
Demographic Trends, the Dividend-Price Ratio and

the Predictability of Long-Run Stock Market Returns

Carlo A. Favero∗

Bocconi University, IGIER & CEPR

Arie E. Gozluklu†

Bocconi University

Andrea Tamoni‡

Bocconi University

This Version: March, 2010

Abstract

This paper documents the existence of a slowly evolving trend in the dividend-

price ratio, , determined by a demographic variable, : the middle-aged to young

ratio. Deviations of  from this long-run component explain transitory but persistent

fluctuations in stock market returns. The relation between and  is a prediction

of an overlapping generation model. The joint significance of  and  in long-

horizon forecasting regressions for market returns explain the mixed evidence on the

ability of  to predict stock returns and provide a model-based interpretation of

statistical corrections for breaks in the mean of this financial ratio.
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I Introduction

This paper characterizes the relationship between the dividend price ratio and stock market

returns in a model where a demographic variable, MY, the middle aged to young ratio,

captures the slowly evolving component in the dividend-price ratio. Interest in this model is

partly motivated by the very high persistence of the dividend-price ratio that makes long-

horizon regressions hard to interpret. MY allows to extract from the log dividend-price a

stationary variable capturing time-variation in the investment opportunity set and to specify

a more reliable forecasting model for long-horizon stock market returns. Demographics are a

very natural input into a forecasting model of long-horizon returns, and, consequently, into

the optimal asset allocation decision of a long-horizon investor. We interpret MY as the

information component that drives long-horizon stock market fluctuations, after the noise in

short-horizon stock market fluctuations subsides.

The empirical relevance of the dividend-price ratio for predicting long-run stock

market returns is one of the most debated issues in financial econometrics. In fact, this

variable regularly plays an important role in recent empirical literature that has replaced the

long tradition of the efficient market hypothesis (Fama, 1970) with a view of predictability

of returns (see, for example, Cochrane, 2007). However, there is an ongoing debate on the

robustness of return predictability and its potential use from a portfolio allocation perspective

(Boudoukh et al. (2008), Goyal and Welch (2008)).

Most of the available evidence on predictability can be framed within the dynamic div-

idend growth model proposed by Campbell and Shiller (1988). This model relies on a log-

linearized version of one-period returns on the stock portfolio. Under the assumption of its

stationarity and of the validity of a standard transversality condition,the log of the price-

dividend ratio, , is expressed as a linear function of the future discounted dividend growth,
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∆+ and of future returns, 

+ :

 = +

∞X
=1

−1[(

+ − ̄)− (∆+ − ̄)] (1)

where  the mean of the dividend-price ratio, ̄ the mean of dividend growth rate, ̄ the

mean of log return and  are constants.

Under the maintained hypothesis that stock market returns, and dividend-growth are

covariance-stationary, Eq. (1) says that the log dividend-price ratio is stationary, i.e. the

(log) price and the (log) dividend are cointegrated with a (-1,1) cointegrating vector, and that

deviations of (log) prices from the common trend in (log) dividends summarize expectations

of either stock market returns, or dividend growth or some combination of the two.

The empirical investigation of the dynamic dividend growth model has established a few

empirical results :

(i)  is a very persistent time-series and forecasts stock market returns and excess

returns over horizons of many years (Fama and French (1988), Campbell and Shiller (1988),

Cochrane (2005, 2007).

(ii)  does not have important long-horizon forecasting power for future discounted

dividend-growth (Campbell (1991), Campbell, Lo andMcKinlay (1997) and Cochrane (2001)).

(iii) the very high persistence of  has led some researchers to question the evidence

of its forecasting power for returns, especially at short-horizons. Careful statistical analysis

that takes full account of the persistence in  provides little evidence in favour of the

stock-market return predictability based on this financial ratio ( Nelson and Kim (1993);

Stambaugh (1999); Ang and Bekaert (2007); Valkanov (2003); Goyal and Welch (2003) and

Goyal and Welch (2008)). Structural breaks have also been found in the relation between

 and future returns (Neely and Weller (2000), Paye and Timmermann (2006) and Rapach

and Wohar (2006)).

(iv) More recently, Lettau and Ludvigson (2001, 2005) have found that dividend growth
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and stock returns are predictable by long-run equilibrium relationships derived from a lin-

earized version of the consumer’s intertemporal budget constraint. The excess consumption

with respect to its long run equilibrium value is defined by the authors alternatively as a

linear combination of labour income and financial wealth,  or as a linear combination of

aggregate dividend payments on human and non-human wealth,   and  are much

less persistent than  they are predictors of stock market returns and dividend-growth,

and, when included in a predictive regression relating stock market returns to  they

swamp the significance of this variable. Lettau and Ludvigson (2005) interpret this evidence

in the light of the presence of a common component in dividend growth and stock market

returns. This component cancels out from (1)   and  are instead able to capture it

as the linearized intertemporal consumer budget constraint delivers a relationship between

excess consumption and expected dividend growth or future stock market returns that is

independent from their difference.

A recent strand of the empirical literature has related the contradictory evidence on the

dynamic dividend growth model to the potential weakness of its fundamental hypothesis that

the log dividend-price ratio is a stationary process (Lettau and Van Nieuwerburgh (2008),

LVN henceforth). LVN use a century of US data to show evidence on the breaks in the

constant mean  . We report the time series of US data on  over the last century in

Figure 1. As a matter of fact, the evidence from univariate test for non-stationarity and

bivariate cointegration tests does not lead to the rejection of the null of the presence of a

unit-root in 
1

Insert here Figure 1

1The Dickey-Fuller test for the null of non-stationarity delivers an observed statistics of -2.34 when

computed over the full sample 1911-2008 and a value of −172 when computed over the sample 1955-2008.
This evidence is confirmed by the implementation of the Johansen (1991) test on a bivariate VAR for  and

 that does not reject the null hypothesis of at most zero cointegrating vectors over the full-sample and the

post-war subsample.
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As shown in Figure 1, LVN identify two statistically significant breaks in the mean of 

in 1954 and 1991. They then provide evidence that deviations of  from its time-varying

mean have a much stronger forecasting power for stock market returns than deviations of 

from a constant mean2. This evidence for time-variation in the mean of the dividend-price

ratio has been also confirmed by Johannes et al. (2008), who estimate the process for log

dividend-price ratio within a particle filtering framework.

So far the evidence towards a slowly evolving mean in  has been reported as a pure

statistical fact. LVN give some hints on possible causes for the breaks arising from economic

fundamentals due to technological innovation, changes in expected return, etc. but do not

explore the possible effects of fundamentals any further. The idea of correcting  to reduce

its persistence has been also pursued by an alternative strand of research that relates the

apparent non-stationarity of this variable to a shift in corporate payout policies. Boudoukh

et al. (2007) provide a new measure of the cash flow based net payout yield (dividends

plus repurchases minus issuances are used instead of dividends to construct the relevant

ratio) that is more quickly mean reverting than the dividend-price ratio. Yet, this suggested

measure is unlikely to explain the full decrease in this financial ratio as argued by LVN.

Moreover other financial ratios such as earning-price ratio witness similar declines.

The aim of our paper is to investigate the possibility that the slowly evolving mean in the

log dividend-price is related to demographic trends. We first illustrate how the theoretical

model by Geanakoplos, Magill and Quinzii (2004, henceforth, GMQ) implies that a specific

demographic variable,  the proportion of middle-aged to young population, explains

fluctuations in the dividend yield.

