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Hierarchies of discrete probability measures are remarkably pop-
ular as nonparametric priors in applications, arguably due to two
key properties: (i) they naturally represent multiple heterogeneous
populations; (ii) they produce ties across populations, resulting in
a shrinkage property often described as “sharing of information”.
In this paper we establish a distribution theory for hierarchical ran-
dom measures that are generated via normalization, thus encompass-
ing both the hierarchical Dirichlet and hierarchical Pitman–Yor pro-
cesses. These results provide a probabilistic characterization of the
induced (partially exchangeable) partition structure, including the
distribution and the asymptotics of the number of partition sets, and
a complete posterior characterization. They are obtained by repre-
senting hierarchical processes in terms of completely random mea-
sures, and by applying a novel technique for deriving the associated
distributions. Moreover, they also serve as building blocks for new
simulation algorithms, and we derive marginal and conditional algo-
rithms for Bayesian inference.

1. Introduction. The random partition structure induced by discrete
nonparametric priors plays a pivotal role in a number of inferential prob-
lems related to clustering, density estimation, and prediction. It appears in
applications such as species sampling, computational linguistics and topic
modeling, genomics, and networks. The theory for the exchangeable case is
now well understood and extensively studied. See, e.g., [26, 38, 39, 18] for
probabilistic investigations and, e.g., [20, 21, 23, 10] for statistical contribu-
tions. However, in most applications data are intrinsically heterogeneous and
consistent with a dependence assumption more general than exchangeability.
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Starting from the seminal contributions of MacEachern [34, 35], an extensive
literature has been developed to address inferential issues arising with non–
exchangeable observations in a Bayesian nonparametric setting. See [11, 43]
for reviews. In document analysis, for example, the overall population con-
sists of all words in a collection of documents, but each document consti-
tutes a sub-population with its own distribution. Latent Dirichlet Allocation
(LDA) was developed in [2] as a simple and effective solution; its enormous
popularity is testament to the importance of the problem. The hierarchical
Dirichlet process [42] is a natural nonparametric extension. Further contri-
butions in this direction include [17, 43, 45, 37]. In these models, the induced
partition structure determines the inferential outcomes but, due to the an-
alytical complexity, its investigation and that of the associated prediction
rules have been quite limited; first contributions in this direction, under
different dependence assumptions, can be found in [30, 36, 46]. As far as
posterior characterizations are concerned, no results are known beyond the
hierarchical Dirichlet case [43]. Such characterizations are of theoretical in-
terest, but also a prerequisite for inference algorithms, which simulate draws
from (unobserved) random measures conditionally on data. See [6, 19, 31, 46]
for examples, and [16] for a comprehensive list of references.

The present paper deals with a general class of hierarchical processes
obtained by normalizing random measures, which encompass hierarchical
Dirichlet and Pitman-Yor processes. We establish a distribution theory for
this class of processes and determine the two distributional quantities es-
sential for Bayesian inference, namely the induced partition structure and
a posterior characterization. These allow to perform prediction density esti-
mation, clustering and the assessment of distributional homogeneity across
different samples. The focus on a general class of priors rather than on spe-
cial cases has a two–fold motivation. On the one hand, it helps to clarify the
underlying, probabilistic structure of hierarchical models and its statistical
implications. On the other hand, the Dirichlet process has well-known lim-
itations in the plain exchangeable framework, and that is similarly true in
the non–exchangeable case. In the former, various extensions of the Dirichlet
process have been introduced to provide more flexibility; our results provide
counterparts in the latter more general framework.

1.1. Partial exchangeability. A random infinite sequence is exchangeable
if its distribution is invariant under the group of all finitary permutations
(those which permute an arbitrary but finite number of indices of the se-
quence). It is partially exchangeable if invariance holds under a subgroup
of such permutations; see [24] for an extensive bibliography. In the prob-
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lems considered in the following, partial exchangeability arises naturally:
if a population decomposes into (conditionally independent) multiple sub-
populations that are each exchangeable in their own right, the overall pop-
ulation is partially exchangeable.

