) = eE(x)+σ 2/2.
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The innovation variance σ 2
ε has a positive effect on the change in consumption

between t and t + 1, and a negative effect on the level of consumption in t .

Increases in the uncertainty about future incomes (captured by the variance of

the innovations in the process for y) generate larger changes of consumption

from one period to the next and drops in the level of current consumption.

Thus, allowing for a precautionary saving motive can rationalize the slow

decumulation of wealth by old individuals, and can explain why (increas-

ing) income and consumption paths are closer to each other than would be

implied by the basic permanent income model. Moreover, if positive innova-

tions in current income are associated with higher uncertainty about future

income, the excess smoothness phenomenon may be explained, since greater

uncertainty induces consumers to save more and may then reduce the response

of consumption to income innovations.

Exercise 4 Assuming u(c) = c1−γ /(1 − γ ) and r �= ρ, derive the first-order condition

of the consumer’s problem under uncertainty. If ct+1/ct has a lognormal distribution

(i.e. if the rate of change of consumption � log ct+1 is normally distributed with

constant variance σ 2), write the Euler equation in terms of the expected rate of change

of consumption Et (� log ct+1). How does the variance σ 2 affect the behavior of the

rate of change of c over time? (Hint: make use of the fact mentioned in note 20, recall

that ct+1/ct = e� log ct+1 , and express the Euler equations in logarithmic terms.)

1.4 Consumption and Financial Returns

In the model studied so far, the consumer uses a single financial asset with a

certain return to implement the optimal consumption path. A precautionary

saving motive has been introduced by abandoning the hypothesis of quadratic

utility. However, there is still no choice on the allocation of saving. If we assume

that the consumer can invest his savings in n financial assets with uncertain

returns, we generate a more complicated choice of the composition of financial

wealth, which interacts with the determination of the optimal consumption

path. The chosen portfolio allocation will depend on the characteristics of the

consumer’s utility function (in particular the degree of risk aversion) and of the

distribution of asset returns. Thereby extended, the model yields testable impli-

cations on the joint dynamics of consumption and asset returns, and becomes

the basic version of the consumption-based capital asset pricing model (CCAPM).

With the new hypothesis of n financial assets with uncertain returns,

the consumer’s budget constraint must be reformulated accordingly. The

beginning-of-period stock of the jth asset, measured in units of consumption, is

given by A
j

t+i. Therefore, total financial wealth is At+i =
∑n

j=1 A
j

t+i . r
j

t+i+1 denotes
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the real rate of return of asset j in period t + i, so that A
j

t+i+1 = (1 + r
j

t+i+1)A
j

t+i.

This return is not known by the agent at the beginning of period t + i. (This

explains the time subscript t + i + 1, whereas labor income—observed by the

agent at the beginning of the period—has subscript t + i.) The accumulation

constraint from one period to the next takes the form

n
∑

j=1

A
j

t+i+1 =

n
∑

j=1

(1 + r
j

t+i+1)A
j

t+i + yt+i − ct+i, i = 0, . . . , ∞. (1.58)

The solution at t of the maximization problem yields the levels of consumption

and of the stocks of the n assets from t to infinity. Like in the solution of

the consumer’s problem analyzed in Section 1.1 (but now with uncertain asset

returns), we have a set of n Euler equations,

u′(ct ) =
1

1 + ρ
Et

[

(1 + r
j
t+1) u′(ct+1)

]

for j = 1, . . . , n. (1.59)

Since u′(ct ) is not stochastic at time t , we can write the first-order conditions as

1 = Et

[

(1 + r
j
t+1)

1

1 + ρ

u′(ct+1)

u′(ct )

]

≡ Et

[

(1 + r
j
t+1) Mt+1

]

, (1.60)

where Mt+1 is the “stochastic discount factor” applied at t to consumption

in the following period. Such a factor is the intertemporal marginal rate of

substitution, i.e. the discounted ratio of marginal utilities of consumption in

any two subsequent periods. From equation (1.60) we derive the fundamental

result of the CCAPM, using the following property:

Et

[(

1 + r
j
t+1

)

Mt+1

]

= Et (1 + r
j
t+1) Et ( Mt+1) + covt (r

j
t+1, Mt+1). (1.61)

Inserting (1.61) into (1.60) and rearranging terms, we get

Et (1 + r
j
t+1) =

1

Et (Mt+1)

[

1 − covt

(

r
j
t+1, Mt+1

)]

. (1.62)

In the case of the safe asset (with certain return r0) considered in the previous

sections,21 (1.62) reduces to

1 + r0
t+1 =

1

Et (Mt+1)
. (1.63)

