
Chapter 5

A Quick Introduction to Numerical

Methods

One of the main advantages of the recursive approach is that we can use the computer

to solve numerically interesting models. There is a wide variety of approaches. Each

method uses a different characteristic of optimality involved in the dynamic programming

method. In this chapter, we only consider - briefly - a couple of approaches which both

use very heavily the Bellman equation (BE) we studied in the previous chapters. For a

more exhaustive analysis we suggest Marimon and Scott (1999), Judd (1998), and Santos

(1999).

5.1 Value Function Iteration

Let X the state space. Recall that the BE in the deterministic case takes the following

form:

V (x) = max
x′∈Γ(x)

F (x, x′) + βV (x′) .

The theoretical idea behind the value function iteration approach is to use the contraction

mapping generated by the Bellman operator T associated to the dynamic programming

problem to derive the value function V = TV.

The algorithm recalls the ‘guided guesses’ approach we saw in Chapter 1, and it works

as follows:

1. Pick an initial guess V0 for the value function: V0 : X → IR.

2. Apply the T operator to it and get a new function V1 = TV0

87

88 CHAPTER 5. A QUICK INTRODUCTION TO NUMERICAL METHODS

3. Then apply again T to V1 and get V2 = TV1 and so on until the fixed point of the

operator: V ∗ = TV ∗ is reached.

Note few things:

First, the maximization required by T should be done by using numerical algorithms.

There are very many numerical algorithms available, each with its own advantages and

disadvantages. We will not analyze this specific aspect of the problem here. We demand

the interested reader to Judd (1998) and the literature cited there.

Second, the operator T works in the space of functions. Each time the state space is

not a finite set the space of functions constitute an infinite dimensional space. Clearly, a

computer cannot deal with infinite dimensional spaces. We are hence forced to reduce the

mapping T to map finite dimensional spaces into itself. This is done by approximating the

(value) function. The two most commonly used methods of dealing with such infinities

are the discretization and the smooth approximation methods. We will briefly analyze

both of them in turn. We will then analyze another method of approximating the value

function which uses directly the functional equation: the collocation method.

Third, the computer cannot perform an infinite amount of iterations in finite time.

The exact fixed point condition V ∗ = TV ∗ is however very difficult to obtain in finitely

many iterations. We are hence forced to allow for a degree of tolerance.

5.1.0.1 Discretization

The idea of this method is to substitute the value function with a discrete version of it by

discretizing the state space. In this way, we solve two problems at once. First, the (ap-

proximated) Bellman operator T̂ maps finite dimensional vectors into finite dimensional

vectors. Second, the maximization procedure at each step is particularly simple. The

algorithm works as follows:

1. Take the state space X, and discretize it, say X̂ =
[
x1, x2, x3,, xN

]
.

2. Pick an initial guess V0 by associating one value to each state level, say V̂0 =[
v10, v

2
0,, v

N
0

]
.

3. For each xi ∈ X̂, look for the xj(= x′) ∈ X̂ which solves

max
xj∈X̂, xj∈Γ̂(xi)

F
(
xi, xj

)
+ βvj0

where Γ̂ is possibly an approximated version of the feasibility due to discretization.

Sometimes we do not need to relax Γ as for example we can simply substitute it into

5.1. VALUE FUNCTION ITERATION 89

F and solve for an unconstrained problem. Notice that this a very simple procedure

as it involves the choice of the maximal element among finitely many.

4. Denote vi1 the value associated to F
(
xi, xj

∗
)
+βvj

∗

0 where j∗ is the index that delivers

the maximal value at the previous stage.

5. If we do it for all xi we get a new N dimensional vector of values which constitutes

our new (discretized) function V̂1 =
[
v11, v

2
1,, v

N
1

]
.

6. And so on until the vectors V̂n and V̂n+1 are ‘close’ enough to each other. Where

‘close’ is defined according to some metric. For example:

d
(
V̂n, V̂n+1

)
=
∑

i

̟i
∣∣vin − vin+1

∣∣ < ε,

where ̟i are pre-specified weights and ε is the tolerance level.

Example: The Deterministic Optimal Growth Model In order to see more pre-

cisely how this method works, we will consider its application to the optimal growth

model.

First of all, we need to parametrize the problem. We use the Cobb-Douglas production

function and a CRRA utility:

f(k) = kα + (1− δ) k and u (c) =
c1−σ

1− σ
,

where δ is the depreciation rate, α is the capital share, and 1
σ

is the intertemporal elasticity

of substitution.

We will consider the special case where σ = 1. In this case, u (c) = ln c. In order

to compare our approximated solution to the exact one, we start by assuming a 100%

depreciation rate, i.e. δ = 1.

The problem to be solved is hence

V (k) = max
0≤k′≤kα

ln (kα − k′) + βV (k′) ,

We know from Chapter 1 that in this case g(k) = αβkα. We now compute it by using

the discretization method. We shall open the Matlab program and write our computation

code:1

1I thank Liam Graham for lending me his simple Matlab code.