More formally, suppose X is a complete and separable metric space en-
dowed with the Borel σ–field X . Consider d partially exchangeable se-
quences {(Xi,j)j≥1 : i = 1, . . . , d} defined on some probability space (Ω,F ,P)
and taking values in (X,X ). By de Finetti’s representation theorem this is
equivalent to assuming

(1) P
[{

X(Ni) ∈ Ai : i = 1, . . . , d
}]

=

∫
Pd
X

d∏
i=1

p
(Ni)
i (Ai)Qd(dp1, . . . ,dpd)

for any integer Ni ≥ 1 and Ai ∈ X Ni , where X(Ni) = (Xi,1, . . . , Xi,Ni)
and p(q) = p × · · · × p is the q–fold product measure on Xq, for any q ≥
1. Moreover, PX is the space of all probability measures on X, which we
suppose is endowed with the topology of weak convergence and denote as
PX the corresponding Borel σ–algebra. The mixing or de Finetti measure
Qd is a probability measure on (PdX,P

d
X) that plays the role of a prior

distribution. Hence, (1) amounts to assuming that, given a vector of random
probability measures (p̃1, . . . , p̃d) ∼ Qd, the d samples are independent and
the observations X(Ni) of the i–th sample are independent and identically
distributed from p̃i.

As in most of the current literature, here we focus on choices of Qd that
select, with probability 1, vectors of discrete probability measures. This im-
plies that there will be ties, with positive probability, within each sample and
typically also across different samples. From a modeling perspective this is
a desirable feature since it allows clustering both within and across samples
or, in other terms, to have models accounting for heterogeneity in a flexi-
ble way. The appearance of ties then naturally leads to look at the induced
partition structure. In the exchangeable framework, the partition structure
is uniquely characterized by the exchangeable partition probability function
(EPPF) (see [39]), which is a key tool for studying clustering properties,
deriving prediction rules and sampling schemes.

In the partially exchangeable context one can define an analogous ob-
ject, which we term partially exchangeable partition probability function
(pEPPF), and plays exactly the same role of the EPPF in this more general
setup. In order to provide a probabilistic description of the pEPPF, let k
be the number of distinct values recorded among the N = N1 + · · · + Nd

observations in {X(Ni) : i = 1, . . . , d}. Each distinct value identifies a spe-
cific cluster of the partition. Accordingly, ni = (ni,1, . . . , ni,k) denotes the
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vector of frequency counts and ni,j is the number of elements of the i–th
sample that coincide with the j–th distinct value. Clearly ni,j ≥ 0 for any

i = 1, . . . , d and j = 1, . . . , k, and
∑d

i=1 ni,j ≥ 1 for any j = 1, . . . , k. Note
that ni,j = 0 means that the j–th distinct value does not appear in the i–th
sample. The j–th distinct value is shared by any two samples i and κ if and
only if ni,jnκ,j ≥ 1. To sum up, the pEPPF is defined as

(2) Π
(N)
k (n1, · · · ,nd) = E

∫
Xk

k∏
j=1

p̃
n1,j

1 (dxj) . . . p̃
nd,j
d (dxj)

with the obvious constraint
∑k

j=1 ni,j = Ni, for each i = 1, . . . , d.

1.2. Outline. The main goal of the paper is to establish a distribution
theory for prior distributions Qd displaying a hierarchical structure and se-
lecting discrete random probabilities. We focus on two key aspects. On the
one hand, we investigate the random partitions induced by an array of par-
tially exchangeable sequences as in (1), including the distribution of the
number of partition sets and its asymptotics when the sample size increases.
On the other hand, we provide a posterior characterization for a vector of
hierarchical random probability measures (p̃1, . . . , p̃d), conditional on the
data. The former allows one to address two relevant issues in Bayesian non-
parametric inference, namely inference on the clustering structure of the
data and prediction. The latter is crucial for accurate uncertainty quantifi-
cation and for devising simulation algorithms that generate trajectories of
hierarchical random probability measure, from their posterior distribution.

In Section 2 we introduce some basic elements on completely random
measures and provide a description of hierarchical normalized random mea-
sures. A probabilistic characterization of the induced partially exchangeable
random partition is detailed in Section 3 and this forms the basis for inves-
tigating the distributional properties of the number of distinct values in d
partially exchangeable samples in Section 4. The main results for establish-
ing a posterior representation of (p̃1, . . . , p̃d) are, then, stated in Section 5.
Finally, the computational algorithms that can be obtained from our the-
oretical results are described in Section 6. Proofs are deferred to the the
supplementary material [3].