GMQ consider an overlapping generation model where the demographic structure mimics

the pattern of live births in the US, which have featured alternating twenty-year periods of

2These results are confirmed by the search for possible structural breaks in the cointegrating relationship

based on the application of the recursive test based on the non zero-eigenvalues suggested in Hansen and

Johansen (1999). The eigenvalue shows a remarkable amount of variability over the examination period with

indication of three break points around 1950, 1980, 2000.
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boom and busts. They conjecture that the life-cycle portfolio behavior (Bakshi and Chen

(1994)), which suggests that agents should borrow when young, invest for retirement when

middle-aged, and live off from their investment once they are retired, plays an important role

in determining equilibrium asset prices. In their model, the demographic structure requires

that when the MY ratio is small (large), there will be excess demand for consumption (saving)

by a large cohort of retirees (middle-aged). For the market to clear, equilibrium prices of

financial assets and therefore the dividend-price ratio should adjust, i.e. decrease (increase),

so that saving (consumption) is encouraged for the middle-aged. We take the GMQmodel to

the data via the conjecture that fluctuations in  could capture a slowly evolving mean

in  within the dynamic dividend growth model. Demographic trends should capture

the slowly evolving mean in  and then, deviations of  from  could be used as a

potential predictor for long-term stock market returns and dividend growth. Our empirical

strategy has the potential for identifying separately the importance of demographic variables

for high-frequency and low-frequency fluctuations in asset prices. Investigations conducted

in the literature on the interaction between asset prices and demographic variables have

traditionally concentrated either on high-frequency or low frequency fluctuations but have

never considered an empirical framework based on the dynamic dividend growth model,

capable of accommodating both of them, with a different role (see Erb et al. (1996), Poterba

(2001), Goyal (2004), Ang and Maddaloni (2005) and DellaVigna and Pollet (2006)).

We first use long-run predictive regressions and cointegration analysis to assess the sta-

tistical significance of  in a dynamic dividend growth model. The robustness of our

results is evaluated by comparing the predictive power of the dividend-price ratio corrected

for demographics with that of the dividend-price ratio, the dividend-price ratio corrected for

breaks in mean (LVN) and the cash flow based net payout yield (Boudoukh et al. (2007)).

The role of  is then further investigated against different alternative specifications, in

particular those based on  and . Finally, the availability of long-run projections for

 is exploited to derive predictions of long-run equity returns up to 2050.
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II Demography and the Dividend-Price Ratio: The

GMQ Model

GMQ analyze an overlapping generation model in which the demographic structure mimics

the pattern of live births in the US. Live births in the US have featured alternating twenty-

year periods of boom and busts. They consider an OLG exchange economy with a single good

(income) and three periods; young, middle-aged, retired. Each agent (except retirees) has an

endowment and labor income w= (w,w,0). There are two types of financial instruments,

a riskless bond and a risky asset, which allow agents to redistribute income over time. In

the simplest version of the model, dividends and wages are deterministic, hence the bond

and the risky asset are perfect substitutes. GMQ assume that in odd (even) periods a large

(small) cohort N(n) enters the economy, therefore in every odd (even) period there will be

{}({ }) cohorts living. They conjecture that the life-cycle portfolio behavior
(Bakshi and Chen (1994)) which suggests that agents should borrow when young, invest for

retirement when middle-aged, and live off from their investment once they are retired, plays

important role in determining equilibrium asset prices.

Let  () be the bond price and
©
c,c


,c




ª
(
©
c,c


,c




ª
) the consumption stream in

the odd (even) period. The agent born in an odd period then faces the following budget

constraint

 + 

 + 


 =  + 

 (2)

and in an even period

 + 

 + 


 =  + 

 (3)

Moreover, in equilibrium the following resource constraint must be satisfied

 +  + =  +  + (4)

 + +  =  + + (5)
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where  is the aggregate dividend for the investment in financial markets. If  were equal

to  the agents would choose to smooth their consumption, i.e. 

 =  =  for  =  

but then for values of wages and aggregate dividend calibrated from US data the equilibrium

condition above would be violated leading to excess demand either for consumption or saving.

To illustrate this point we refer to the calibration provided by GMQ; take  = 79  = 69 as

the size (in millions) of Baby Boom (1945-64) and Baby Bust (1965-84) generations (thus,

we obtain in an even period a high MY ratio of  =


= 115, and in odd period

 =


= 087 (see Figure 3a)) and  = 2  = 3 to match the ratio (middle to

young cohort) of the average annual real income in US. We can calculate the total wage in

even and odd periods using  +  for odd periods and  + for even periods,

and then given the average ratio (0.19) of dividend to wages we compute the aggregate

dividends. Assuming an annual discount factor of 0.97, which translates to a discount of

0.5 in the model of 20-year periods, if  =  = 05 were to hold and agents smooth

their consumption, from the budget constraint (eq. 6-7) we obtain  =  =  = ̄

= 2 but then the resource constraint (eq. 8-9) above would have been violated. For

instance, an agent from the Baby Bust generation would enter in an even period in the model,

i.e. ( ) and high MY ratio, and faces the following aggregate resource constraint:

( − ) + ( − ) +  −  = 69 × (2 − 2) + 79(2 − 3) + 69 × 2 − 70 = −11
where  = 019(375+365

2
) = 70 This leads to excess saving in the economy. For equilibrium

conditions to hold, the model implies that asset prices should increase and hence discourage

saving in the economy (the experience we observed during the 90’s in US). When the MY

ratio is small (large), i.e. an odd (even) period, there will be excess demand for consumption

(saving) by a large cohort of retirees (middle-aged) and for the market to clear, equilibrium

prices of financial assets should adjust, i.e. decrease (increase), so that saving (consumption)

is encouraged for the middle-aged. Thus, letting  be the price of the bond at time , in a

stationary equilibrium, the following holds
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 =  when period odd

 =  when period even

together with the condition    Moreover the model predicts a positive correlation

between MY and market prices, consequently a negative correlation with the dividend yield.

So, since the bond prices alternate between  and  then the price of equity must also

alternate between  and  as follows

 =  + + + 

 =  + + + 

which implies

 =






=
1− 

 + 

 =






=
1− 

 + 

where  () is the dividend-price ratio implied by low (high) MY in the model for odd

(even) periods.

III The Empirical Evidence

The GMQ model provides a foundation for a long-run negative relationship between the

dividend-price ratio and demography. GMQ define the empirical counterpart of the 

ratio as the proportion of the number of agents aged 40-49 to the number of agents aged

20-29, which serves as a sufficient statistic for the whole population pyramid. We report the

 ratio in Figure 2. Interestingly, this variable shows highly persistent dynamics and a

twin peaked behavior, with peaks and troughs around 1950, 1980, 2000, around the break

points in .

Insert here Figure 2
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To combine the GMQmodel with the dynamic dividend growth we consider the derivation

of LVN, who allow for a time varying mean in the linearization and consider  as the

potential determinant of this slowly evolving process.

 =  +

∞X
=1

−1[(

+ − ̄)− (∆+ − ̄)] (6)

 = 0 + 1 + 

Inserting GMQ into the dynamic dividend growth model leads to the prediction that

the (log) dividend-price adjusted for demographics should be significant in the long-horizon

forecasting regression for real stock market returns, the real dividend growth, and their

difference.  should also be significant in explaining the persistence of the dividend-price,

and the variable predicted to be stationary in this extended model is not the dividend-

price but a combination between price, dividends and We investigate the hypothetical

cointegrating relation between dividend, prices and  by running the Johansen (1988)

procedure on a cointegrating system based on the vector of variables y0 =

∙
  

¸


A Long-Horizon Forecasting Regressions

We report in Table 1 the evidence from the long-horizon forecasting regression. To make

our evidence directly comparable with that reported in Lettau and Ludvigson (2005) we

consider predictive regressions for annual data with horizons ranging from one to six years.

We consider the annual data for the S&P 500 index from 1909 to 2008 taken from Robert

Shiller’s website, dividends are twelve-month moving sums of dividends paid on the S&P 500

index. These series coincide with those used in Goyal and Welch (2008), and made available

at Amit Goyal’s website. A full description of all data used in our empirical analysis is

provided in the Data Appendix.

Table 1.1-1.3 reports the evidence for forecasting returns, dividend growth, returns ad-
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justed for dividend growth, based on the following three models:

X
=1

(+) = 0 + 1 + 2 + 3 + +

X
=1

(∆+) = 0 + 1 + 2 + 3 + +

X
=1

(+ −∆+) = 0 + 1 + 2 + 3 + +

 = 1  6

Insert here Table 1.1-1.3

In each forecasting regression  is measured at the end of the forecasting period. We

report heteroskedastic and autocorrelated consistent (HAC) covariance matrix estimators

using Bartlett kernel weights as described in Newey and West (1987) to account for overlap-

ping observations where the bandwidth has been selected following the procedure described

in Newey and West (1994). Alternatively, we also conduct a (wild ) bootstrap exercise

(Davidson and Flachaire (2008)) to compute p-values. To take care of the potential effect

on statistical inference in finite sample of the use of overlapping data we also report the

rescaled t-statistic recommended by Valkanov (2003) for the hypothesis that the regression

coefficient on the dividend-price adjusted for the effect of demographics is zero. We report

test of predictability at each horizon but we also compute joint tests across horizons based on

SUR estimation and report in the last row the relevant 2 statistics with associated p-values.

