
Chapter 4

Stochastic Dynamic Programming

The aim of this chapter is to extend the framework we introduced in Chapter 3 to include

uncertainty. To evaluate decisions, we use the well known expected utility theory.1 With

uncertainty we will face Bellman equations of the following form

V (x, z) = sup
x′∈Γ(x,z)

F (x, x′, z) + βE [V (x′, z′) | z] , (4.1)

where z is a stochastic component, assumed to follow a (stationary) first order Markov

Process. A first order Markov process is a sequence of random variables {zt}∞t=0 with

the property that the conditional expectations depend only on the last realization of the

process, that is if C is a set of possible values for z, then

Pr {zt+1 ∈ C | zt, zt−1, ..., z0} = Pr {zt+1 ∈ C | zt} .

To make the above statements formally meaningful we need to review some concepts of

Probability Theory.

4.1 The Axiomatic Approach to Probability: Basic Con-

cepts of Measure Theory

I am sure you are all familiar with the expression Pr {zt+1 ∈ C | zt} for conditional proba-

bilities, and with the conditional expectation operator E [· | z] in (4.1). Probability theory

is a special case of the more general and very powerful Measure Theory, first formulated

in 1901 by Henri Léon Lebesgue.2

1For a review on the theories of decisions under uncertainty see Machina (1987).
2This outstanding piece of work appears in Lebesgue’s dissertation, Intégrale, Longueur, Aire, pre-

sented to the University of Nancy in 1902.
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We first introduce a set Z which will be our sample space. Any subset E of Z, will

be denoted as an event. In this way, all results of set theory - unions, intersections,

complements, ... - can be directly applied to events as subsets of Z. To each event we

also assign a “measure” µ(E) = Pr {E} called probability of the event. These values are

assigned according to the function µ which has by assumption the following properties

(or axioms):

1. 0 ≤ µ(E) ≤ 1;

2. µ(Z) = 1;

3. For any finite or infinite sequence of disjoint sets (or mutually exclusive events)

E1, E2, ....; such that Ei ∩ Ej = ∅ for any i, j, we have

µ
(
∪N
i=1Ei

)
=

N∑

i=1

µ (Ei) where N possibly equals ∞.

All properties 1-3 are very intuitive for probabilities. Moreover, we would intuitively like

to consider E as any subset of Z. Well, if Z is a finite or countable set then E can literally

be any subset of Z. Unfortunately, when Z is a uncountably infinite set - such as the

interval [0, 1] for example - it might be impossible to find a function µ defined on all

possible subsets of Z and at the same time satisfying all the three axioms we presented

above. Typically, what fails is the last axiom of additivity when N = ∞. Lebesgue

managed to keep property 3 above by defining the measure function µ only on the so-

called measurable sets (or events). This is not an important limitation, as virtually all

events of any practical interest tuned out to be measurable. Actually, in applications

one typically considers only some class of possible events. A subset of the class of all

measurable sets.

The reference class of sets Z represents the set of possible events, and will constitute

a σ-algebra.3 Notice that Z is a set of sets, hence an event E is an element of Z, i.e. in

contrast to E ⊂ Z we will write E ∈ Z. The pair (Z,Z) constitutes a measurable space

while the turple (µ, Z,Z) is denotes as a measured (or probability) space.

3A family Z of subsets of Z is called a σ algebra if: (i) both the empty set ∅ and Z belong to Z; (ii)

If E ∈ Z then also its complement (with respect to Z) Ec = Z\E ∈ Z; and (iii) for any sequence of

sets such that En ∈ Z for all n = 1, 2, .... we have that the set (∪∞

n=1En) ∈ Z. It is easy to show that

whenever Z is a σ-algebra then (∩∞

n=1En) ∈ Z as well. When Z is a set of real numbers, we can consider

our set of possible events as the Borel σ-algebra. Which is σ-algebra ‘generated’ by the set of all open

sets.
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I am sure it is well known to you that the expectation operator E [·] in (4.1) is nothing

more than an integral, or a summation when z takes finitely or countably many values.