2. Hierarchical normalized random measures. In the present work
we rely on random measures as the basic building blocks for the construc-
tion of discrete nonparametric priors having a hierarchical structure. Let
MX be the space of boundedly finite measures on (X,X ), i.e. m(A) < ∞
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for any m ∈ MX and for any bounded set A ∈ X , equipped with the
corresponding Borel σ–algebra MX. See [9] for details. We consider ran-
dom elements µ̃ defined on some probability space (Ω,F ,P) and taking
values in (MX,MX). Furthermore, µ̃ is assumed to be almost surely discrete
and without fixed points of discontinuity. Hence, they can be represented as
µ̃ =

∑
i≥1 Ji δYi . We shall henceforth focus on random probabilities obtained

as suitable transformations of µ̃. In particular, we will focus on normaliza-
tion. Indeed, if 0 < µ̃(X) <∞ a.s., we define

(3) p̃ =
µ̃

µ̃(X)
=
∑
i≥1

Ji
J̄
δYi ∼ NRM(P )

where J̄ :=
∑

i≥1 Ji = µ̃(X) and P = Ep̃ is a probability distribution on
(X,X ). In order to obtain a hierarchical structure, one then assumes that

(Yi)i≥1 in (3) is exchangeable with Yi | p̃0
iid∼ p̃0. Moreover, p̃0 = µ̃0/µ̃0(X)

is obtained by normalizing a random measure µ̃0 =
∑

i≥1 Ji,0 δYi,0 , where
(Yi,0)i≥1 is an i.i.d. sequence taking values in X and whose common prob-
ability distribution P0 is non–atomic. Therefore, we deal with d sequences
{(Xi,j)j≥1 : i = 1, . . . , d} that are partially exchangeable according to (1)
and the mixing measure Qd is characterized by

p̃i | p̃0
iid∼ NRM(p̃0) i = 1, . . . , d

p̃0 ∼ NRM(P0).
(4)

The almost sure discreteness of µ̃ is clearly inherited by the p̃i’s and hence,
as desired, we have nonparametric priors Qd selecting discrete distributions
and inducing ties within and across the samples X(N1), . . . ,X(Nd).

The following subsections focus on two specifications of (µ̃, µ̃0), and hence
of (4), that will be thoroughly investigated in the paper.

2.1. Hierarchical NRMIs. A first natural choice is to set µ̃ as a completely
random measure (CRM), i.e. a random element taking values in MX such
that for any collection of pairwise disjoint sets A1, . . . , Ak in X , and for any
k ≥ 1, the random variables µ̃(A1), . . . , µ̃(Ak) are mutually independent.
See [25]. An appealing feature of CRMs is the availability of their Laplace
functional. Indeed, if it is further assumed that µ̃ does not have fixed points
of discontinuity, for any measurable function f : X→ R+ one has

(5) E e−
∫
X
f(x) µ̃(dx) = e−

∫
R+×X[1−e−sf(x)] ν(ds,dx)

where ν is the Lévy intensity uniquely characterizing the CRM µ̃. See [25, 27]
for an exhaustive account. Though the treatment can be developed for any
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CRM, for the ease of illustration henceforth we consider the case where the
jumps Ji’s and the locations Yi’s are independent and specifically that

(6) ν(ds, dx) = ρ(s) ds c P0(dx)

for some measurable function ρ : R+ → R+, constant c > 0 and probability
measure P0 on (X,X ). Noteworthy examples are the gamma process and
the σ–stable process, which correspond to CRMs having ρ(s) = s−1 e−s and
ρ(s) = σs−1−σ/Γ(1 − σ), for some σ ∈ (0, 1). If p̃ = µ̃/µ̃(X) we use the
notation

p̃ ∼ NRMI(ρ, c, P0),

which recalls the acronym of [41], where normalized random measures have
first been introduced and studied in the exchangeable framework. The cor-
responding hierarchical model in (4) is thus termed hierarchical NRMI.

For hierarchical NRMIs one can evaluate the correlation between p̃i(A)
and p̃j(A), for any i 6= j and measurable subset A of X, in terms of the
underlying parameters (c, ρ, c0, ρ0). In order to ease the statement of the
result, set ψ(u) =

∫∞
0 [1 − e−us]ρ(s)ds and ψ0(u) =

∫∞
0 [1 − e−us]ρ0(s)ds as

the Laplace exponents corresponding to p̃ and p̃0, respectively.

Theorem 1. Suppose that p̃i | p̃0
iid∼ NRMI(ρ, c, p̃0), for i = 1, . . . , d, and

p̃0 ∼ NRMI(ρ0, c0, P0). Then, for any A ∈X and i 6= j

corr(p̃i(A), p̃j(A)) ={
1 + c0 c

∫∞
0 u e−cψ(u) τ2(u) du

∫∞
0 u e−c0ψ0(u) τ2

1,0(u) du∫∞
0 u e−c0ψ0(u) τ2,0(u) du

}−1
,

(7)

where τq(u) =
∫∞

0 sq e−us ρ(s) ds and τq,0(u) =
∫∞

0 sq e−us ρ0(s) ds.