The evidence can be summarized as follows:

i)  is always significant along with  and  in all the forecasting regressions for real

stock market returns (Panel A). The adjusted R2 of the predictive regression increases with

the horizon from 0.09 at the 1-year horizon to 0.54 at the 6-year horizon. Consistently with
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the prediction of the GMQ model, the effect of MY is negative on the slowly evolving mean

of the dividend-price and hence positive for expected returns at all horizons.

ii)  is never significant in the forecasting regressions for real dividend growth (Panel

B). The adjusted R2 of the predictive regression declines with the horizon from 0.15 at the

1-year horizon to 0.06 at the 6-year horizon.

iii)  is always significant along with  and  in all the forecasting regressions for

real stock market returns adjusted for real dividend growth (Panel C). The adjusted R2 of

the predictive regression increases with the horizon from 0.26 at the 1-year horizon to 0.67 at

the 6-year horizon. The evidence of the strongest predictability of

X
=1

(+−∆+) is fully

consistent with the dynamic dividend growth model. Such evidence, paired with that on the

different forecastability of the two components of stock market returns adjusted for dividend

growth, rules out the dominance of a common stochastic component for the determination

of the dynamics of dividend growth and stock market returns.

iv) dominates alternative approaches proposed in the literature to capture an evolv-

ing mean in the dividend-price ratio. In the last rows of each panel of the Tables 1.1-1.3

we report the results of augmenting the long-run forecasting regressions based on the GMQ

model with alternative filtered dividend-price series. In particular we consider,    the

(log) dividend-price corrected for breaks in LVN and 
 , the cash flow based net payout

yield (dividends plus repurchases minus issuances) proposed by Boudoukh et al. (2007).

Overall the long-run forecasting regressions lend strong support to the inclusion of 

in the traditional dynamic dividend growth model. The dividend-price corrected for a slowly

long-run mean, determined by  , predicts long-run stock market returns and long-run

stock market returns adjusted for dividend growth, but it does not predict long-run dividend

growth. The R2 associated to the relevant predictive regressions increases with the horizon.

This evidence of a positive relation between predictability and the forecasting horizon is

interesting, in that both the dynamic dividend growth model and the GMQ model establish

a predictive relation for long-run returns. In fact, the most natural horizon for the GMQ

12



model is one generation, i.e. about twenty years. Of course, it is difficult to establish some

evidence via predictive regressions for twenty years returns, as we have only one century of

data. To give the reader a visual impression on the relationship between real stock market

returns and at a frequency as close as possible to that implied by the relevant models, we

report in Figure 3 and 20-year real stock market returns. We find the graphical evidence

interesting and fully consistent with the statistical evidence from the long-run regressions at

higher frequencies.

Insert here Figure 3

B Cointegration

The evidence of forecasting power of a linear combination of dividend, prices and  for

forecasting long-run returns and long-run returns adjusted for dividend growth, provides

indirect evidence of stationarity of such a combination The validity of this hypothesis can

be further investigated by running the Johansen (1988, 1991) procedure on a cointegrating

system based on the vector of variables y0 =

∙
  

¸
. We then test for cointegration

within a three-variate VAR3.

Insert here Table 2.1-2.2

We report in Table 2.1-2.2 the evidence for the full-sample and for the sub-sample 1955-

2008. The results lead to the rejection of the null of at most zero cointegrating vectors, while

the null of at most one cointegration vector cannot be rejected. The evidence in favour of

one cointegrating vector in which all variables are always significant confirms that the high

3See Appendix A for the details of the specification of our statistical model. In a previous version of this

paper we allow for a presence of a technology-driven trend (GMQ, p.6), proxied by Total Factor Productivity,

in the long-run equilibium relationship. We have decided to exclude TFP from the cointegrating relationship

on the basis of two arguments i) the presence of a technology driven trend in the dividend pice ratio is

very hard to justify theoretically ii) the TFP trend does not attract any significance when included in the

long-run forecasting regressions discussed in the previous section. We are grateful to an anonymos referee

for attracting our attention on this point.
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persistence of the dividend-price is matched by the high persistence of  Using the aug-

mented Dickey-Fuller test, the null of a unit root in MY cannot be rejected. The coefficients

determining the adjustment in presence of disequilibrium in the Vector Error Correction

model confirm the evidence from the forecasting regressions reported in the previous section:

stock market returns adjust in presence of disequilibrium. The significance of  increases

in the second sub-sample, where LVN found the two breaks in 
4

Insert here 4.1-4.2

Figures 4.1-4.2 provides a graphical assessment of the capability of  of capturing the

slowly evolving mean of  Figure 4.1 reports the residuals from our cointegrating vector,

along with  and the deviations of  from 


 the shifting mean identified by LVN.

Figure 4.2 reports residuals from our cointegrating vector with the cycle of , obtained by

applying an Hodrick-Prescott filter to the original series. The graphical evidence illustrates

how the cointegration based correction matches the break-based correction in LVN (2008)

and the cycle obtained by applying the HP filter. It is important to note that while the

cointegration based analysis can be promptly used for forecasting, the same does not apply

to both the HP filter and the correction for breaks.

Overall we take the evidence of long-run forecasting regressions and cointegration analysis

as consistently supportive of the GMQ model. Two more remarks are in order before we

move forward.

First, in the GMQmodel, bond and stock are perfect substitutes, therefore the evaluation

of the performance of  in forecasting yields to maturity of long-term bonds seems a

natural extension of our empirical investigation. In fact, the debate on the so-called FED

4We have also investigated the stability of the cointegrating relationship by using the recursively calculated

eigenvalues and the tests for constancy of the parameters in the cointegrating space proposed by Nyblom

(1989), Hansen and Johansen (1999) and Warne et al. (2003). The results, available upon request, show no

evidence of instability.
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model (Lander et al. (1997)) of the stock market, based on a long-run relation between

the price-earning ratio and the long-term bond yield, brings some interesting evidence on

this issue. The FED model is based on the equalization, up to a constant, between long-

run stock and bond market returns. This feature is shared by the GMQ framework, and it

requires a constant relation between the risk premium on long-term bonds and stocks. It

has been shown that, although the FED model performs well in periods where the stock and

bond market risk premia are strongly correlated, some measure of the fluctuations in their

relative premium is necessary to model periods in which volatilities in the two markets have

been different (see, for example, Asness (2003)). As a consequence, to put  at work to

explain bond yields, some modelling of the relative bond/stock risk premia is also in order.

We consider this as an interesting extension beyond the scope of this paper which is on our

agenda for future work.

Second, although  is the GMQ model consistent measure of demographics, there

are a number of different potential measures for demographic trends. We have therefore

conducted robustness analysis of our cointegration results to the introduction of different

measures of demographic structure of the population and productivity trends. The results,

discussed in Appendix B, are supportive of our preferred specification.

IV MY, CAY and CDY

In the light of the evidence reported in the previous section it is interesting to reconsider

point iv) in the introduction and evaluate the significance of the introduction of  in

the dynamic dividend growth model against  and  As stated in the introduction,

Lettau and Ludvigson (2001, 2005) have found that dividend growth and stock returns are

predictable by long-run equilibrium relationships derived from a linearized version of the

consumer’s intertemporal budget constraint. The excess consumption with respect to its

long run equilibrium value is defined by Lettau and Ludvigson (2001) alternatively as a
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linear combination of labour income and financial wealth,  or as a linear combination of

aggregate dividend payments on human and non-human wealth,   and  are much

less persistent time-series than  they are predictors of both stock returns and dividend-

growth, and when included in a predictive regression relating stock market returns to 

they swamp the significance of this variable.