For example, assume pi is the probability that z = zi. The expectation of the function f

can be computed as follows

E [f(z)] =
N∑

i=1

pif(zi).

One of the advantages of the Lebesgue theory of integration is that, for example, it

includes both summations and the usual concept of (Riemann) integration in an unified

framework. We will be able to compute expectations4

E [f(z)] =

∫

Z

f(z)dµ(z)

no matter how Z is and no matter what is the distribution µ of the events. For example,

we can deal with situations where Z is the interval [0, 1] and the event z = 0 has a

positive probability µ(0) = p0. Since the set of all measurable events Z does not include

all possible subsets of Z, we must restrict the set of functions f for which we can take

expectations (integrals) as well.

Definition 32 A real valued function f is measurable with respect to Z if for every real

number x the set

Ex
f = {z ∈ Z : f(z) ≥ x}

belongs to the set of events Z.

Sometimes we do a sort of inverse operation. We have in mind a class of real valued

functions F , each one defined over the set of events Z. We define a σ-algebra ZF so that to

have every f ∈ F measurable, and any such function f ∈ F is called as random variable.

Definition 33 The Lebesgue integral of a measurable positive function f ≥ 0 is defined

as follows ∫

Z

f(z)dµ(z) = sup
0≤φ≤f

∫

Z

φ(z)dµ(z) = inf
φ≥f≥0

∫

Z

φ(z)dµ(z).

4When at z the measure µ has a density, the notation dµ (z) corresponds to the more familiar fµ (z) dz.

When µ does not admits density, dµ (z) it is just the notation we use for its analogous concept.
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In the definition, φ is any simple (positive) function (in its standard representation),

that is, φ is a finite weighted sum of indicator functions5

φ(z) =
n∑

i=1

aiIEi
(z); ai ≥ 0; and its integral is

∫

Z

φ(z)dµ(z) =

n∑

i=1

aiµ(Ei),

where for each i, j Ei ∩ Ej = ∅; and ∪n
i=1Ei = Z.

The Lebesgue integral of f is hence (uniquely) defined as the supremum of integrals

of nonnegative dominated simple functions φ : such that for all z, 0 ≤ φ(z) ≤ f(z); which

in turn coincides with the infimum over all the dominating simple functions: φ ≥ f . We

do not have space here to discuss the implications of this definition6 however, one should

recall from basic analysis that the Riemann integral, that is the “usual” integral we saw

in our undergraduate studies, can be defined in a similar way; where instead of simple

functions one uses step functions. One can show that each function f which is Riemann

integrable it is also Lebesgue integrable, and that there are simple examples where the

converse is false.7

4.2 Markov Chains and Markov Processes

Markov Chains We now analyze in some detail conditional expectations for the simple

case where Z is finite. So, assume that the stochastic component z can take finitely many

values, that is z ∈ Z ≡ {z1, z2, ..., zN} , with corresponding conditional probabilities

πij = Pr {z′ = zj | z = zi} , i, j = 1, 2, ..., N.

5The indicator function of a set E is defined as

IE(z) =

{
1 if z ∈ E

0 otherwise.

6See for example SLP, Ch. 7.
7One typical counter-example is the function f : [0, 1] → [0, 1] defined as follows

f(z) =

{
1 if z is rational

0 otherwise.

This function is Lebesgue integrable with
∫
f(x)dx = 0, but it is not Riemann integrable.
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Since πij describes the probability of the system to move to state zj if the previous state

was zi, they are also called transition probabilities and the stochastic process form a

Markov chain. To be probabilities, the πij must satisfy

πij ≥ 0, and

N∑

j=1

πij = 1 for i = 1, 2, ..., N,

that is, they must belong to a (N−1)−dimensional simplex ∆N . It is typically convenient

to arrange the transition probabilities in a square array as follows

Π =




π11 π12 ... π1N

π21 π22 ... ...

... ... πij ...