Substituting (1.63) into (1.62), we can write the expected return of each asset j

in excess of the safe asset as

Et (r
j
t+1) − r0

t+1 = − (1 + r0
t+1) covt (r

j
t+1, Mt+1). (1.64)

21 The following results hold also if the safe return rate r0 is random, as long as it has zero

covariance with the stochastic discount factor M .
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Equation (1.64) is the main result from the model with risky financial assets:

in equilibrium, an asset j whose return has a negative covariance with the

stochastic discount factor yields an expected return higher than r0. In fact,

such an asset is “risky” for the consumer, since it yields lower returns when

the marginal utility of consumption is relatively high (owing to a relatively

low level of consumption). The agent willingly holds the stock of this asset in

equilibrium only if such risk is appropriately compensated by a “premium,”

given by an expected return higher than the risk-free rate r0.

1.4.1 Empirical implications of the CCAPM

In order to derive testable implications from the model, we consider a CRRA

utility function,

u(c) =
c1−γ − 1

1 − γ
,

where γ > 0 is the coefficient of relative risk aversion. In this case, (1.60)

becomes

1 = Et

[

(1 + r
j
t+1)

1

1 + ρ

(

ct+1

ct

)−γ
]

for j = 1, . . . , n. (1.65)

Moreover, let us assume that the rate of growth of consumption and the rates of

return of the n assets have a lognormal joint conditional distribution.22 Taking

logs of (1.65) (with the usual approximation log(1 + ρ) � ρ), we get

0 = −ρ + log Et

[

(1 + r
j
t+1)

(

ct+1

ct

)−γ
]

,

and by the property mentioned in the preceding footnote we obtain

log Et

[

(1 + r
j
t+1)

(

ct+1

ct

)−γ
]

= Et (r
j
t+1 − γ� log ct+1) +

1

2
�j, (1.66)

where

�j = E

{

[

(r
j
t+1 − γ� log ct+1) − Et (r

j
t+1 − γ� log ct+1)

]2
}

.

Note that the unconditional expectation E[ · ] in the definition of �j may be

used under the hypothesis that the innovations in the joint process for returns

22 In general, when two random variables x and y have a lognormal joint conditional prob-

ability distribution, then log Et (xt+1 yt+1) = Et ( log (xt+1 yt+1)) + 1
2

vart ( log (xt+1 yt+1)), where

vart ( log (xt+1 yt+1)) = Et

{

[

log (xt+1 yt+1) − Et

(

log (xt+1 yt+1)
)]2
}

.
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and the consumption growth rate have constant variance (homoskedasticity).

Finally, from (1.66) we can derive the expected return on the jth asset:

Et r
j
t+1 = γ Et (� log ct+1) + ρ −

1

2
�j. (1.67)

Several features of equation (1.67) can be noticed. In the first place, (1.67)

can be immediately interpreted as the Euler equation that holds for each asset j.

This interpretation can be seen more clearly if (1.67) is rewritten with the

expected rate of change of consumption on the left-hand side. (See the solution

to exercise 4 for the simpler case of only one safe asset.)

Second, the most important implication of (1.67) is the existence of a precise

relationship between the forecastable component of (the growth rate of) con-

sumption and asset returns. A high growth rate of consumption is associated

with a high rate of return, so as to enhance saving, for a given intertemporal

discount rate ρ. The degree of risk aversion γ is a measure of this effect, which

is the same for all assets. At the empirical level, (1.67) suggests the following

methodology to test the validity of the model.

1. A forecasting model for � log ct+1 is specified; vector xt contains only those

variables, from the wider information set available to agents at time t ,

which are relevant for forecasting consumption growth.

2. The following system for � log ct+1 and r
j
t+1 is estimated:

� log ct+1 = δ
′
xt + ut+1,

r
j
t+1 = π

′
jxt + kj + v

j
t+1, j = 1, . . . , n,

where kj is a constant and u and v are random errors uncorrelated with

the elements of x.

3. The following restrictions on the estimated parameters are tested:

π j = γ δ, j = 1, . . . , n.