90 CHAPTER 5. A QUICK INTRODUCTION TO NUMERICAL METHODS

Initialize the problem

clear all;

close all;

Define parameters

beta=.9; % β = .9

alpha=.35; % α = .35

NumPoints =100;

Discretize the state space around the steady state capital stock

k_bar = (alpha*beta)^(1/(1-alpha)); % Recall that k∗ = (αβ)
1

1−α

k_lo = k_bar*0.5;

k_hi = k_bar*2;

step = (k_hi-k_lo)/NumPoints;

K = k_lo:step:k_hi;

n=length(K);

Since loops in Matlab are very slow, while matrix manipulations are very fast, we first

build an n× nmatrix whose columns are output at each value of k

Y= K.^alpha;

YY = ones(n,1)*Y;

Then another n× nmatrix whose columns are capital

KK = ones(n,1)*K;

Consumption at each level of k′is then given by

C=YY-KK’;

Calculate the utility arising from each level of consumption

U=log(C);

Take an initial guess at the value function

V = zeros(n,1);

Apply the operator:

W = U + β

0

0

..

0

 [1 11]

VV=V*ones(1,n);

W=U+beta*VV;

5.1. VALUE FUNCTION ITERATION 91

Given a k, we want to find the k′ that solves

TV (k1)

TV (k2)

..

TV
(
kN
)

 = max W

V=max(W)’;

Main iteration loop for the value function.

flag=1;

while (flag > 10^ (-2))

VV=V*ones(1,n);

W=U+beta*VV;

V1=max(W)’;

flag = max(abs(V1-V));

V=V1;

end

When the value function has converged, find the policy function i.e. the k′ that gives

the maximum value of the operator for each k. In order to accomplish this, we first find

the vector of indices where W takes its maximum value:

[val,ind]=max(W);

Then we use the indices to pick out the corresponding values of k.

k_star = K(ind);

Finally, let’s keep track of the analytical optimal policy for comparison purposes:

k_true = K.*alpha*beta;

We can then plot the two policies in the same figure.2

Exercise 45 Open the file discrete.m in Matlab. Compute and plot the policy for

increasing levels of the discount factor, say for β between .9 and .99. Comment on the

different computation times needed for convergence. Now set back β = .9 and increase the

range of values of k between 0.4k∗ and 5k∗ and perform the same computations. Comment

your results. [Hint: Be careful that a too wide grid might create negative consumption, and

obviously you do not want that!] Now modify the code so that to allow for a depreciation

rate δ below 100%. Produce figures for different values of α and δ : Say, α between

.2 and .5 and δ between .05 and .3. Comment your results from an economic point of

view.[Warning: Recall that consumption must be nonegative.]

2Creating plots with Matlab is quite easy. Have a look at the file: discrete.m

92 CHAPTER 5. A QUICK INTRODUCTION TO NUMERICAL METHODS

5.1.0.2 Smooth Approximation

This method reduces substitutes the value function V with a parametrized one Vθ where

θ ∈ Θ and Θ is a subset of an k−dimensional space.

In order to have a theoretically justified procedure, we require that Vθ is ‘potentially’

able to approximate V very well. Formally, we require:

lim
k→∞

inf
θ∈Θ⊂ℜk

‖Vθ − V ‖∞ = 0

where ‖·‖∞ is the sup norm, that is, ‖V ‖∞ = supx∈X |V (x)| . This kind of approximation

are said dense.

One of the most commonly used dense sets is the set of polynomials, which is dense

in the space of continuous functions by the Weierstrass theorem. In this case, V is

approximated (or interpolated) by

Vθ (x) =
k∑

i=1

θipi(x), for all x ∈ X,

where pi(x) is the i−th order polynomial,3or the Chebyshev polynomial pi(x) = cos(i arc cos(x)),

Legendre, Hermite polynomials, Splines, etc... . The number of (independent) polynomi-

als is called the degree of approximation.

We will see, that also in this case we use a discretized version X̂ of the state space.

In this case, for a different propose. The value function will indeed be defined on all the

original state space X.

The numerical algorithm works as above:

1. Discretize the state space to X̂, fix the size k and the type pi of polynomials you want

to consider (say the set of the first 20 Chebyshev polynomials). Where ♯X̂ > k+1.

2. Start with a vector of weights θ0 =
[
θ10, θ

2
0, θ

3
0,, θ

N
0

]
. This gives you the initial

guess: V̂0 (x) =
∑k

i=1 θ
i
0p

i(x) for all x ∈ X.

3. For each xi ∈ X̂, define

T̂
(
Vθ0(x

i)
)
= max

x′∈Γ(xi)
F
(
xi, x′

)
+ βV̂0 (x

′)

where Γ is the original correspondence since x′ is now allowed to vary in the whole

X. In this case, the maximization stage requires the use of a numerical algorithm

3A i-th order polynomial takes the form pi (x) =
∑i

s=1 asx
s, where the superscript s indicates the

power s of x.