πN1 ... ... πNN




Such an array is called transition matrix or Markov matrix, or stochastic matrix. If the

probability distribution over the state in period t is pt = (pt1, p
t
2, ...p

t
N ) , the distribution

over the state in period t+ 1 is ptΠ =
(
pt+1
1 , pt+1

2 , ...pt+1
N

)
, where

pt+1
j =

N∑

i=1

ptiπij , j = 1, 2, ..., N.

For example, suppose we want to know what is the distribution of the next period states if

in the current period the is zi. Well, this means that the initial distribution is a degenerate

one, namely pt = ei = (0, ..., 1, ..., 0) . As a consequence, the probability distribution

over the next period state is the i−th row of Π : eiΠ = (πi1, πi2, ...πiN ) . Similarly, if pt

is the period t distribution, then by the properties of the matrix multiplication, ptΠn =

p(Π · Π · ...Π) is the t + n period distribution pt+n over the states. It is easy to see that

if Π is a Markov matrix then so is Πn. A set of natural question then arises. Is there a

stationary distribution, that is a probability distribution p∗ with the property p∗ = p∗Π?

Under what conditions can we be sure that if we start from any initial distribution p0,

the system converges to a unique limiting probability p∗ = limn→∞ {p0Πn}?
The answer to the first question turns out to always be affirmative for Markov chains.

Theorem 18 Given a stochastic matrix Π, there always exists at least one stationary

distribution p∗ such that p∗ = p∗Π, with p∗i ≥ 0 and
∑N

i=1 p
∗
i = 1.

Proof. Notice that a solution to the system of equations p∗ = p∗Π corresponds to

solving p∗(I − Π) = 0, where I is the N dimensional identity matrix. Transposing both
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sides of the above equation gives

(I − Π′)p∗′ = 0.

So p∗ is a nonnegative eigenvector associated with a unit eigenvalue of Π′, normalized

to satisfy
∑

i p
∗
i = 1. So we can use linear algebra to show this result. Thanks to the

Leontief’s Input-Output analysis, during the 50s and 60s economics (re)discovered many

important theorems about matrices with nonnegative elements. Any matrix with non-

negative elements has a Frobenius root λ ≥ 0 with associated a nonnegative eigenvec-

tor. This existence result is the most difficult part of the proof and is due to Frobenius

(1912) (See also Takayama, 1996, Theorem 4.B.2, pp. 375). Fisher (1965) and Takayama

(1960) showed that when the elements of each column of the a matrix with nonnega-

tive elements sum to one then its Frobenius root equals one, i.e. λ = 1 (Takayama,

1996, Theorem 4.C.11, pp. 388). The proof of this last statement is simple: let p∗ ≥ 0

the eigenvector associated with λ. By definition λp∗ = Π′p∗, that is, λp∗i =
∑

j π
′
ijp

∗
j ,

i = 1, 2, ..., N. Summing up over i, we obtain

λ
N∑

i=1

p∗i =
N∑

i=1

N∑

j=1

π′
ijp

∗
j =

N∑

j=1

p∗j

(
N∑

i=1

π′
ij

)

since Π′ is the transpose of Π,
∑N

i=1 π
′
ij =

∑N
j=1 πij = 1. Hence λ =

∑N
j=1

p∗j
∑N

i=1
p∗i

= 1. Q.E.D.

Consider now the second question. Can we say that p∗ is unique? Unfortunately, in

order to guarantee that the sequence of matrices converges to a unique matrix P ∗ with

identical rows p∗, (so that for any p we have pP ∗ = p∗), we need some further assumptions,

as the next exercises shows.

Exercise 41 Assume that a Markov chain (with Z = {z1, z2}) is summarized by the

following transition matrix

Π =

[
π11 1− π11

1− π22 π22

]
.

A stationary distribution is hence a vector (q∗, 1− q∗) with 1 ≥ q∗ ≥ 0 such that (q∗, 1− q∗)·
Π = (q∗, 1− q∗) . We know from above that at least one such q∗ must exists.