It is worth stressing two important facts. The correlation coefficient be-
tween p̃i(A) and p̃j(A) is always positive. It does not depend on the specific
set A. Moreover, by specifying (c, ρ, c0, ρ0) the correlation coefficient (7)
becomes readily available as shown in the following examples.

Example 1. If ρ(s) = ρ0(s) = s−1 e−s, then p̃0 is a Dirichlet process
and the p̃i’s are, conditionally on p̃0, independent and identically distributed
Dirichlet processes. Hence, (p̃1, . . . , p̃d) is a vector of hierarchical Dirichlet
processes as in [42]. A straightforward application of Theorem 1 yields

corr(p̃i(A), p̃j(A)) =
c+ 1

c+ 1 + c0
.



HIERARCHICAL PROCESSES 7

Note that the correlation is increasing in c and decreasing in c0. As c0 ↑ ∞
the distribution of p̃0 degenerates on P0 and the p̃i’s are independent, which
is consistent with corr(p̃i(A), p̃j(A)) converging to 0. On the other hand, if
c ↑ ∞, then the distribution of each p̃i, conditional on p̃0, degenerates on p̃0

and it is, thus, not surprising that the correlation coefficient between any
pair of p̃i(A)’s converges to 1, for any A in X .

Example 2. The hierarchical stable NRMI arises by setting ρ(s) =
σ s−1−σ/Γ(1 − σ) and ρ0(s) = σ0 s

−1−σ0/Γ(1 − σ0), for some σ and σ0 in
(0, 1). This implies that p̃0 is a σ0–stable NRMI and, conditionally on p̃0,
the p̃i’s are independent and identically distributed σ–stable NRMIs. We
will say that (p̃1, . . . , p̃d) is a vector of hierarchical stable NRMIs. A plain
application of Theorem 1 leads to

corr(p̃i(A), p̃j(A)) =
1− σ0

1− σσ0
,

which is increasing in σ and decreasing in σ0. Due to the properties of the
stable CRM, unsurprisingly the correlation coefficient does not depend on
the total masses c0 and c.

2.2. Hierarchical Pitman–Yor processes. The second relevant construc-
tion arises when µ̃ has a distribution obtained by a suitable transformation
of the distribution of a CRM. In particular, let Pσ be the probability dis-
tribution on (MX,MX) of a σ–stable CRM, with σ ∈ (0, 1). For θ > 0
define Pσ,θ on (MX,MX) as absolutely continuous w.r.t. Pσ and such that
its Radon–Nikodym derivative is

(8)
dPσ,θ
dPσ

(m) =
σ Γ(θ)

Γ(θ/σ)
m−θ(X)

The resulting random measure µ̃σ,θ with distribution Pσ,θ is not completely
random. Nonetheless, via normalization

(9) p̃ =
µ̃σ,θ

µ̃σ,θ(X)
∼ PY(σ, θ;P )

one obtains a fundamental process, the Pitman–Yor process or two–parameter
Poisson–Dirichlet process. A different equivalent construction, simpler but
less convenient for our purposes, starts from a specific NRMI(ρ, c, P0) and
puts a gamma prior on the parameter c. See [40] for details on both deriva-
tions.

The following results provides the correlation structure for the hierar-
chical Pitman–Yor process and nicely describes the role of the parameters
(σ, σ0, θ, θ0).
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Theorem 2. Suppose that p̃i | p̃0
iid∼ PY(σ, θ, p̃0), for i = 1, . . . , d, and

p̃0 ∼ PY(σ0, θ0, P0). Then, for any A ∈X and i 6= j

(10) corr(p̃i(A), p̃j(A)) =
{

1 +
1− σ
1− σ0

θ0 + σ0

θ + 1

}−1

Unsurprisingly, also for hierarchical Pitman–Yor processes the correlation
between p̃i(A) and p̃j(A), for any i 6= j, is positive and does not depend on
A ∈X . Moreover, from (10) the impact of (θ0, σ0, θ, σ) on corr(p̃i(A), p̃j(A))
can be easily deduced.