Evaluating the effect of the inclusion of  and  in the long-run forecasting regres-

sions that also include  is important for a number of reasons. First, it is a parsimonious

way of evaluating the model with  against all financial ratios traditionally adopted to

predict returns. In fact, Lettau and Ludvigson (2001,2005) show the superior performance

in predicting long-run returns of  and  with respect to all the traditionally adopted

financial ratios, such as the detrended short term interest rate (Campbell (1991), Hodrick

(1992)), the log dividend earnings ratio and the log price earning ratio (Lamont (1998)), the

spread of long term bond yield (10Y) over 3M Treasury bill, and the spread between the

BAA and the AAA corporate bond rates. Second, it would allow further investigation on

the presence of a common component in dividend and stock market returns suggested by

Lettau and Ludvigson (2005) but not consistent with our findings in Table 1.3, that witness

the significance of for predicting long-run returns and long-run returns adjusted for div-

idend growth. Third, it could shed further light on the relative importance of  and 

and for predicting returns and dividend growth in the dynamic dividend growth model.

Note that a joint significance of  or  and  in long-run forecasting regressions for

real stock market returns is fully consistent with the GMQ model if the significance of 

is interpreted in the light of its role as a predictor for  while  or  are taken as

predictors of long term expectations of real returns and dividend growth.

Insert here Table 3.1-3.3

We report the relevant evidence in Tables 3.1-3.3.  and  are estimated by Lettau

16



and Ludvigson (2001,2005) as cointegrating residuals for the systems (, , ) and (, ,

), where  is log consumption,  is log labor income,  is log asset wealth (net worth), 

is log stock market dividends. We have taken the cointegrating relationship directly from

Lettau and Ludvigson (2005):  =  − 033 − 057,  =  − 013 − 068 The
evidence clearly indicates that the significance of  corrected for  in the long-horizon

regressions is not reduced by the augmentation of the model with  and  These

two variables, and in particular  have strong predictive power for dividend growth.

Therefore, the evidence that the best predictive model for long-horizon stock returns is

the one combining dividend-price with the demographic variable and  is indeed fully

consistent with an interpretation based on the Dynamic Dividend Growth model where

explains the slowly evolving component of the mean of the dividend-price and  acts as

a predictor of dividend-growth. Such an interpretation is supported by the long-horizon

regressions for stock returns adjusted for dividend growth, in which both  and 

enter with highly significant coefficients of the opposite sign, positive for  and negative

for 

In Figure 4.3 and 4.4 we plot − against  and , respectively. We derive  by
using the coefficients from Table.1.1 (k=3)5, while  and  series are taken from Lettau

and Ludvigson (2005). The graph shows positive but not too strong correlation between

 −  and  (), of 057 (018). This evidence is consistent with our inclusion of

 in the dynamic dividend growth model and the derivation of  and  from the

consumer’s intertemporal budget constraint. Consider for example  −  and , they

have a common component, which is the weighted sum of future returns, but they are also

determined by idiosyncratic components: future dividend growth and future consumption

growth, respectively.

5We take 3-year horizon as a representative example, results for other horizons remain qualitatively similar

(available upon request). We use the coefficients from table Table 1.1, the results are very similar when Table

3.1 is used instead.
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A Out-of-Sample Evidence

In this section we follow Goyal and Welch (2008), and analyze the performance of  and

 adjusted dividend-price ratio from the perspective of a real-time investor. We therefore

consider out-of-sample evidence, for the 1-year, 2-year, and 3-year horizons, and we compare

the performance of the bivariate model based on the combination of the two predictors with

that of the two univariate models based on each predictor and the univariate models based

on  and   .

We run rolling forecasting regressions for the one, three and five years ahead horizon

by using 1955-1981 as an initialization sample. The forecasting period beginning in 1982

includes the anomalous period of late 90’s where the sharp increase in the stock market

index weakens the forecasting power of financial ratios. In particular, we consider both

the univariate models and the bivariate encompassing model; we compare the forecasting

performance with the historical mean benchmark. In the first two columns of Table 4 we

report the adjusted R̄2 and t-statistics using the full sample 1955-2008. Then we report mean

absolute error (MAE) and root mean square error (RMSE) calculated based on the residuals

in the forecasting period, namely 1982-2008. The first column of the out-of- sample panel

reports the out-of-sample R2 statistics (Campbell and Thomson (2008)) which is computed

as

2 = 1−
P

=0
( − ̂)

2P

=0
( − ̄)2

where ̂ is the forecast at − 1 and ̄ is the historical average estimated until − 1 In our
exercise, 0 = 1982 and  = 2008 If 2 is positive, it means that the predictive regression

has a lower mean square error than the prevailing historical mean. In the last column, we

report the Diebold-Mariano (DM) -test for checking equal-forecast accuracy from two nested

models for forecasting h-step ahead excess returns.

 =

r
( + 1− 2 ∗ +  ∗ (− 1))


∗
∙

̄b(̄)
¸
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where we define 21 as the squared forecasting error of prevailing mean, and 
2
2 as the squared

forecasting error of the predictive variables,  = 21 − 22 i.e. the difference between the

two forecast errors, ̄ = 1


P

=0
 and b(̄) = 1



P−1
=−(−1)

P

=| |+1( − ̄) ∗ (−| | − ̄)

A positive DM -test statistic indicates that the predictive regression model performs better

than the historical mean.

Insert here Table 4

We report in Figure 5 the cumulative squared prediction errors of the historical mean

minus the cumulative squared prediction error of our best forecasting model

Insert here Figure 5

We use all available data from 1910 until 1954 for initial estimation and then recursively

calculate the cumulative squared prediction errors until the sample end, namely 2008.

Overall, the results reported in Table 4 and Figure 5 confirm the evidence from the

forecasting regressions, with a clear indication that the model combining  and 

adjusted dividend-price ratio dominates all alternative specifications, both within-sample

and out-of-sample.

V Long-Run Equity Premium Projections

An interesting feature of is that long-run forecasts for this variable are readily available.

In fact, the Bureau of Census (BoC) provide projections up to 2050 for. In this section

we combine a long-run horizon regression with the cointegrating system estimated in section 2

to construct a model that can be simulated to generate long-run equity premium projections.

We concentrate on 5-year excess returns and estimate the following model:
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5X
=1

(+ − +) = 1 + 2 ( − 3 − 4) + 1 (7)

⎡⎢⎣ ∆+1

∆+1

⎤⎥⎦ =

⎡⎢⎣ 5

10

⎤⎥⎦+
⎡⎢⎣ 6

11

⎤⎥⎦∙ 1 −3 −4 ¸
⎡⎢⎢⎢⎢⎣







⎤⎥⎥⎥⎥⎦+
⎡⎢⎣ 7 8 9

12 13 14

⎤⎥⎦
⎡⎢⎢⎢⎢⎣

∆

∆

∆

⎤⎥⎥⎥⎥⎦+
⎡⎢⎣ 2

2

⎤⎥⎦ 

(7) Combines a long-run forecasting regression for five year excess returns, defined as

the difference between returns on the S&P500 and the risk-free rate6, with the equations for

∆+1 ∆+1 in the cointegrated VAR estimated in Section 2. Equity premium projections

are obtained by forward simulation of the first equation. This requires projections for the

three right-hand side variables. We obtain them directly from the BoC for  and by

forward simulation of the CVAR estimated in Section 2 for  and Three comments are

in order on the specification of (7). First, omitting an equation for  from the model

used for projections requires (strong) exogeneity of this variable: we believe in the validity

of such an assumption. Second, we impose cross-equation restrictions in order to have the

same estimates of the coefficients determining the long-run equilibrium of the system in

the equation for excess-returns and in the equation for 1-year returns and dividend growth.

Third, we did not report the results based on the inclusion of  in our forecasting model.

In fact, the long-horizon forecast for this variable do rapidly converge to its historical mean

to leave the variability of projections of the risk-premium to be dominated by projections for

 Moreover, as pointed out by Goyal and Welch (2008), this variable might suffer from

look-ahead bias, as the cointegrating coefficients are computed using full-sample estimates.

6See the Data Appendix for a detailed description of the construction of our risk-free rate.
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The estimates are fully consistent with those reported in Table 1.1 and 2.17. Figure 6

illustrates the results from the projection of the model.