Finally, the value of �j differs from one asset return to another, because

of differences in the variability of return innovations and differences in the

covariances between such innovations and the innovation of the consumption

change. In fact, by the definition of �j and the lognormality assumption, we

have

�j = E
[

(r
j
t+1 − Et (r

j
t+1))2

]

+ γ 2E
[

(� log ct+1 − Et (� log ct+1))2
]

− 2γ E
[

(r
j
t+1 − Et (r

j
t+1))(� log ct+1 − Et (� log ct+1))

]

≡ σ 2
j + γ 2σ 2

c − 2γ σjc. (1.68)

The expected return of an asset is negatively affected by the variance of the

return itself and is positively affected by its covariance with the rate of change
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in consumption. Thus, using (1.67) and (1.68), we obtain, for any asset j,

Et r
j
t+1 = γ Et ( � log ct+1) + ρ −

γ 2σ 2
c

2
−

σ 2
j

2
+ γ σjc. (1.69)

This equation specializes the general result given in (1.62), and it is interesting

to interpret each of the terms on its right-hand side. Faster expected consump-

tion growth implies that the rate of return should be higher than the rate of

time preference ρ, to an extent that depends on intertemporal substitutability

as indexed by γ . “Precaution,” also indexed by γ , implies that the rate of return

consistent with optimal consumption choices is lower when consumption is

more volatile (a higher σ 2
c ). The variance of returns has a somewhat counterin-

tuitive negative effect on the required rate or return: however, this term appears

only because of Jensen’s inequality, owing to the approximation that replaced

log Et (1 + r
j
t+1) with Et r

j
t+1 in equation (1.69). But it is again interesting and

intuitive to see that the return’s covariance with consumption growth implies

a higher required rate of return. In fact, the consumer will be satisfied by a

lower expected return if an asset yields more when consumption is decreasing

and marginal utility is increasing; this asset provides a valuable hedge against

declines in consumption to risk-averse consumers. Hence an asset with posi-

tive covariance between the own return innovations and the innovations in

the rate of change of consumption is not attractive, unless (as must be the case

in equilibrium) it offers a high expected return.

When there is also an asset with a safe return r0, the model yields the

following relationship between r0 and the stochastic properties of � log ct+1

(see again the solution of exercise 4):

r0
t+1 = γ Et (� log ct+1) + ρ −

γ 2σ 2
c

2
. (1.70)

(The return variance and covariance with consumption are both zero in this

case.) Equations (1.69) and (1.70) show the determinants of the returns on dif-

ferent assets in equilibrium. All returns depend positively on the intertemporal

rate of time preference ρ, since, for a given growth rate of consumption, a

higher discount rate of future utility induces agents to borrow in order to

finance current consumption: higher interest rates are then required to offset

this incentive and leave the growth rate of consumption unchanged. Similarly,

given ρ, a higher growth rate of consumption requires higher rates of return

to offset the incentive to shift resources to the present, reducing the difference

between the current and the future consumption levels. (The strength of this

effect is inversely related to the intertemporal elasticity of substitution, given

by 1/γ in the case of a CRRA utility function.) Finally, the uncertainty about the

rate of change of consumption captured by σ 2
c generates a precautionary saving

motive, inducing the consumer to accumulate financial assets with a depressing
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effect on their rates of return. According to (1.69), the expected rate of return

on the jth risky asset is also determined by σ 2
j (as a result of the approximation)

and by the covariance between rates of return and consumption changes. The

strength of the latter effect is directly related to the degree of the consumer’s

risk aversion.

For any asset j, the “risk premium,” i.e. the difference between the expected

return Et r
j
t+1 and the safe return r0

t+1, is

Et r
j
t+1 − r0

t+1 = −
σ 2

j

2
+ γ σjc. (1.71)

An important strand of literature, originated by Mehra and Prescott (1985),

has tested this implication of the model. Many studies have shown that the

observed premium on stocks (amounting to around 6% per year in the USA),

given the observed covariance σjc, can be explained by (1.71) only by values

of γ too large to yield a plausible description of consumers’ attitudes towards

risk. Moreover, when the observed values of � log c and σ 2
c are plugged into

(1.70), with plausible values for ρ and γ , the resulting safe rate of return is

much higher than the observed rate. Only the (implausible) assumption of a

negative ρ could make equation (1.70) consistent with the data.

These difficulties in the model’s empirical implementation are known as

the equity premium puzzle and the risk-free rate puzzle, respectively, and have

motivated various extensions of the basic model. For example, a more general

specification of the consumer’s preferences may yield a measure of risk aversion

that is independent of the intertemporal elasticity of substitution. It is there-

fore possible that consumers at the same time display a strong aversion toward

risk, which is consistent with (1.71), and a high propensity to intertemporally

substitute consumption, which solves the risk-free rate puzzle.

A different way of making the above model more flexible, recently

put forward by Campbell and Cochrane (1999), relaxes the hypothesis of

intertemporal separability of utility. The next section develops a simple version

of their model.