3. Random partitions induced by hierarchical NRMs. Consider
an array of d partially exchangeable sequences with de Finetti measure Qd
given by hierarchies of normalized measures as in (4). As already mentioned,
the discreteness of the p̃i’s and p̃0 entails that P[X`,i = Xκ,j ] > 0 for any `
and κ, i.e. there is a positive probability of ties both within each sample and
across the different samples X(Ni) = (Xi,1, . . . , Xi,Ni). A random partition
of the samples is, thus, induced, whereby any two elements X`,i and Xκ,j

are in the same partition group (or cluster) if and only if they take on the

same value. Its probability distribution is identified by the pEPPF Π
(N)
k in

(2). Here we determine a closed form expression for hierarchical NRMIs and
the hierarchical Pitman–Yor process.

We first focus on hierarchical NRMIs. In order to gain some intuition on

the structure of Π
(N)
k , it is worth recalling the so–called Chinese restaurant

franchise metaphor described in [42] for the hierarchical Dirichlet process.
According to this scheme, a franchise of d restaurants shares the same menu,
which includes an infinite number of dishes and is generated by the top level
base measure P0. Each restaurant has infinitely many tables. The first cus-
tomer sitting at each table of restaurant i chooses the dish and this dish is
shared by all other customers who afterwards join the same table. In con-
trast to the well–known Chinese restaurant process, the same dish can be
served at different tables within the same restaurant and across different
restaurants. According to this scheme, Xi,j represents the dish served in the
i–th restaurant to the j–th customer for j = 1, . . . , Ni and i = 1, . . . , d. Fur-
thermore, the frequency ni,j in (2) is the number of customers in restaurant
i eating the j–th dish and we further let `i,j ∈ {1, . . . , ni,j} be the number
of tables in restaurant i at which the j–th dish is served, if ni,j ≥ 1. When
ni,j = 0 it is obvious that `i,j = 0 as well. Hence

¯̀•j =

d∑
i=1

`i,j , ¯̀
i• =

k∑
j=1

`i,j .
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denote, respectively, the number of tables serving dish j (across restaurants)
and the number of tables in restaurant i (regardless of the served dishes).
Moreover, if we further label the tables, with qi,j,t we can identify the number

of customers in restaurant i eating dish j at table t so that
∑`i,j

t=1 qi,j,t = ni,j .
This additional notation suggests we are going to consider a combinatorial
structure arising from the composition of random partitions acting at differ-
ent levels of the hierarchy: one yields a partition where the N = N1+· · ·+Nd

customers are allocated to |`| =
∑d

i=1

∑k
j=1 `i,j ≥ k tables and these tables

are, then, clustered into k groups, with each group being identified by a
different distinct dish.

Before providing the pEPPF, we introduce the notation that identifies the
composing random partitions. If p̃0 ∼ NRMI(ρ0, c0, P0) and P0 is a diffuse
probability measure on X, for any k ∈ {1, . . . , n} and any vector of positive
integers (r1, . . . , rk) such that

∑k
i=1 ri = n, we set

(11) Φ
(n)
k,0(r1, . . . , rk) =

ck0
Γ(n)

∫ ∞
0

un−1 e−c0ψ0(u)
k∏
j=1

τrj ,0(u) du.

Note that according to [23, Proposition 3], Φ
(n)
k,0 is the EPPF induced by an

exchangeable sequence drawn from a NRMI with parameter (c0, ρ0).

Theorem 3. Suppose the sequences {(Xi,j)j≥1 : i = 1, . . . , d} are par-
tially exchangeable according to (1), with Qd characterized by

p̃i | p̃0
iid∼ NRMI(ρ, c, p̃0) (i = 1, . . . , d), p̃0 ∼ NRMI(ρ0, c0, P0).

Then

Π
(N)
k (n1, · · · ,nd) =

∑
`

∑
q

Φ
(|`|)
k,0 (`•1, · · · , `•k)

×
d∏
i=1

k∏
j=1

1

`i,j !

(
ni,j

qi,j,1, · · · , qi,j,`i,j

)
Φ

(Ni)
¯̀
i•,i

(qi,1, . . . , qi,k)

(12)

where, if ni,j ≥ 1, qi,j = (qi,j,1, . . . , qi,j,`i,j ) is a vector of positive integers
such that |qi,j | = ni,j, for any i = 1, . . . , d and j = 1, . . . , k, and

(13) Φ
(Ni)
¯̀
i•,i

(qi,1, . . . , qi,k) =
c

¯̀
i•

Γ(Ni)

∫ ∞
0

uNi−1e−cψ(u)
k∏
j=1

`i,j∏
t=1

τqi,j,t(u)du.
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Note that, if ni,j = 0, then qi,j = (0, . . . , 0) and