Insert here Figure 6

Over the sample up to 2008 we report (pseudo) out-of-sample 5-year annualized equity

premium forecasts and its realizations. The model consistently performs very well with only

two exceptions: the 1929 crisis and the boom market at the end of the millennium. We

then conduct the out-of-sample exercise by estimating the model with data up to 2008,

and then by solving it forward stochastically to obtain out-of-sample forecasts until 2050.

Our simulation predicts a rapid stock market recovery for the next two years followed by

fluctuations of the risk premium around a mean of 502 per cent, just below the historical

average. The width of the 95 per cent confidence intervals points to the existence of a sizeable

amount of uncertainty around point estimates. Interestingly, the model does not foresee a

dramatic market meltdown, a "doomsday" scenario, due to a collective exit from the stock

market by the retired baby boomers. This evidence is a natural outcome of the GMQ model

which relies on the cyclicality of U.S. age structure.

VI Conclusions

This paper has documented the existence of a slowly evolving trend in the mean dividend-

price ratio determined by a demographic variable, , the proportion of middle-age to

young population. We have shown that  captures well a slowly evolving component in

the mean dividend-price ratio and it is strongly significant in long-horizon regressions for

real stock market returns.

7All the evidence reported for the long-run forecasting regressions are based on real equity returns, the

dependent variable consistent with the dynamic dividend growth model. Results are robust when excess

returns are used as a dependent variable instead of real returns.
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A model including  overperforms all alternative models for forecasting returns. The

best forecasting model for real stock market returns found in our work is the one combining

 with  a variable constructed by Lettau and Ludvigson (2005) to capture excess

consumption with respect to its long run equilibrium value. We take this evidence as strongly

supportive of the Dynamic Dividend Growth model with an evolving mean, determined by

 In fact, the model predicts that long-horizon returns should depend on the deviations of

the dividend-price ratio from its mean and on long-run dividend growth. We show that

models the mean of the dividend-price ratio while  is a predictor of long-horizon dividend-

growth, confirming the evidence in Lettau and Ludvigson (2005). We provide evidence that

an important component of time-varying expected returns is captured by allowing the mean

of the dividend-price ratio to fluctuate. The importance of such a component increases

with the forecasting horizon.

The empirical results we have reported should be of special relevance to the strategic

asset allocation literature (e.g. Campbell and Viceira (2002)), in which the log dividend-

price ratio is often used in VAR models as a stationary variable capturing time-variation in

the investment opportunity set, and as an input into the optimal asset allocation decision

of a long-horizon investor. In a companion paper (Favero and Tamoni (2010)) we show that

allowing for the presence of  in the VAR models that are used to estimate the time

profile of stock market return and its volatility does cast new light on the hot debate on the

safety of stock market investment for the long-run (Pastor and Stambaugh (2009)).

Finally, by exploiting the exogeneity and the predictability of, we have also provided

projections for equity risk premia up to 2050. Our simulations point to an average equity

risk premium of about five per cent for the period 2010-2050.

22



References

[1] Abel, A. B."The Effects of a Baby Boom on Stock Prices and Capital Accumulation in

the Presence of Social Security." Econometrica, 71 (2003), 2, 551-578.

[2] Abel, A. B. "Will Bequests Attenuate the Predicted Meltdown in Stock Prices When

Baby Boomers Retire?" Review of Economics and Statistics, 83 (2001), 4, 589-595.

[3] Ang, A. and G. Bekaert. "Stock Return Predictability: Is It There?" The Review of

Financial Studies, 20 (2007), 651—707.

[4] Ang, A. and A. Maddaloni."Do Demographic Changes Affect Risk Premiums? Evidence

from International Data." Journal of Business, 78 (2005), 341-380.

[5] Asness, C. "Fight the Fed Model: the Relationship between Future Returns and Stock

and Bond Market Yields." Journal of Portfolio Management, 30 (2003), 11-24.

[6] Bakshi, G. S., and Z. Chen."Baby Boom, Population Aging, and Capital Markets."

Journal of Business, 67 (1994), 2, 165-202.

[7] Beaudry, P., and F. Portier. "Stock Prices, News and Economic Fluctuations."American

Economic Review, 96 (2006), 1293-1307.

[8] Bloom, D. E.; D. Canning; and J. Sevilla."The Demographic Dividend. A new Perspec-

tive on the Economic Consequences of Population Change." Rand Corporation, Santa

Monica (2003).

[9] Boudoukh, J.; M. Richardson; and F. R.Whitelaw. "The Myth of Long-Horizon Pre-

dictability." The Review of Financial Studies, 21 (2008), 4, 1577-1605.

[10] Boudoukh, J.; R. Michaely; M. Richardson; and M. Roberts. "On the Importance of

Measuring Payout Yield: Implications for Empirical Asset Pricing." Journal of Finance,

(2007), 877-915.

23



[11] Brooks, R. J. "Asset-Market Effects of the Baby Boom and Social-Security Reform."

American Economic Review, 92 (2002), 2, 402-406.

[12] Brooks, R J. "What Will Happen to Financial Markets When The Baby Boomers

Retire?" Computing in Economics and Finance, 92 (2000), Society for Computational

Economics.

[13] Campbell, J. Y. "A Variance Decomposition for Stock Returns." Economic Journal, 101

(1991), 157—179.

[14] Campbell, J. Y.; A. W. Lo; and C. MacKinlay. "The Econometrics of Financial Mar-

kets." Princeton University Press, Princeton, NJ (1997).

[15] Campbell, J. Y., and S. B. Thomson. "Predicting Excess Stock Returns Out of Sample:

Can Anything Beat the Historical Average?" The Review of Financial Studies, 21(2008),

1509-1531.

[16] Campbell, J. Y. "A Comment on James M. Poterba’s Demographic Structure and Asset

Returns”, The Review of Economics and Statistics, 83 (2001), 4, 585-588.

[17] Campbell, J. Y., and R. Shiller. "Stock Prices,Earnings, and Expected Dividends."

Journal of Finance, 43 (1988), 661-676.

[18] Cochrane, J. H. "Asset Pricing." Princeton University Press, Princeton, NJ (2005).

[19] Campbell, J. Y., and L. M. Viceira. "Strategic Asset Allocation: Portfolio Choice for

Long-Term Investors." Oxford University Press (2002).

[20] Cochrane, J. H. "The Dog that Did Not Bark: A Defense of Return Predictability."

Review of Financial Studies, 21 (2008), 4, 1533-1575.

[21] Dalla Vigna S., and J.Pollet. "Demographics and Industry Returns." American Eco-

nomic Review, 97(2007), 1167-1702.

24



[22] Davidson, R., and E. Flachaire. "The Wild bootstrap, Tamed at Last.", Journal of

Econometrics,146(2008), 1, 162-169.

[23] Erb, C. B.; C. R. Harvey, and T. E. Viskanta. "Demographics and International Invest-

ment." Financial Analysts Journal, 53 (1996), 4,14-28.

[24] Fama, E., and K. R. French. "Dividend Yields and Expected Stock Returns." Journal

of Financial Economics, 22 (1988), 3-26.

[25] Favero C.A. and A.Tamoni. "Demographics and the Term Structure of Stock Market

Risk", available at http:\www.igier.unibocconi.it\favero, (2010).

[26] Geanakoplos, J.; M. Magill; and M. Quinzii. "Demography and the Long Run Behavior

of the Stock Market." Brookings Papers on Economic Activities, 1(2004), 241-325.

[27] Goyal, A., and I. Welch. "A Comprehensive Look at the Empirical Performance of

Equity Premium Prediction." The Review of Financial Studies, 21(2008),4, 1455-1508.

[28] Goyal, A., and I. Welch. "Predicting the Equity Premium with Dividend Ratios."Man-

agement Science, 49(2003), 5, 639—654.

[29] Goyal, A. "Demographics, Stock Market Flows, and Stock Returns." Journal of Finan-

cial and Quantitative Analysis, 39 (2004), 1, 115-142.

[30] Hansen, H., and S. Johansen. "Some Tests for Parameter Constancy in Cointegrated

VAR-Models.", The Econometrics Journal, 2 (1999), 306-333.