1.4.2 Extension: the habit formation hypothesis

As a general hypothesis on preferences, we now assume that what provides

utility to the consumer in each period is not the whole level of consumption

by itself, but only the amount of consumption in excess of a “habit” level. An

individual’s habit level changes over time, depending on the individual’s own

past consumption, or on the history of aggregate consumption.
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In each period t , the consumer’s utility function is now

u(ct , xt ) =
(ct − xt )

1−γ

1 − γ
≡

(zt ct )
1−γ − 1

1 − γ
,

where zt ≡ (ct − xt )/ct is the surplus consumption ratio, and xt (with ct > xt ) is

the level of habit. The evolution of x over time is here determined by aggregate

(per capita) consumption and is not affected by the consumption choices of

the individual consumer. Then, marginal utility is simply

uc(ct , xt ) = (ct − xt )
−γ ≡ (zt ct )

−γ .

The first-order conditions of the problem—see equation (1.65)—now have the

following form:

1 = Et

[

(1 + r
j
t+1)

1

1 + ρ

(

zt+1

zt

)−γ ( ct+1

ct

)−γ
]

, for j = 1, . . . , n. (1.72)

The evolution over time of habit and aggregate consumption, denoted by c̄, are

modeled as

� log zt+1 = φεt+1, (1.73)

� log c̄t+1 = g + εt+1. (1.74)

Aggregate consumption grows at the constant average rate g, with innova-

tions ε ∼ N(0, σ 2
c ). Such innovations affect the consumption habit,23 with the

parameter φ capturing the sensitivity of z to ε. Under the maintained hypothesis

of lognormal joint distribution of asset returns and the consumption growth

rate (and using the fact that, with identical individuals, in equilibrium c = c̄),

taking logarithms of (1.72), we get

0 = −ρ + Et r
j
t+1 − γ Et (� log zt+1) − γ Et (� log ct+1)

+ 1
2

vart (r
j
t+1 − γ� log zt+1 − γ� log ct+1).

Using the stochastic processes specified in (1.73) and (1.74), we finally obtain

the risk premium on asset j and the risk-free rate of return:

Et r
j
t+1 − r0

t+1 = −
σ 2

j

2
+ γ (1 + φ)σjc, (1.75)

r0
t+1 = γ g + ρ −

γ 2(1 + φ)2 σ 2
c

2
. (1.76)

Comparing (1.75) and (1.76) with the analogous equations (1.71) and (1.70),

we note that the magnitude of φ has a twofold effect on returns. On the one

23 The assumed stochastic process for the logarithm of s satisfies the condition c > x (s > 0):

consumption is never below habit.
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hand, a high sensitivity of habit to innovations in c enhances the precautionary

motive for saving, determining a stronger incentive to asset accumulation and

consequently a decrease in returns, as already shown by the last term in (1.70).24

On the other hand, a high φ magnifies the effect of the covariance between risky

returns and consumption (σjc) on the premium required to hold risky assets in

equilibrium.

Therefore, the introduction of habit formation can (at least partly) solve the

two problems raised by empirical tests of the basic version of the CCAPM: for

given values of other parameters, a sufficiently large value of φ can bring the

risk-free rate implied by the model closer to the lower level observed on the

markets, at the same time yielding a relatively high risk premium.

Appendix A1: Dynamic Programming

This appendix outlines the dynamic programming methods widely used in the

macroeconomic literature and in particular in consumption theory. We deal first

with the representative agent’s intertemporal choice under certainty on future income

flows; the extension to the case of uncertainty follows.

A1.1 Certainty

Let’s go back to the basic model of Section 1.1, assuming that future labor incomes

are known to the consumer and that the safe asset has a constant return. The

maximization problem then becomes

max
ct+i

[

Ut =

∞
∑

i=0

(

1

1 + ρ

)i

u(ct+i)

]

,

subject to the accumulation constraint (for all i ≥ 0),

At+i+1 = (1 + r)At+i + yt+i − ct+i.

Under certainty, we can write the constraint using the following definition of total

wealth, including the stock of financial assets A and human capital H : Wt =

(1+ r)(At +Ht ). Wt measures the stock of total wealth at the end of period t but before

consumption ct occurs, whereas At and Ht measure financial and human wealth at the

beginning of the period. In terms of total wealth W , the accumulation constraint for

24 A constant φ is assumed here for simplicity. Campbell and Cochrane (1999) assume that φ

decreases with s: the variability of consumption has a stronger effect on returns when the level

of consumption is closer to habit.
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period t becomes

Wt+1 = (1 + r)

[

At+1 +
1

1 + r

∞
∑

i=0

(

1

1 + r

)i

yt+1+i

]

= (1 + r)

[

(1 + r)At + yt − ct +
1

1 + r

∞
∑

i=0

(

1

1 + r

)i

yt+1+i

]

= (1 + r) [(1 + r)(At + Ht ) − ct ]

= (1 + r) (Wt − ct ).