5.2. SOLVING DIRECTLY THE FUNCTIONAL EQUATION: PROJECTION METHODS93

as x varies over a continuum. This is obviously more demanding. The advantage is

that, all values of x are somehow evaluated when obtaining the value function.

4. Compute the new vector of weights θ1 by minimizing some error function, for ex-

ample a weighted least square criterion as follows:

EN (θ1; θ0) ≡

√√√√
N∑

i=1

̟i

∣∣∣Vθ1(xi)− T̂ (Vθ0(x
i))
∣∣∣
2

(5.1)

where xi ∈ X̂ belong to the pre-specified grid of points, and ̟i are appropriate

weights. Some points in the grid might indeed be more important the others (for

example, consider the points close to the steady state for optimal growth models).

5. Do so until a vector of weights θn is reached such that for example
∑k

i=1

∣∣θin − θin−1

∣∣ <
ε, where ε is the tolerance level. We then can evaluate the approximation error via

EN (θn; θn).

5.2 Solving Directly the Functional Equation: Projec-

tion Methods

We saw that the BE also constitutes a functional equation of the form: TV − V = 0.

Another possibility is hence to directly look for a solution of the functional equation.

Again, the Bellman functional equation typically imposes an infinite number (in fact

possibly a continuum) of conditions, namely:

(TV)(x)− V (x) = 0 for all x ∈ X.

And a computer cannot deal with such huge number of equations. One must therefore

settle for an approximate solution that satisfies the functional equation closely. Projection

methods approximate the function V with Vθ and then look for the vector of parameters

θ∗ which minimizes the distance between Vθ(x) − T̂ (Vθ(x)) , such us the error EN(θ; θ)

for example. Note however that there is another complication involved with the above

equation. The function T̂ (Vθ(x)) is not easy to compute. In particular, there is no

analytical way of getting it. This is the reason why Projection methods are combined

with policy function iteration.

The Euler equation though is also a characteristic of the optimal program. In partic-

ular, if g (x) is the value function of our problem, then in the optimal growth model, with

94 CHAPTER 5. A QUICK INTRODUCTION TO NUMERICAL METHODS

u = ln we have
1

kα − g(k)
= βα (g (k))α−1 1

(g (k))α − g (g (k))
.

In general we have a functional equation of the form

H (x, g (x)) = 0

where the unknown g is our target, while H : IR2 → IR is a known function.

Projection methods then approximate the function g with ĝ (x; θ) and look for the

vector of weights θ∗ that minimizes a given error function based onH and on a nonnegative

function φ:

θ∗ ∈ argmin
θ

∫
φ (x) |H (x, ĝ (x; θ))| ,

with φ (x) ≥ 0 for all x. When φ takes positive values only at finitely many points in

X, we obviously only evaluate the function at few points in a given grid X̂ ad we get an

error function such as that in (5.1). In this case, the method is called collocation method.4

In practice, these techniques constitute other methods to approximate functions. The

collocation method for example, is a generalization of the so called interpolation methods.

Example The collocation method applied to the optimal growth model looks for

parameters θ = (θ1, θ2, ...θq) that minimize

√√√√
N∑

i=1

̟i

∣∣∣∣
1

kαi − ĝ(ki; θ)
− βα (ĝ (ki; θ))

α−1 1

(ĝ (ki; θ))
α − ĝ (ĝ (ki; θ) ; θ)

∣∣∣∣
2

,

where ki, ̟
i i = 1, 2, ..N, N > q+1 are the points in a pre-specified grid of capital levels

and given weights respectively, and ĝ is for exmple a polynomial of the form

ĝ(k; θ) = θ0 + θ1k + θ2k2 + ...+ θqkq.

4See McGrattan’s chapter 6 in Marimon and Scott’s book for several other methods.

Bibliography

[1] [AC] Adda J., and Cooper (2003) Dynamic Economics: Quantitative Methods

and Applications, MIT Press.

[2] Judd, K.L. (1998), Numerical Methods in Economics, Cambridge, MA, MIT

Press.

[3] Marimon, R., and A. Scott (1999) Computational Methods for the Study of Dy-

namic Economies, Oxford University Press.

[4] Santos, M. S. (1999) “Numerical Solutions of Dynamic Economic Models,” in J. B.

Taylor, and M. Woodford eds., Handbook of Macroeconomics, Vol. 1A, Elsevier:

311-386.

[5] Sargent, T. (1987) Dynamic Macroeconomic Theory, Harward University Press.

[6] [LS] Ljungqvist, L., and T. J. Sargent (2004), Recursive Macroeconomic Theory,

Second Edition, MIT Press.

[7] [SLP] Stokey, N., R. Lucas and E. Prescott (1991), Recursive Methods for Eco-

nomic Dynamics, Harvard University Press.

95