(a) Using simple algebra show that q∗ solves (2− π22 − π11) q
∗ = (1− π22) , and discuss

conditions where q∗ might take multiple values.

(b) Now set π11 = π22 = π and state conditions for q∗ to be unique.

Here is a set of sufficient conditions for uniqueness.
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Theorem 19 Assume that πij > 0 for all i, j = 1, 2, ...N. There exists a limiting distri-

bution p∗ such that

p∗j = lim
n→∞

π
(n)
ij ,

where π
(n)
ij is the (i, j) element of the matrix Πn. And p∗j are the unique nonnegative

solutions of the following system of equations

p∗j =
N∑

k=1

p∗kπkj; or p∗ = p∗Π; and

N∑

j=1

p∗j = 1.

Proof. See below. Q.E.D.

The application of the transition matrix on a probability distribution p can be seen as

a mapping of the (N−1)−dimensional simplex into itself. In fact, under some conditions,

the operator

TΠ : ∆N → ∆N (4.2)

TΠp = pΠ

defines a contraction on the metric space
(
∆N , |·|N

)
where

|x|N ≡
N∑

i=1

|xi| .

Exercise 42 (i) Show that
(
∆N , |·|N

)
is a complete metric space. (ii) Moreover, show

that if πij > 0, i, j = 1, 2, ....; the mapping T in (4.2) is a contraction of modulus β = 1−ε,
where ε =

∑N
j=1 εj and εj = mini πij > 0.

When some π
(n)
ij = 0, we might loose uniqueness. However, following the same line of

proof one can show that the stationary distribution is unique as long as ε =
∑N

j=1 εj > 0.

Could you explain intuitively why this is the case?

Moreover, from the contraction mapping theorem, it is easy to see that the above

proposition remains valid if the assumption πij > 0 is replaced with: there exists a n ≥ 1

such that π
(n)
ij > 0 for all i, j. (see Corollary 2 of the contraction mapping Theorem (Th.

3.2) in SLP).

Notice that the sequence {Πn}∞n=0 might not always converge. For example, consider

Π =

[
0 1

1 0

]
. It is easy to verify that the sequence jumps from Π2n =

[
1 0

0 1

]
and
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Π2n+1 = Π. However, the fact that in a Markov chain the state space is finite implies that

the long-run averages {
1

T

T−1∑

t=0

Πt

}∞

T=1

do always converge to a stochastic matrix P ∗, and the sequence pt = p0Πt converges to

lim
T→∞

1

T

T−1∑

t=0

pt = p0P ∗.

In the example we saw above one can easily verify that 1
T

∑T−1
t=0 Πt → P ∗ =

[
1/2 1/2

1/2 1/2

]
,

and the unique stationary distribution is p∗ = (1/2, 1/2) .

In other cases, the rows of the limit matrix P ∗ are not necessarily always identical to

each other. For example, consider now the transition matrix Π =

[
1 0

0 1

]
. It is obvious

that in this case P ∗ = Π, which has two different rows. It is also clear that both rows

constitute a stationary distribution. This is true in general: any row of the limit matrix

P ∗ is an invariant distribution for the transition matrix Π.

What is perhaps less obvious is that any convex combination of the rows of P ∗ con-

stitute a stationary distribution, and that all invariant distributions for Π can be derived

by making convex combinations of the rows of P ∗.

Exercise 43 (i) Consider first the above example with P ∗ = Π =

[
1 0

0 1

]
. Show that

any vector p∗λ = (λ, 1− λ) obtained as a convex combination of the rows of P ∗ constitutes

a stationary distribution for Π. Provide an intuition for the result. (ii) Now consider the

general case, and let p∗ and p∗∗ two stationary distributions for a Markov chains defined

by a generic stochastic matrix Π. Show that any convex combination pλ of p∗ and p∗∗

constitute a stationary distribution for Π.

Markov Processes The more general concept corresponding to a Markov chain, where

Z can take countably or uncountably many values, is denoted as a Markov Process.