[31] Hodrick, R., and E. C. Prescott. "Postwar U.S. Business Cycles: An Empirical Investi-

gation.", Journal of Money, Credit, and Banking, 29 (1997), 1, 1-16.

[32] Hodrick, R. "Dividend Yields and Expected Stock Returns: Alternative Procedures for

Inference and Measurement." Review of Financial Studies, 5 (1992), 357—386.

25



[33] Jaimovich, N. and H. E. Siu. "The Young, the Old, and the Restless: Demographics

and Business Cycle Volatility." American Economic Review, 99 (2009), 3, 804—826.

[34] Johannes, M.; Korteweg, A.; and N. Polson, "Sequential Learning, Predictive Regres-

sions, and Optimal Portfolio Returns." SSRN working paper (2008).

[35] Johansen, S. "Statistical Analysis of Cointegrating Vectors.", Journal of Economic Dy-

namics and Control,12 (1988), 231—254.

[36] Johansen, S. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian

Vector Autoregressive Models." Econometrica, 56 (1991), 1551—1580.

[37] Juselius, K. "The Cointegrated VAR Model: Methodology and Applications." Oxford

University Press (2006).

[38] Lander, J.; A. Orphanides; and M. Douvogiannis. "Earnings Forecasts and the Pre-

dictability of Stock Returns: Evidence from trading the S&P." Journal of Portfolio

Management, 23(1997), 4, 24-35.

[39] Lettau, M., and S. Ludvigson. "Expected Returns and Expected Dividend Growth.",

Journal of Financial Economics, 76 (2005), 583-626.

[40] Lettau, M., and S. Ludvigson. "Consumption, Aggregate Wealth and Expected Stock

Returns." Journal of Finance, 56 (2001), 3, 815-849.

[41] Lettau, M., and S. Van Nieuwerburgh. "Reconciling the Return Predictability Evi-

dence." The Review of Financial Studies, 21 (2008), 4, 1607-1652.

[42] Lewellen, J. "Predicting Returns with Financial Ratios." Journal of Financial Eco-

nomics, 74 (2004), 209—35.

[43] Macunovich, D. J. "Birth Quake." Chicago University Press (2002).

26



[44] MacKinnon, J. G.; A. A. Haug; and L. Michelis. "Numerical Distribution Functions of

Likelihood Ratio Tests for Cointegration." Journal of Applied Econometrics, 14 (1999),

563—577.

[45] Mason, A., and R. Lee. "Reform and Support Systems for the Elderly in Developing

Countries: Capturing the Second Demographic Dividend." Genus, 2 (2005), 11-35.

[46] Nelson, C. C. and M. J. Kim. "Predictable Stock Returns: The Role of Small Sample

Bias." Journal of Finance, 43 (1993), 641—661.

[47] Neely C.J., and P.A. Weller. "Predictability in International Asset Returns: A Reex-

amination." Journal of Financial and Quantitative Analysis, 35 (2000), 601-620.

[48] Newey, W. K. and K. D. West. "A Simple, Positive Semi-definite, Heteroskedasticity and

Autocorrelation Consistent Covariance Matrix.", Econometrica, 55 (1987), 3, 703-08.

[49] Newey, W. K., and D. K. West. "Automatic Lag Selection in Covariance Matrix Esti-

mation." Review of Economic Studies, 61 (1994), 631-653.

[50] Nyblom, J. "Testing for the Constancy of Parameters over Time." Journal of the Amer-

ican Statistical Association, 84 (1989), 223-230.

[51] Paye, B.S., and A. Timmermann. "Instability of Return Prediction Models." Journal of

Empirical Finance, 13 (2006), 274-315

[52] Pastor, L. and R. F. Stambaugh. "Are Stocks Really Less Volatile in the Long Run?"

Working Paper, 14757 (2009).

[53] Poterba, J. M. "Demographic Structure and Asset Returns." The Review of Economics

and Statistics, 83 (2001), 4, 565-584.

[54] Rapach D.E., and M.E.Wohar. "In-Sample vs. Out-of-Sample Tests of Stock Return

Predictability in the Context of Data-Mining." Journal of Empirical Finance, 13 (2006),

231-247.

27



[55] Shiller, R. J. "Irrational Exuberance" Princeton University Press (2005).

[56] Stambaugh, R. F. "Predictive Regressions." Journal of Financial Economics, 54 (1999),

375—421.

[57] Valkanov, R. "Long-Horizon Regressions: Theoretical Results and Applications." Jour-

nal of Financial Economics, 68 (2003), 201—232. 33

[58] Yoo, P. S. "Population Growth and Asset Prices.", Federal Reserve Bank of St. Louis

Working Paper No. (1997)-016A,.

28



The Table reports in parentheses t-statistic based on heteroskedastic and autocorrelated con-

sistent (HAC) covariance matrix estimators using Bartlett kernel weights as described in Newey

and West (1987) where the bandwidth has been selected following the procedure described in

Newey and West (1994). For the univariate model with the restriction (1 = −2),
X

=1

(+) =

0 + 1( −  +
3
1
) + + we also conduct a (wild ) bootstrap exercise (Davidson and

Flachaire (2008)) to compute p-values and report for 1 
√
 -test suggested in Valkanov (2003)

in curly brackets. Significance at the 5% and 1% level of the  
√
 test using Valkanov’s (2003)

critical values is indicated by * and **, respectively. The 2 statistics with associated p-values is

for the joint tests of significance across all different horizon within a SUR estimation framework.
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The Table reports in parentheses t-statistic based on heteroskedastic and autocorrelated con-

sistent (HAC) covariance matrix estimators using Bartlett kernel weights as described in Newey

and West (1987) where the bandwidth has been selected following the procedure described in

Newey and West (1994). For the univariate model with the restriction (1 = −2),
X

=1

(∆+) =

0 + 1( −  +
3
1
) + + we also conduct a (wild ) bootstrap exercise (Davidson and

Flachaire (2008)) to compute p-values. The 2 statistics with associated p-values is for the joint

tests of significance across all different horizon within a SUR estimation framework.
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The Table reports in parentheses t-statistic based on heteroskedastic and autocorrelated consis-

tent (HAC) covariance matrix estimators using Bartlett kernel weights as described in Newey and

West (1987) where the bandwidth has been selected following the procedure described in Newey

and West (1994). For the univariate model with the restriction (1 = −2),
X

=1

(+ −∆+)

= 0 + 1(−  +
3
1
 ) + +, we also conduct a (wild ) bootstrap exercise (Davidson and

Flachaire (2008)) to compute p-values and report for 1  
√
− suggested in Valkanov (2003)

in curly brackets. Significance at the 5% and 1% level of the  
√
 test using Valkanov’s (2003)

critical values is indicated by * and **, respectively. The 2 statistics with associated p-values is

for the joint tests of significance across all different horizon within a SUR estimation framework.
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Table 2.1: Cointegrated VAR Estimates. Sample 1910-2008. Annual Data.

Cointegrating vector    

β
()

−100 121
(0035)

1107
(025)

216

Error Correction Model ∆ ∆ ∆
α
()

029
(0096)

−012
(0046)

0007
(0007)

 2 0126 043 063

Cointegration Test Trace p-value Max eigen p-value

Hypothesized No of CE(s)

None 2968 005 2286 0028

At Most 1 682 059 675 051

Table 2.2: Cointegrated VAR Estimates. Sample 1955-2008. Annual Data

Cointegrating vector    

β
()

−100 1248
(0035)

114
(014)

207

Error Correction Model ∆ ∆ ∆
α
()

063
(016)

−002
(0035)

003
(0015)

 2 022 040 075

Cointegration Test Trace p-value. Max eigen p-value

Hypothesized No of CE(s)

None 2871 006 1948 008

At Most 1 922 034 881 030

The Table reports the trace and max eigenvalue statistics obtained from Johansen cointegration

test with linear trend in the data. We report the coefficients of the cointegrating vector , 

and the weights  (see Appendix A). The reported p-values for the relevant null to test for

cointegration are McKinnon-Haugh-Michelis (1999) p-values. The lag length in the VAR model is

chosen according to optimal information criteria, i.e. sequential LR test, Akaike (AIC), Schwarz

(SIC), Hannan-Quinn (HQ) information criterion.
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Table 3.1: CAY and CDY. Sample 1948-2008. Annual Data.