Φ
(Ni)
¯̀
i•,i

(qi,1, . . . , qi,k) = Φ
(Ni)
¯̀
i•,i

(qi,1, . . . , qi,j−1, qi,j+1, . . . qi,k)

The backbone of (12) is

(14) Φ
(|`|)
k,0 (`•1, · · · , `•k)

d∏
i=1

Φ
(Ni)
¯̀
i•,i

(qi,1, . . . , qi,k)

which displays the random partitions’ composition acting at the two levels
of the hierarchy: the single samples (or restaurants) and the whole collection

of samples (or the franchise). The former is captured by
∏d
i=1 Φ

(Ni)
¯̀
i•,i

while

the latter is identified by Φ
(|`|)
k,0 . The resulting expression of Π

(N)
k then follows

from plain marginalization.
We now illustrate the result by considering again the hierarchical Dirichlet

process and the hierarchical stable NRMI.

Example 3. Let (p̃1, . . . , p̃d) be a vector of hierarchical Dirichlet pro-
cesses as in Example 1. Let (a)n = Γ(a+n)/Γ(a) be the ascending factorial
and |s(n, k)| the signless Stirling number of the first kind. It is then straight-
forward to show that

Π
(N)
k (n1, . . . ,nd) =

ck0∏d
i=1(c)Ni

∑
`

c|`|

(c0)|`|

k∏
j=1

(¯̀•j − 1)!

d∏
i=1

|s(ni,j , `i,j)|

= ck0

(
d∏
i=1

∏k
j=1(c)ni,j

(c)Ni

) ∑
`

1

(c0)|`|

k∏
j=1

(¯̀•j − 1)!

d∏
i=1

P[Kni,j = `i,j ]

where Kni,j is a random variable denoting the number of distinct obser-
vations, out of ni,j drawn from an exchangeable sequence whose de Finetti
measure is a Dirichlet process with concentration parameter c. Alternatively,
one can rely on properties of |s(n, k)| and deduce the following integral rep-
resentation

Π
(N)
k (n1, . . . ,nd) =

ck0 c
ξ∏d

i=1(c)Ni

∫
∆k

Dk(dp ; ξ1, . . . , ξk, c0)
d∏
i=1

∏
{j: ni,j≥1}

(c pj + 1)ni,j−1

where ξj =
∑d

i=1 1{1,2,...}(ni,j) is the number of restaurants sharing the j–th

dish, ξ =
∑k

j=1 ξj and Dk( · ; a1, . . . , ak+1) is the multivariate Dirichlet dis-
tribution on the k–dimensional simplex ∆k, with parameters (a1, . . . , ak+1).
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Example 4. Let (p̃1, . . . , p̃d) be a vector of hierarchical stable NRMIs
defined as in Example 2 and C (n, k;σ) be the generalized factorial coeffi-
cients defined by

(σt)n =

n∑
k=1

C (n, k;σ) (t)k.

As for the pEPPF, Theorem 3 and some algebra lead to

Π
(N)
k (n1, . . . ,nd) =

σk−1
0 Γ(k)∏d
i=1 Γ(Ni)

∑
`

σ|`|−d
∏d
i=1 Γ(¯̀

i•)

Γ(|`|)

k∏
j=1

(1− σ0)¯̀•j−1

×
d∏
i=1

k∏
j=1

C (ni,j , `i,j ;σ)

σ`i,j

= σk−1
0 σξ−d

d∏
i=1

(∏
{j: ni,j≥1} Γ(ni,j)

Γ(Ni)

) ∑
`

∏k
j=1(1− σ0)¯̀•j−1

Γ(|`|)

×
d∏
i=1

(
Γ(¯̀

i•)∏
{j: ni,j≥1} Γ(`i,j)

)
d∏
i=1

k∏
j=1

P[Kni,j = `i,j ]

with Kni,j denoting the number of distinct observations generated by ni,j
observations from an exchangeable sequence whose de Finetti measure is a
normalized σ–stable process.

The combinatorial structure yielding the pEPPF in (12) is not specific to
hierarchical NRMIs. Indeed, it can be established also for the Pitman–Yor
process, which arises as the normalization of a measure that is not completely
random.