The evolution over time of total wealth is then (for all i ≥ 0)

Wt+i+1 = (1 + r) (Wt+i − ct+i).

Formally, Wt+i is the state variable, giving, in each period t + i, the total amount

of resources available to the consumer; and ct+i is the control variable, whose level,

optimally chosen by the utility-maximizing consumer, affects the amount of resources

available in the next period, t + i + 1. The intertemporal separability of the objective

function and the accumulation constraints allow us to use dynamic programming

methods to solve the above problem, which can be decomposed into a sequence of

two-period optimization problems. To clarify matters, suppose that the consumer’s

horizon ends in period T , and impose a non-negativity constraint on final wealth:

WT+1 ≥ 0. Now consider the optimization problem at the beginning of the final

period T , given the stock of total wealth WT . We maximize u(cT ) with respect to cT ,

subject to the constraints WT+1 = (1 + r)(WT − cT ) and WT+1 ≥ 0. The solution yields

the optimal level of consumption in period T as a function of wealth: cT = cT (WT ).

Also, the maximum value of utility in period T(V) depends, through the optimal

consumption choice, on wealth. The resulting value function VT (WT ) summarizes the

solution of the problem for the final period T .

Now consider the consumer’s problem in the previous period, T − 1, for a given

value of WT−1. Formally, the problem is

max
cT−1

(

u(cT−1) +
1

1 + ρ
VT (WT )

)

,

subject to the constraint WT = (1+r)(WT−1−cT−1). As in the case above, the problem’s

solution has the following form: cT−1 = cT−1(WT−1), with an associated maximized

value of utility (now over periods T −1 and T) given by VT−1(WT−1). The same proced-

ure can be applied to earlier periods recursively (backward recursion). In general, the

problem can be written in terms of the Bellman equation:

Vt (Wt ) = max
ct

(

u(ct ) +
1

1 + ρ
Vt+1(Wt+1)

)

, (1.A1)

subject to Wt+1 = (1 + r)(Wt − ct ). Substituting for Wt+1 into the objective function

and differentiating with respect to ct , we get the following first-order condition:

u′(ct ) =
1 + r

1 + ρ
V ′

t+1(Wt+1). (1.A2)
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Using the Bellman equation at time t and differentiating with respect to Wt , we obtain

V ′
t+1(Wt+1):

V ′
t (Wt ) = u′(ct )

∂ct

∂Wt
+

1 + r

1 + ρ
V ′

t+1(Wt+1) −
1 + r

1 + ρ
V ′

t+1(Wt+1)
∂ct

∂Wt

=

(

u′(ct ) −
1 + r

1 + ρ
V ′

t+1(Wt+1)

)

∂ct

∂Wt
+

1 + r

1 + ρ
V ′

t+1(Wt+1)

=
1 + r

1 + ρ
V ′

t+1(Wt+1),

where we use the fact that the term in square brackets in the second line equals zero

by (1.A2). Finally, using again the first-order condition, we find

V ′
t (Wt ) = u′(ct ). (1.A3)

The effect on utility Vt of an increase in wealth Wt is equal to the marginal utility

from immediately consuming the additional wealth. Along the optimal consumption

path, the agent is indifferent between immediate consumption and saving. (The term

in square brackets is zero.) The additional wealth can then be consumed in any period

with the same effect on utility, measured by u′(ct ) in (1.A2): this is an application of

the envelope theorem.

Inserting condition (1.A3) in period t + 1 into (1.A2), we get the Euler equation,

u′(ct ) =
1 + r

1 + ρ
u′(ct+1),

which is the solution of the problem (here under certainty) already discussed in

Section 1.1.

The recursive structure of the problem and the backward solution procedure provide

the optimal consumption path with the property of time consistency. Maximization of

(1.A1) at time t takes into account Vt+1(Wt+1), which is the optimal solution of the

same problem at time t+1, obtained considering also Vt+2(Wt+2), and so forth. As time

goes on, then, consumption proceeds optimally along the path originally chosen at

time t . (This time consistency property of the solution is known as Bellman’s optimality

principle.)