k-period regressions for real stock returns
X

=1

(+) = 0 + 1 + 2 + 3 + 4 + +

horizon  in years

 1 2 3 4 5 6

1
(−)

 −041
(−4050)

−029
(−4694)

−021
(−5570)

−020
(−7222)

−019
(−8257)

−015
(−8790)

 −051
(−6487)

−040
(−6442)

−029
(−6840)

−024
(−8592)

−021
(−11549)

019
(−12403)

2
(−)

 050
(3994)

036
(4492)

025
(5230)

024
(6373)

022
(7067)

017
(7384)

 063
(6210)

048
(6134)

034
(6287)

028
(7143)

025
(9064)

022
(9832)

3
(−)

 066
(4194)

048
(5077)

036
(6327)

032
(8823)

029
(10967)

024
(13000)

 0781
(5467)

057
(5774)

042
(6146)

035
(7756)

031
(9394)

026
(10067)

4
(−)

 206
(1336)

241
(3329)

194
(3111)

087
(1192)

071
(1471)

115
(3739)

 −051
(−0718)

025
(0490)

027
(1102)

004
(0225)

006
(0498)

044
(3246)

2  035 061 070 075 082 087

 034 056 065 074 081 086

The table reports the OLS estimates from k-period regressions for real stock returns.

Each column reports a different horizon, odd (even) rows refer to  = () The

reported t-statistics are based on heteroskedastic and autocorrelated consistent (HAC) covariance

matrix estimators using Bartlett kernel weights as described in Newey & West (1987) where the

bandwidth has been selected following the procedure described in Newey & West (1994).
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Table 3.2: CAY and CDY. Sample 1948-2008. Annual data.

k-period regressions for real dividend-growth
X

=1

(∆+) = 0 + 1 + 2 + 3 + 4 + +

horizon  in years

1 2 3 4 5 6

1
(−)

 010
(1649)

006
(1481)

003
(0977)

001
(0451)

001
(0268)

001
(0251)

 −003
(−0528)

−004
(−0981)

−003
(−1392)

−002
(−1353)

−001
(−1353)

−001
(−0608)

2
(−)

 −014
(−1733)

−009
(−1574)

−004
(−1109)

−002
(−0626)

−001
(−0466)

−001
(−0463)

 001
(0233)

003
(0698)

003
(1071)

002
(0940)

001
(0586)

001
(0284)

3
(−)

 −007
(−0838)

−002
(−0363)

002
(0542)

004
(1286)

005
(1806)

005
(2406)

 002
(0188)

004
(0669)

005
(1479)

005
(2033)

004
(2238)

004
(2416)

4
(−)

 292
(2503)

249
(3176)

162
(4377)

099
(3359)

061
(2084)

039
(1244)

 116
(1561)

100
(2115)

069
(4500)

059
(4853)

056
(4272)

052
(3670)

2  033 042 040 028 020 019

 020 027 030 031 033 035

The table reports the OLS estimates from k-period regressions for real dividend-growth.

Each column reports a different horizon, odd (even) rows refer to  = () The Table

reports in parentheses t-statistic based on heteroskedastic and autocorrelated consistent (HAC)

covariance matrix estimators using Bartlett kernel weights as described in Newey & West (1987)

where the bandwidth has been selected following the procedure described in Newey & West (1994).
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Table 3.3: CAY and CDY. Sample 1948-2008. Annual data.

k-period regressions for real stock returns adjusted for dividend growth
X

=1

(+ −∆+) = 0 + 1 + 2 + 3 + 4 + +

horizon  in years

1 2 3 4 5 6

1
(−)

 −051
(−4796)

−036
(−5417)

−024
(−7799)

−022
(−9769)

−019
(−9506)

−015
(−10203)

 −049
(−6547)

−036
(−8500)

−025
(−9022)

−021
(−9930)

−020
(−13824)

−018
(−15141)

2
(−)

 065
(4713)

045
(5209)

029
(7635)

026
(9596)

023
(8871)

018
(9070)

 062
(6220)

045
(7653)

031
(7887)

026
(8109)

024
(10452)

021
(11669)

3
(−)

 072
(4487)

050
(5255)

034
(6670)

029
(9758)

024
(10237)

019
(10029)

 077
(6020)

053
(6801)

037
(6419)

031
(7152)

027
(8580)

021
(8883)

4
(−)

 −086
(−0508)

−008
(−0079)

0329
(0501)

−012
(−0158)

010
(0169)

0757
(2278)

 −167
(−2428)

−074
(−1295)

−0422
(−2141)

−055
(−3636)

−050
(3818)

−008
−0722)

2  028 050 063 072 079 087

 032 052 064 074 081 085

The table reports the OLS estimates from k-period regressions for real stock returns

adjusted for dividend-growth. Each column reports a different horizon, odd (even) rows

refer to  = () The Table reports in parentheses t-statistic based on heteroskedastic

and autocorrelated consistent (HAC) covariance matrix estimators using Bartlett kernel weights as

described in Newey & West (1987) where the bandwidth has been selected following the procedure

described in Newey & West (1994).
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Table 4: Predictive Performance. Sample 1948-2008. Annual data.

In-Sample Out-of-Sample

Panel A (k=1 ) 2 t-stat MAE RMSE 2 MAE RMSE DM

 303 164 1292 1617 −1122 1454 1860 −1743
  636 264 1193 1620 −525 1358 1809 −809
 −147 048 1203 1400 −1611 1324 1512 −1997


 1948 437 1008 1532 1120 1091 1627 468


 +  3864 597− 032 871 1097 2861 983 1186 1436

Hist.Mean − − 1292 1670 − 1340 1763 −
Panel B (k= 2 ) 2 t-stat MAE RMSE 2 MAE RMSE DM

 546 170 1572 2071 −5577 2421 3094 −401
  1574 245 1420 1991 −1172 1999 2620 −330
 292 113 1600 2193 −5519 2004 2745 −133


 4832 788 1220 1752 3552 1439 1990 311


 +  6263 632140 1058 1417 4085 1316 1694 608

Hist. Mean − − 1619 2191 − 1865 2479 −
Panel C (k= 3 ) 2 t-stat MAE RMSE 2 MAE RMSE DM

 634 199 1826 2487 −8856 3398 4359 132

  1076 170 1791 2481 −2589 2840 3561 −441
 591 141 1945 2694 −4143 2664 3370 −197


 4973 670 1322 1900 4395 1815 2332 290


 +  6489 724299 1367 1699 4854 1706 2033 250

Hist. Mean − − 1938 2665 − 2526 3174 −
This table presents statistics on k-year ahead forecast errors (in-sample and out-of-sample) for

stock returns. The first column lists the regressors in both univariate and bivariate predictive

regressions; , log dividend-price ratio 

 ,  corrected for breaks in mean (LVN), 


 ,

 adjusted for   and  cointegrated vector suggested by Lettau and Ludvigson (2005).

The sample starts in 1948 and we construct first forecast in 1982. All numbers are in percent.

RMSE is the root mean square error, MAE is the mean absolute error. DM is the Diebold and

Mariano (1995) t-statistic for difference in MSE of the unconditional forecast and the conditional

forecast. The out-of-sample R2 compares the forecast error of the historical mean with the forecast

from predictive regressions.
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Figure 1: The time series of log dividend- price ratio () Two vertical lines indicate the

breaks in 1954 and 1991 identified by LVN. Sample 1909 - 2008. Annual data.
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Figure 1:

Figure 2: The time series of Middle-Young (MY) ratio. The vertical line in 2008 indicates

the end of in-sample data and the start of Bureau of Census projections. Sample 1909-2050.