Similarly to the case where Z is finite, a Markov process is defined by a transition function

(or kernel) Q : Z×Z → [0, 1] such that: (i) for each z ∈ Z Q(z, ·) is a probability measure;

and (ii) for each C ∈ Z Q(·, C) is a measurable function.

Given Q, one can compute conditional probabilities

Pr {zt+1 ∈ C | zt = c} = Q(c, C)
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and conditional expectations in the usual way

E [f | z] =
∫

Z

f(z′)dQ(z, z′).

Notice that Q can be used to map probability measure into probability measures since

for any µ on (Z,Z) we get a new µ′ by assigning to each C ∈ Z the measure

(TQµ) (C) = µ′(C) =

∫

Z

Q(z, C)dµ(z),

and T is denoted as Markov operator.

We now define a very useful property for Q.

Definition 34 Q has the Feller property if for any bounded and continuous function f

the function

g(z) = (PQf)(z) = E [f | z] =
∫
f(z′)dQ(z, z′) for any z

is still bounded and continuous.

The above definition first of all shown another view of Q. It also defines an operator

(sometimes called transition operator) that in general maps bounded and measurable

functions into bounded measurable functions. When Q has the feller property the operator

PQ preserves continuity.

Technical Digression (optional). It turns out that the Feller property characterizes

continuous Markov transitions. The rigorous idea is simple. Let M be the set of all

probability measures on Borel sets Z over a metrizable space Z, and for each z, let

Q (z, ·) a member of M. The usual topology defined in the space of Borel measures is

the topology of convergence in distribution (or weak topology).8 It is now useful to make

pointwise considerations. For each z the probability measure Q (z, ·) can be seen as a

linear mapping from the set of bounded and measurable functions into the real numbers

according to x = 〈f,Q (z, ·)〉 =
∫
f(z′)dQ(z, z′).

It turns out that a transition function Q : Z → M is continuous if and only if it has

the Feller property. The fact that a continuous Q has the Feller property is immediate: By

definition of the topology defined on M (weak topology), via the map Ff (µ) = 〈f, µ〉 each

8In this topology, a sequence {µn} in M converges to µ if and only if
∫
fdµn →

∫
fdµ for all continuous

and bounded functions f.
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continuous and bounded function f : Z → IR defines a continuous real valued function

Ff : M → IR.9 Now note that when µ is Q (z, ·) we have Ff (Q (z, ·)) = (PQf)(z). Now,

continuity of Q means that as zn → z we have Q (zn, ·) → Q (z, ·) in M. Equivalently,

if we let µn (·) = Q (zn, ·) and use the usual topology on M, continuity of Q means that

Ff (Q (zn, ·)) → Ff (Q (z, ·)) (interpreted now as sequence of real numbers). We have

hence established that (PQf) = g is a continuous function in Z, i.e. that Q has the

Feller property. In order to show rigorously that the Feller property implies continuity -

although it is intuitive - one needs some more work.10

We can now study the issue of existence and uniqueness of a stationary distribution.

A stationary distribution for Q is a measure µ∗ on (Z,Z) such that for any C ∈ Z

µ∗(C) =

∫

Z

Q(z, C)dµ∗(z),

that is µ∗, is a fixed point of the Markov operator TQ. There are many results establishing

existence and uniqueness of a stationary distribution. Here is a result which is among the

easiest to understand, and that uses the Feller property of Q.

Theorem 20 If Z is a compact set and Q has the Feller property then there exists a

stationary distribution µ∗ : µ∗ = TQµ
∗, where µ = λ if and only if

∫
fdµ =

∫
fdλ for each

continuous and bounded function f.

Proof. See SLP, Theorem 12.10, page 376-77. The basic idea of the proof can also

be get as an application of one of the infinite dimensional extensions of the Brower fixed

point theorem (usually called Brower-Shauder-Tyconoff fixed point). We saw above that

whenever Q has the Feller property, the associated Markov operator TQ is a continuous

map from the compact convex (locally convex Hausdorff) space of distributions Λ into

itself. [See Aliprantis and Border (1994), Corollary 14.51, page 485] Q.E.D.