Under regularity conditions, the iteration of Bellman equation starting from a

(bounded and continuous) value function VT ( · ) leads to a limit function V( · ), which

is unique and invariant over time. Such a function V = limj→∞ VT−j solves the con-

sumer’s problem over an infinite horizon. In this case also, the function that gives

the agent’s consumption c(W) is invariant over time. Operationally, if the problem

involves (1) a quadratic utility function, or (2) a logarithmic utility function and Cobb–

Douglas constraints, it can be solved by first guessing a functional form for V( · ) and

then checking that such function satisfies Bellman equation (1.A1).
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As an example, consider the case of the CRRA utility function25

u(c) =
c1−γ

1 − γ
.

The Bellman equation is

V(Wt ) = max
ct

(

c
1−γ

t

1 − γ
+

1

1 + ρ
V(Wt+1)

)

,

subject to the constraint Wt+1 = (1 + r)(Wt − ct ). Let us assume (to be proved later on)

that the value function has the same functional form as utility:

V(Wt ) = K
W

1−γ

t

1 − γ
, (1.A4)

with K being a positive constant to be determined. Using (1.A4), we can write the

Bellman equation as

K
W

1−γ

t

1 − γ
= max

ct

(

c
1−γ

t

1 − γ
+

1

1 + ρ
K

W
1−γ

t+1

1 − γ

)

. (1.A5)

From this equation, using the constraint and differentiating with respect to ct , we get

the first-order condition

c
−γ

t =
1 + r

1 + ρ
K [(1 + r)(Wt − ct )]

−γ ,

and solving for ct we obtain the consumption function ct (Wt ):

ct =
1

1 + (1 + r)
1−γ

γ (1 + ρ)−
1
γ K

1
γ

Wt , (1.A6)

where K is still to be determined.

To complete the solution, we combine the Bellman equation (1.A5) with the

consumption function (1.A6) and define

B ≡ (1 + r)1−γ /γ (1 + ρ)−1/γ

to simplify notation. We can then write

K
W

1−γ

t

1 − γ
=

1

1 − γ

[

Wt

1 + BK
1
γ

]1−γ

+
1

1 + ρ

K

1 − γ

[

(1 + r)

(

BK
1
γ

1 + BK
1
γ

)

Wt

]1−γ

, (1.A7)

where the terms in square brackets are, respectively, Ct and Wt+1. The value of K that

satisfies (1.A7) is found by equating the coefficient of W
1−γ

t on the two sides of the

25 The following solution procedure can be applied also when γ > 1 and the utility function is

unbounded. To guarantee this result an additional condition will be imposed below; see Stokey,

Lucas, and Prescott (1989) for further details.
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equation, noting that (1 + r)1−γ (1 + ρ)−1 ≡ Bγ , and solving for K :

K =

(

1

1 − B

)γ

. (1.A8)

Under the condition that B < 1, the complete solution of the problem is

V(Wt ) =

(

1

1 − (1 + r)
1 − γ

γ (1 + ρ)−
1
γ

)γ
W

1−γ

t

1 − γ
,

c(Wt ) =
[

1 − (1 + r)
1 − γ

γ (1 + ρ)−
1
γ

]

Wt .

A1.2 Uncertainty

The recursive structure of the problem ensures that, even under uncertainty, the solu-

tion procedure illustrated above is still appropriate. The consumer’s objective function

to be maximized now becomes

Ut = Et

∞
∑

i=0

(

1

1 + ρ

)i

u(ct+1),

subject to the usual budget constraint (1.2). Now we assume that future labor incomes

yt+i (i > 0) are uncertain at time t , whereas the interest rate r is known and constant.

The state variable at time t is the consumer’s certain amount of resources at the end of

period t : (1 + r)At + yt . The value function is then Vt ((1 + r)At + yt ), where subscript t

means that the value of available resources depends on the information set at time t .

Under uncertainty, the Bellman equation becomes

Vt [(1 + r)At + yt ] = max
ct

{

u(ct ) +
1

1 + ρ
EtVt+1[(1 + r)At+1 + yt+1]

}

. (1.A9)

The value of Vt+1( · ) is stochastic, since future income are uncertain, and enters (1.A9)

as an expected value.

Differentiating with respect to ct and using the budget constraint, we get the

following first-order condition:

u′(ct ) =
1 + r

1 + ρ
EtV

′
t+1[(1 + r)At+1 + yt+1].

As in the certainty case, by applying the envelope theorem and using the condition

obtained above, we have

V ′
t ( · ) =

1 + r

1 + ρ
EtV

′
t+1( · )

= u′(ct ).
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Combining the last two equations, we finally get the stochastic Euler equation

u′(ct ) =
1 + r

1 + ρ
Etu

′(ct+1),

already derived in Section 1.1 as the first-order condition of the problem.