Annual data.
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Figure 3: MY and 20-year annualized real US stock market returns. The vertical line in 2008

indicates the end of in-sample data and the start of Bureau of Census projections. Sample

1920-2050. Annual data.
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Figure 4.1: ,  adjusted for breaks (LVN) and fluctuations of  around a time-varying

mean determined by  Two vertical lines indicate the breaks in 1954 and 1991 identified

by LVN. Sample 1910-2008. Annual data.
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Figure 4.2: Two alternative (and consistent) measures of the cycle in  Two vertical lines

indicate the breaks in 1954 and 1991 identified by LVN. Sample 1910-2008. Annual data.
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Figure 4.3:  vs.  adjusted for. cay is the annual series taken fromMartin Lettau’s

website,  is adjusted for  using the coefficients from Table 1.1 (k=3). Sample 1910-

2008. Annual data.

Figure 4.4:  vs.  adjusted for .  is the annual series taken from Martin

Lettau’s website,  is adjusted for using the coefficients from Table 1.1 (k=3). Sample

1910-2008. Annual data.
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Figure 5: Differences of cumulative RMSE of forecasts based on the historical prevaling mean

and RMSE of forecasting models based on  (dashed line) and on  adjusted for 

(solid line) The first forecast is in 1955 up to 2008. Annual data.
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Figure 6: 5-year (ex-post) stock market return (solid black line), within sample prediction

(solid red line) and out-of-sample projections for 5-year stock market excess returns (dashed

black line) along with 95% confidence intervals(dashed line). The vertical line in 2008 in-

dicates the end of in-sample data and the start of Bureau of Census projections. Sample

1910-2050. Annual data.
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APPENDIX A: The Statistical Model for Cointegration Analysis

We consider the following statistical model:

y =

X
=1

Ay− + u (8)

y is a  × 1 vector of variables (9)

This model can be re-written as follows

∆y = Π1∆y−1 +Π2∆y−2 + Π−1∆y−+1 +Πy−1 + u (10)

=

−1X
=1

Π∆y− +Πy−1 + u,

where:

Π = −
Ã
 −

X
=1

A

!
,

Π = −
Ã
 −

X
=1

A

!
.

Clearly the long-run properties of the system are described by the properties of the matrix

Π There are three cases of interest:

1. rank (Π) = 0 The system is non-stationary, with no cointegration between the variables

considered. This is the only case in which non-stationarity is correctly removed simply

by taking the first differences of the variables;

2. rank (Π) =  full The system is stationary;

3. rank (Π) =   . The system is non-stationary but there are  cointegrating

relationships among the considered variables. In this case Π = αβ0, where  is an

(× ) matrix of weights and β is an ( ×) matrix of parameters determining the

cointegrating relationships.
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Therefore, the rank of Π is crucial in determining the number of cointegrating vectors.

The Johansen procedure is based on the fact that the rank of a matrix equals the number

of its characteristic roots that differ from zero. The Johansen test for cointegration is based

on the estimates of the two characteristic roots of Π matrix. Having obtained estimates for

the parameters in the Π matrix, we associate with them estimates for the  characteristic

roots and we order them as follows 1  2  . If the variables are not cointegrated,

then the rank of Π is zero and all the characteristic roots equal zero. In this case each of the

expression ln (1− ) equals zero, too. If, instead, the rank of Π is one, and 0  1  1 then

ln (1− 1) is negative and ln (1− 2) = ln (1− 3) =  = ln (1− ) = 0 The Johansen

test for cointegration in our bivariate VAR is based on the two following statistics that

Johansen derives based on the number of characteristic roots that are different from zero:

trace () = −
X

=+1

ln
³
1− b´ ,

max (  + 1) = − ln
³
1− b+1´ ,

where  is the number of observations used to estimate the VAR. The first statistic tests the

null of at most  cointegrating vectors against a generic alternative. The test should be run

in sequence starting from the null of at most zero cointegrating vectors up to the case of at

most  cointegrating vectors. The second statistic tests the null of at most  cointegrating

vectors against the alternative of at most  + 1 cointegrating vectors. Both statistics are

small under the null hypothesis. Critical values are tabulated by Johansen (1991) and they

depend on the number of non-stationary components under the null and on the specification

of the deterministic component of the VAR.
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APPENDIX B: Robustness Analysis for the Cointegrating Evidence

To assess the robustness of our cointegrating relationship in identifying the low frequency

relation between stock market and demographics, we evaluate the effect of augmenting our

baseline relation with an alternative demographic factor. Research in demography has re-

cently concentrated on the economic impact of the demographic dividend (Bloom et al., 2003;

Mason&Lee, 2005). The demographic dividend depends on a peculiar period in the demo-

graphic transition phase of modern population in which the lack of synchronicity between

the decline in fertility and the decline in mortality typical of advanced economies has an

impact on the age structure of population. In particular a high support ratio is generated,

i.e. a high ratio between the share of the population in working age and the share of popula-

tion economically dependent. Empirical evidence has shown that the explicit consideration

of the fluctuations in the support ratio delivers significant results in explaining economic

performance (see Bloom et al., 2003). The concept of Support Ratio (SR) has been precisely

defined by Mason and Lee (2005) as the ratio between the number of effective number of

producers,  over the effective number of consumers,  (Mason&Lee, 2005). In practice

we adopt the following empirical proxy:

 = 2064(019 + 65)

where 2064 : Share of population between age 20-64, 019 : Share of population between

age 0-19 65 : Share of population age 65+8.

SR did not attract a significant coefficient when we augmented our cointegrating speci-

fication with this variable.

8We have checked robustness of our results by shifting the upper limit of the producers to the age of

75. This is consistent with the evidence on the cross-sectional age-wealth profile from Survey of Consumer

Finances, provided in Table 1 of Poterba(2001), which shows that the population share between 64-74 still

holds considerable amount of common stocks. Results are available upon request.
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APPENDIX C: Description of all Time-series used in our Empirical Investi-

gation.

Stock Market Prices: S&P 500 index yearly prices from 1909 to 2008 are from Robert

Shiller’s website, we take december observations.

Stock Market Dividends: Dividends are twelve-month moving sums of dividends paid

on the S&P 500 index. They are from the Robert Shiller website for the period 1900-2008.

These series coincide with those used in Goyal and Welch (2008), and made available at

http://www.bus.emory.edu/AGoyal/Research.html.

Stock Market Returns: For S&P 500 index, to construct the continuously com-

pounded return , we take the ex-dividend-price  add dividend  over −1 and take

the natural logarithm of the ratio.

Risk-free Rate: We download secondary market 3-Month Treasury Bill rate from

St.Louis (FRED) from 1934-2008. The risk-free rate for the period 1920 to 1933 is from

New York City from NBER’s Macrohistory data base. Since there was no risk-free short-

term debt prior to the 1920’s, we estimate it following Goyal and Welch (2008). We obtain

commercial paper rates for New York City from NBER’s Macrohistory data base. These are

available for the period 1871 to 1970. We estimate a regression for the period 1920 to 1971,

which yielded

 −  = −0004 + 0886× 

Therefore, we instrument the risk-free rate for the period 1909 to 1919 with the predicted

regression equation.

Hence we build our dependent variable which is the equity premium (− ), i.e., the

rate of return on the stock market minus the prevailing short-term interest rate in the year

− 1 to .
Second, we construct the independent variables commonly used in the long horizon stock

46



market prediction literature; namely

Log Dividend-Price Ratio (): the difference between the log of dividends and the

log of prices.

Consumption, wealth, income ratio (cay): The series is taken from Lettau and

Ludvigson (2001). Data are available from Martin Lettau’s website at annual frequency

from 1948 to 2001.

Consumption, dividend, income ratio (cdy): The series is taken from Lettau and

Ludvigson (2005). Data are available fromMartin Lettau’s website at annual frequency from

1948 to 2001.

Demographic Variables

The U.S annual population estimates series are collected from U.S Census Bureau and

the sample covers estimates from 1900-2050.

DATA SOURCES

Amit Goyal’s Website: http://www.bus.emory.edu/AGoyal/Research.html

Martin Lettau’s Website: http://faculty.haas.berkeley.edu/lettau/

Andrew Mason’s Website: http://www2.hawaii.edu/~amason/

Michael R. Roberts’ Website: http://finance.wharton.upenn.edu/~mrrobert/

Robert Shiller’s Website: http://www.econ.yale.edu/~shiller/

Bureau of Labor Statistics Webpage: http://www.bls.gov/data/

FRED: http://research.stlouisfed.org/fred2/

NBER Macrohistory Data Base:

http://www.nber.org/databases/macrohistory/contents/chapter13.html.

US Census Bureau: http://www.census.gov/popest/archives/
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