Similarly to the finite state case, this invariant measure can be obtained by looking at

the sequence
{

1
T

∑T−1
t=1 T

t
Qλ0

}∞

T=1
of T -period averages.

When the state space is not finite, we may define several different concepts of converge

for distributions. The most known ones are weak convergence (commonly denoted con-

vergence in distribution) and strong convergence (or convergence in total variation norm,

also denoted as setwise convergence). We are not dealing with these issues in these class

notes. The concept of weak convergence is in most cases all that we care about in the

9Let xµn
= Ff (µn) . By definition of weak topology, if µn → µ then Ff (µn) → Ff (µ) .

10The interest reader can have a look at Aliprantis and Border (1994), Theorem 15.14, page 531-2.
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context of describing the dynamics of an economic system. Theorem 20 deals with weak

convergence. The most known results of uniqueness use some monotonicity conditions on

the Markov operator, together with some mixing conditions. For a quite general treat-

ment of monotonic Markov operators, with direct applications to economics and dynamic

programming, see Hopenhayn and Prescott (1992).

If we require strong convergence, one can guarantee uniqueness under conditions sim-

ilar to those of Theorem 19, using the contraction mapping theorem. See Chapter 11 in

SLP, especially Theorem 11.12.

4.3 Bellman Principle in the Stochastic Framework

The Finite Z case. When the shocks belong to a finite set all the results we saw

for the deterministic case are true for the stochastic environment as well. The Bellman

Principle of optimality remains true since both Lemma 1 and 2 remain true. Expectation

are simply a weighted sums of the continuation values. In this case Theorem 12 remains

true under the same conditions as in the deterministic case. From the proof of Theorem

13 and 14 it is easy to see that also the verification and sufficiency theorems can easily be

extended to the stochastic case with finite shocks. We just need to require boundedness

to be true for all z. Even the Theorems 15 and 16 are easily extended to the stochastic

case following the same lines of proof we proposed in Chapter 3.1. In order to show you

that there is practically no difference between the deterministic and the stochastic case

when Z is finite, let me be a bit boring and consider for example the stochastic extension

of Theorem 15. Assume w.l.o.g. that z may take N values, i.e. Z = (z1, z2, ..., zN ). We

can always consider our fixed point

V (x, zi) = sup
x′∈Γ(x,zi)

F (x, x′, zi) + β
N∑

j=1

πijV (x′, zj), ∀i

in the space CN(X) of vectors of real valued functions:

V(x) = (V (x, z1), ..., V (x, zN )) = (V1(x), ..., VN(x))
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which are continuous and bounded in X with the metric dN∞, where11

dN∞(V,W) =

N∑

i=1

d∞ (Vi,Wi) =

N∑

i=1

sup
x

|V (x, zi)−W (x, zi)| .

One can easily show that such metric space of functions is complete, and that the same

conditions for a contraction in the deterministic case can be used here to show that the

operator

T : CN (X) → CN (X)

TV(x) =





supx′∈Γ(x,z1) F (x, x
′, z1) + β

∑N
j=1 π1jV (x′, zj)

supx′∈Γ(x,z2) F (x, x
′, z2) + β

∑N
j=1 π2jV (x′, zj)

...

supx′∈Γ(x,zN ) F (x, x
′, zN) + β

∑N
j=1 πNjV (x

′, zj)

is a contraction with modulus β. It is easy to see that both boundedness and - by the

Theorem of the Maximum - continuity is preserved under T. Similarly, given that (condi-

tional) expectations are nothing more than convex combinations, concavity is preserved

under T , and the same conditions used for the deterministic case can be assumed here to

guarantee the stochastic analogous to Theorem 16.

The General case When Z is continuous, we need to use measure theory. We need to

assume some additional technical restrictions to guarantee that the integrals involved in

the expectations and the limits inside those integrals are well defined.