Review Exercises

Exercise 5 Using the basic version of the rational expectations/permanent income model

(with quadratic utility and r = ρ), assume that labor income is generated by the following

stochastic process:

yt+1 = ȳ + εt+1 − δεt , δ > 0,

where ȳ is the mean value of income and ε is an innovation with Etεt+1 = 0.

(a) Discuss the impact of an increase of ȳ (�ȳ > 0) on the agent’s permanent income,

consumption and saving.

(b) Now suppose that, in period t +1 only, a positive innovation in income occurs: εt+1 > 0.

In all past periods income has been equal to its mean level: yt−i = ȳ for i = 0, . . . , ∞.

Find the change in consumption between t and t + 1 (�ct+1) as a function of εt+1,

providing the economic intuition for your result.

(c) With reference to question (b), discuss what happens to saving in periods t +1 and t +2.

Exercise 6 Suppose the consumer has the following utility function:

Ut =

∞
∑

i=0

(

1

1 + ρ

)i

u(ct+i, St+i),

where St+i is the stock of durable goods at the beginning of period t +i. There is no uncertainty.

The constraints on the optimal consumption choice are:

St+i+1 = (1 − δ)St+i + dt+i,

At+i+1 = (1 + r)At+i + yt+i − ct+i − pt+i dt+i,

where δ is the physical depreciation rate of durable goods, d is the expenditure on durable

goods, p is the price of durable goods relative to non-durables, and St and At are given. Note

that the durable goods purchased at time t + i start to provide utility to the consumer only

from the following period, as part of the stock at the beginning of period t + i + 1 (St+i+1).

Set up the consumer’s utility maximization problem and obtain the first-order conditions,

providing the economic intuition for your result.
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Exercise 7 The representative consumer maximizes the following intertemporal utility

function:

Ut = Et

∞
∑

i=0

(

1

1 + ρ

)i

u(ct+i, ct+i−1),

where

u(ct+i, ct+i−1) = (ct+i − γ ct+i−1) −
b

2
(ct+i − γ ct+i−1)2, γ > 0.

In each period t +i, utility depends not only on current consumption, but also on consumption

in the preceding period, t + i − 1. All other assumptions made in the chapter are maintained

(in particular ρ = r).

(a) Give an interpretation of the above utility function in terms of habit formation.

(b) From the first-order condition of the maximization problem, derive the dynamic equation

for ct+1, and check that this formulation of utility violates the property of orthogonality

of �ct+1 with respect to variables dated t.

Exercise 8 Suppose that labor income y is generated by the following stochastic process:

yt = λyt−1 + xt−1 + ε1t ,

xt = ε2t ,

where xt (= ε2t ) does not depend on its own past values ( xt−1, xt−2, . . .) and E(ε1t · ε2t ) = 0.

xt−1 is the only additional variable (realized at time t − 1) which affects income in period t

besides past income yt−1. Moreover, suppose that the information set used by agents to cal-

culate their permanent income y P
t is It−1 =

{

yt−1, xt−1

}

, whereas the information set used

by the econometrician to estimate the agents’ permanent income is �t−1 =
{

yt−1

}

. There-

fore, the additional information in xt−1 is used by agents in forecasting income but is ignored

by the econometrician.

(a) Using equation (1.7) in the text (lagged one period), find the changes in permanent

income computed by the agents (�y P
t ) and by the econometrician (�ỹ P

t ), considering the

different information set used (It−1 or �t−1).

(b) Compare the variance of �y P
t e �ỹ P

t , and show that the variability of permanent income

according to agents’ forecast is lower than the variability obtained by the econometri-

cian with limited information. What does this imply for the interpretation of the excess

smoothness phenomenon?

Exercise 9 Consider the consumption choice of an individual who lives for two periods only,

with consumption c1 and c2 and incomes y1 and y2. Suppose that the utility function in each

period is

u(c) =







ac − (b/2)c2 for c < a/b;

(a2/2b) for c ≥ a/b.

(Even though the above utility function is quadratic, we rule out the possibility that a higher

consumption level reduces utility.)
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(a) Plot marginal utility as a function of consumption.

(b) Suppose that r = ρ = 0, y1 = a/b, and y2 is uncertain:

y2 =







a/b + σ , with probability 0.5;

a/b − σ , with probability 0.5.