Theorem 4. Let {(Xi,j)j≥1 : i = 1, . . . , d} be partially exchangeable as
in (1), with Qd characterized by

p̃i | p̃0
iid∼ PY(σ, θ; p̃0) (i = 1, . . . , d), p̃0 ∼ PY(σ0, θ0;P0)

Then

(15) Π
(N)
k (n1, . . . ,nd) =

∑
`

∏k−1
r=1(θ0 + rσ0)

(θ0 + 1)|`|−1

k∏
j=1

(1− σ0)¯̀•j−1

×
d∏
i=1

∏¯̀
i•−1
r=1 (θ + rσ)

(θ + 1)Ni−1

k∏
j=1

C (ni,j , `i,j ;σ)

σ`i,j
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This result is related to the findings in [17], whose construction leads to
a tree structure used as a language model. In models of this type, termed
sequence memoizer, the observations take values in the space Σ∗ of finite
sequences of elements from a countable (typically finite) set symbols Σ.
Each random probability measure involved in the hierarchies of the model
is supported by Σ and it is, then, apparent that the base measure at the
root of the hierarchy is atomic. Our treatment is different, in the sense that
the state space coincides with any separable and complete metric space X
and the probability distribution at the root of the hierarchy is diffuse. The
latter is crucial for obtaining the expressions of the pEPPF displayed in this
paper.

4. Distribution of the number of clusters KN . Having determined
the pEPPF of hierarchical NRMIs and hierarchical Pitman–Yor processes, a
natural issue to address is the determination of the probability distribution
of the number KN of distinct values out of N = N1 + · · · +Nd partially ex-
changeable observations. This can be achieved by relying on the composition
of random partitions in the pEPPF representations in Theorems 3 and 4 and
highlighted in (14). For the derivation of the result, it is useful to introduce a
collection of sequences of latent random variables {(Ti,j)j≥1 : i = 1, . . . , d}.
They are such that Ti,j |q̃i

iid∼ q̃i, with q̃i
iid∼ NRMI(c, ρ,G) for hierarchical

NRMIs and q̃i
iid∼ PY(σ, θ,G) for hierarchical Pitman–Yor processes, while

G is some diffuse probability measure. In terms of the Chinese restaurant
franchise metaphor, Ti,j is the label of the table where the j–th customer of
the i–th restaurant is seated. In view of this, the probability distribution of
KN arises by considering:

(i) independent random variables K ′i,Ni that equal, for each i = 1, . . . , d,

the number of distinct values in T (Ni) = (Ti,1, . . . , Ti,Ni);

(ii) K0,t, which represents the number of distinct values out of t exchange-
able random elements generated from p̃0.

According to the Chinese restaurant metaphor, K ′i,Ni is the number of tables
where the Ni customers of restaurant i are seated, while K0,t is the number
of distinct dishes allocated to the t tables where the N customers of the
whole franchise are seated.

Theorem 5. Suppose KN is the number of distinct values in the d par-
tially exchangeable samples {X(Ni) : i = 1, . . . , d} governed by a vector of

hierarchical NRMIs, i.e. p̃i|p̃0
iid∼ NRMI(c, ρ, p̃0) and p̃0 ∼ NRMI(c0, ρ0, P0),
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with P0 being non–atomic. Then, for any k = 1 . . . , N one has

(16) P[KN = k] =
N∑
t=k

P[K0,t = k]P
[ d∑
i=1

K ′i,Ni = t
]

The probability distributions of K0,t and of K ′i,Ni are readily derived from
their EPPFs and coincide with

(17) P[K0,t = k] =
1

k!

∑
(r1,...,rk)∈∆k,t

(
t

r1 · · · rk

)
Φ

(t)
k,0(r1, . . . , rk)

for any k ∈ {1, . . . , t}, where ∆j,n = {(r1, . . . , rj) : ri ≥ 1,
∑j

i=1 ri = n},
and

(18) P[K ′i,Ni = ζ] =
1

ζ!

∑
(r1,...,rζ)∈∆ζ,Ni

(
Ni

r1 · · · rζ

)
Φ

(Ni)
ζ,i (r1, . . . , rζ)

for any ζ ∈ {1, . . . , Ni}.
A similar result holds for the hierarchical Pitman–Yor process.