Unfortunately, these technical complications prevent the possibility of having a result

on the lines of Theorem 12. The reason is that we one cannot be sure that the true value

function is measurable. As a consequence, the typical result in this case are in form of

the verification or sufficiency theorems. Before stating formally the result we need to

introduce some notation.

Definition 35 A plan π is an initial value π0 ∈ X and a sequence of (ht−measurable)

functions12

πt : H
t → X

11Another possibility is to use dmax
∞

dmax
∞

(V,W) = max
i

{d∞ (Vi,Wi)} = max
i

{
sup
x

|V (x, zi)−W (x, zi)|
}
.

12A function is said to be ht−measurable when it is measurable with respect to the σ−algebra generated

by the set of all possible ht histories Ht.
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for all t ≥ 1, where H t is the set of all length-t histories of shocks: ht = (z0, z1, ...zt) , zt ∈
Z.

That is, πt(h
t) is the value of the endogenous state xt+1 that is chosen in period t,

when the (partial) history up to this moment is ht. So, in a stochastic framework agents

are taking contingent plans. They are deciding what to do for any possible history, even

though some of these histories are never going to happen. Moreover, for any partial

history ht ∈ H t one can define a probability measure µt : µt(C) = Pr {ht ∈ C ⊆ H t}. In

this environment, feasibility is defined similarly to the deterministic case. We say that

the plan π is feasible, and write π ∈ Π(x0, z0) if π0 ∈ Γ(x0, z0) and for each t ≥ 1 and

ht we have πt(h
t) ∈ Γ(πt−1(h

t−1), zt). We will always assume that F,Γ, β and µ are such

that Π(x0, z0) is nonempty for any (x0, z0) ∈ X × Z, and that the objective function

U(π) = lim
T→∞

F (x0, π0, z0) +

T∑

t=1

βt

∫

Ht

F
(
πt−1(h

t−1), πt(h
t), zt

)
dµt(ht)

= lim
T→∞

F (x0, π0, z0) +

T∑

t=1

βtE0

[
F
(
πt−1(h

t−1), πt(h
t), zt

)]

is well defined for any π ∈ Π(x0, z0) and (x0, z0) . Similarly to the compact notation for

the deterministic case, the true value function V ∗ is defined as follows

V ∗(x0, z0) = sup
π∈Π(x0,z0)

U(π). (4.3)

Let me first state a verification theorem for the stochastic case.

Theorem 21 Assume that V (x, z) is a measurable function which satisfies the Bellman

equation (4.1). Moreover, assume that

lim
t→∞

βt+1E0

[
V (πt(h

t), zt+1)
]
= 0

for every possible contingent plan π ∈ Π(x0, z0) for all (x0, z0) ∈ X × Z; and that the

policy correspondence

G(x, z) =

{
x′ ∈ Γ(x, z) : V (x, z) = F (x, x′, z) + β

∫

Z

V (x′, z′)dQ(z, z′)

}
(4.4)

is non empty and permits a measurable selection. Then V = V ∗ and all plans generated

by G are optimal.
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Proof. The idea of the proof follows very closely the lines of Theorems 13 and 14.

A plan that solves the Bellman equation and that does not have any left-over value at

infinity, is optimal. Of course, we must impose few additional technical conditions imposed

by measure theory.13 For details the reader can see Chapter 9 of SLP. Q.E.D.

In order to be able to recover Theorem 12 we need to make an assumption on the

endogenous V ∗ :

Theorem 22 Let F be bounded and measurable. If the value function V ∗(x0, z0) defined

in (4.3) is measurable and assume that the correspondence analogous to (4.4) admits

a measurable selection. Then V ∗(x0, z0) satisfies the functional equation (4.1) for all

(x0, z0) , and any optimal plan π∗ (which solves (4.3)) also solves

V ∗(π∗
t−1(h

t−1), zt) = F (π∗
t−1(h

t−1), π∗
t (h

t), zt) + β

∫
V ∗(π∗

t (h
t), zt+1)dQ (zt, zt+1) ,

µt (·) almost surely for all t and ht emanating from z0.