Write the first-order condition relating c1 to c2 (random variable) if the consumer maxi-

mizes expected utility. Find the optimal consumption when σ = 0, and discuss the effect

of a higher σ on c1.

Further Reading

The consumption theory based on the intertemporal smoothing of optimal consump-

tion paths builds on the work of Friedman (1957) and Modigliani and Brumberg

(1954). A critical assessment of the life-cycle theory of consumption (not explic-

itly mentioned in this chapter) is provided by Modigliani (1986). Abel (1990, part

1), Blanchard and Fischer (1989, para. 6.2), Hall (1989), and Romer (2001, ch. 7)

present consumption theory at a technical level similar to ours. Thorough overviews

of the theoretical and empirical literature on consumption can be found in Deaton

(1992) and, more recently, in Browning and Lusardi (1997) and Attanasio (1999),

with a particular focus on the evidence from microeconometric studies. When con-

fronting theory and microeconomic data, it is of course very important (and far from

straightforward) to account for heterogeneous objective functions across individuals

or households. In particular, empirical work has found that theoretical implications

are typically not rejected when the marginal utility function is allowed to depend

flexibly on the number of children in the household, on the household head’s age,

and on other observable characteristics. Information may also be heterogeneous: the

information set of individual agents need not be more refined than the econometri-

cian’s (Pischke, 1995), and survey measures of expectations formed on its basis can be

used to test theoretical implications (Jappelli and Pistaferri, 2000).

The seminal paper by Hall (1978) provides the formal framework for much later

work on consumption, including the present chapter. Flavin (1981) tests the empirical

implications of Hall’s model, and finds evidence of excess sensitivity of consumption

to expected income. Campbell (1987) and Campbell and Deaton (1989) derive theor-

etical implication for saving behavior and address the problem of excess smoothness of

consumption to income innovations. Campbell and Deaton (1989) and Flavin (1993)

also provide the joint interpretation of “excess sensitivity” and “excess smoothness”

outlined in Section 1.2.

Empirical tests of the role of liquidity constraints, also with a cross-country perspect-

ive, are provided by Jappelli and Pagano (1989, 1994), Campbell and Mankiw (1989,

1991) and Attanasio (1995, 1999). Blanchard and Mankiw (1988) stress the import-

ance of the precautionary saving motive, and Caballero (1990) solves analytically

the optimization problem with precautionary saving assuming an exponential utility
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function, as in Section 1.3. Weil (1993) solves the same problem in the case of constant

but unrelated intertemporal elasticity of substitution and relative risk aversion par-

ameters. A precautionary saving motive arises also in the models of Deaton (1991)

and Carroll (1992), where liquidity constraints force consumption to closely track

current income and induce agents to accumulate a limited stock of financial assets to

support consumption in the event of sharp reductions in income (buffer-stock saving).

Carroll (1997, 2001) argues that the empirical evidence on consumers’ behavior can

be well explained by incorporating in the life-cycle model both a precautionary saving

motive and a moderate degree of impatience. Sizeable responses of consumption to

predictable income changes are also generated by models of dynamic inconsistent

preferences arising from hyperbolic discounting of future utility; Angeletos et al. (2001)

and Frederick, Loewenstein, and O’Donoghue (2002) provide surveys of this strand of

literature.

The general setup of the CCAPM used in Section 1.4 is analyzed in detail by

Campbell, Lo, and MacKinley (1997, ch. 8) and Cochrane (2001). The model’s empir-

ical implications with a CRRA utility function and a lognormal distribution of returns

and consumption are derived by Hansen and Singleton (1983) and extended by,

among others, Campbell (1996). Campbell, Lo, and MacKinley (1997) also provide

a complete survey of the empirical literature. Campbell (1999) has documented the

international relevance of the equity premium and the risk-free rate puzzles, origi-

nally formulated by Mehra and Prescott (1985) and Weil (1989). Aiyagari (1993),

Kocherlakota (1996), and Cochrane (2001, ch. 21) survey the theoretical and empir-

ical literature on this topic. Costantinides, Donaldson, and Mehra (2002) provide

an explanation of those puzzles by combining a life-cycle perspective and borrowing

constraints. Campbell and Cochrane (1999) develop the CCAPM with habit formation

behavior outlined in Section 1.4 and test it on US data. An exhaustive survey of the the-

ory and the empirical evidence on consumption, asset returns, and macroeconomic

fluctuations is found in Campbell (1999).

Dynamic programming methods with applications to economics can be found in

Dixit (1990), Sargent (1987, ch. 1) and Stokey, Lucas, and Prescott (1989), at an

increasing level of difficulty and analytical rigor.
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