Proof. The idea of the proof is similar to that of Theorem 12. For the several details

however, the reader is demanded to Theorem 9.4 in SLP. Q.E.D.

Let finally state the corresponding of Theorems 15 and 16 for the stochastic environ-

ment allowing for continuous shocks.

Theorem 23 Assume F is continuous and bounded; Γ compact valued and continuous;

Q possesses the Feller property, β ∈ [0, 1) and X is a closed and convex subset of IRl.

Then the Bellman operator T

(TW )(x, z) = max
x′∈Γ(x,z)

F (x, x′, z) + β

∫

Z

W (x′, z′)dQ(z, z′)

has a unique fixed point V in the space of continuous and bounded functions.

Proof. Once we have noted that the Feller property of Q guarantees that if W is

bounded and continuous function then
∫
Z
W (x′, z′)dQ(z, z′) is also bounded and contin-

uous for all (x′, z), we can apply basically line by line the proof of Theorem 15. Q.E.D.

Theorem 24 Assume F is concave continuous and bounded; Γ is continuous and with

convex graph; Q possesses the Feller property, β ∈ [0, 1) and X is a closed and convex

subset of IRl. Then the Bellman operator has a unique fixed point V in the space of concave,

continuous and bounded functions.

13For example, the policy correspondence G permits a measurable selection if there exists a function

h : X × Z → X, such that h(x, z) ∈ G(x, z) for all (x, z) ∈ X × Z.
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Proof. Again the proof is similar to the deterministic case. Once we have noted that

the linearity of the integral preserves concavity (since
∫
Z
dQ(z, z′) = 1 ) we can basically

apply line by line the proof of Theorem 16. Q.E.D.

It is important to notice that whenever the conditions of Theorem 23 are met, the

boundedness of V and an application of the Maximum Theorem imply the conditions of

Theorem 21 are also satisfied, hence V = V ∗ which is a continuous function (hence mea-

surable). In this case the Bellman equation fully characterizes the optimization problem

also with uncountably many possible levels of the shock.

4.4 The Stochastic Model of Optimal Growth

Consider the stochastic version of the optimal growth model

V (k0, z0) = sup
{kt+1}

∞

t=0

E0

[
∞∑

t=0

βtu (f(zt, kt)− kt+1)

]

s.t. 0 ≤ kt+1 ≤ f(zt, kt) for all t

k0 ∈ X, z0 ∈ Z,

where the expectation is over the sequence of shocks {zt}∞t=0. Assume that {zt}∞t=0 is an

i.i.d. sequence of shocks, each drawn according to the probability measure µ on (Z,Z).

Exercise 44 Let u(c) = ln c and f(z, k) = zkα, 0 < α < 1 (so δ = 1). I tell you that the

optimal policy function takes the form kt+1 = αβztk
α
t for any t and zt. (i) Use this fact

to calculate an expression for the optimal policy π∗
t (h

t) [recall that ht = (z0, ...zt)] and

the value function V ∗(k0, z0) for any initial values (k0, z0), and verify that V ∗ solves the

following Bellman equation

V (k, z) = max
0≤k′≤zkα

ln(zkα − k′) + βE [V (k′, z′)] .

(ii) Now show that a solution to the above functional equation is

V (k, z) = A(z) +
α

1− βα
ln k,

and discuss the relationship between V ∗ and V.

This model can be extended in many directions. This model with persistent shocks

and non inelastic labor supply has been used in the Real Business Cycles literature to
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study the effects of technological shocks on aggregate variables like consumption and

employment. This line of research started in the 80s, and for many macroeconomists is

still the building block for any study about the aggregate real economy. RBC will be the

next topic of these notes. Moreover, since most interesting economic problem do not have

closed forms, you must first learn how to use numerical methods to approximate V and

perform simulations.
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