Theorem 6. Suppose KN is the number of distinct values in the d par-
tially exchangeable samples {X(Ni) : i = 1, . . . , d} governed by a vector

of hierarchical Pitman–Yor processes, i.e. p̃i|p̃0
iid∼ PY(σ, θ; p̃0) and p̃0 ∼

PY(σ0, θ0;P0). Then

P[KN = k] =

N∑
t=k

∏k−1
r=1(θ0 + rσ0)

(θ0 + 1)t−1

C (t, k;σ0)

σk0

×
∑

{(ζ1,...,ζd)∈∆d,t}

d∏
i=1

∏ζi−1
r=1 (θ + rσ)

(θ + 1)Ni−1

C (Ni, ζi;σ)

σζi

(19)

Remark 1. In the proofs of Theorems 5–6, based on the expressions
of the pEPPFs, we give an alternative equivalent representation of KN : if
ξ(N) = K ′1,N1

+ · · · + K ′d,Nd , from (16) and (19) one deduces for both
hierarchical NRMIs and Pitman–Yor processes

KN
d
= K0,ξ(N).

The equality between KN and K0,ξ(N) can be strengthened, and actually
holds almost surely. This fact is useful for the determination of the asymp-
totic behaviour of KN .
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Before establishing the asymptotic behavior of KN , as N →∞, introduce
two positive sequences (λ0(n))n≥1 and (λ(n))n≥1 such that limn λ0(n) =
limn λ(n) =∞ and assume λ0 satisfies the following condition:

(H1) for any pair of positive sequences (b1(n))n≥1 and (b2(n))n≥1 such that
limn b1(n) = limn b2(n) =∞ and limn(b1(n)/b2(n)) = 1

lim
n→∞

λ0(b1(n))

λ0(b2(n))
= 1

We would like to stress that assumption (H1) is satisfied when λ0 is a regu-
larly varying function.

In the sequel we agree that Yn ' λ(n), for n→∞, means that limn Yn/λ(n)
almost surely exists and equals a finite and positive random variable, then
one can state the following.

Theorem 7. Suppose KN is the number of distinct values in the d par-
tially exchangeable samples {X(Ni) : i = 1, . . . , d} governed by a vector of
hierarchical NRMIs such that K0,N ' λ0(n) and K ′i,N ' λ(N) as N → ∞,
where (λ0(n))n≥1 satisfies (H1). Moreover, let N1 = · · · = Nd = N∗ = N/d.
Then

KN ' λ0(η λ(N/d)) as N →∞,

for some positive and finite random variable η.
In particular, if (p̃1, . . . , p̃d) is a vector of hierarchical Dirichlet processes,
then

KN ' log logN as N →∞.

Note that the rate of increase of KN for the hierarchical Dirichlet process
has been also displayed in [43] based on a more informal argument. The
corresponding result for hierarchical Pitman–Yor process is as follows.

Theorem 8. Suppose KN is the number of distinct values in the d par-
tially exchangeable samples {X(Ni) : i = 1, . . . , d} governed by a vector
of hierarchical Pitman–Yor processes. Furthermore, let N1 = · · · = Nd =
N∗ = N/d. Then

KN ' Nσ σ0 as N →∞

Remark 2. These results can be extended to the case where only a
subset of the Ni’s diverge and the others stay finite. Indeed, if for some
m ≤ d one has Nj1 = · · · = Njm = N∗, where N∗ → ∞, and Ni < L < ∞
for any other i 6∈ {j1, . . . , jm}, then it is possible to conclude that

KN ' λ0(ηλ(N/m))



HIERARCHICAL PROCESSES 15

as N∗ →∞, which entails N →∞. This leaves the rates of increase for KN

displayed in Theorems 7–8 unchanged .

Remark 3. With some care the results can be generalized to cover
the case of the Ni’s diverging at different rates. Indeed, considering the
asymptotics as max1≤i≤dNi → ∞, KN increases at rates similar to those
displayed Theorems 7–8.

5. Posterior characterizations. In order to complete the description
of distributional properties of hierarchical processes, it is essential to deter-
mine a posterior characterization. To the best of our knowledge, no posterior
characterization is available for dependent processes in a partially exchange-
able framework, whether constructed in terms of hierarchies or by different
means. Hence, our following results are the very first. Despite the theoretical
interest, note that, while for prediction the partition probability functions
of Theorems 3–4 suffice, inference on non–linear functionals of (p̃1, . . . , p̃d)
requires the posterior distribution of the vector of hierarchical random prob-
abilities.

5.1. Hierarchical NRMI posterior. In the following let X∗1 , . . . , X
∗
k de-

note the distinct observations featured by the whole collection of samples
X = {X(Ni) : i = 1, . . . d} and assume U0 is a positive random variable
whose density function, conditional on X and on the latent tables’ labels
T = {T (Ni) : i = 1, . . . , d} introduced in Section 4, equals

(20) f0(u|X,T ) ∝ u|`|−1e−c0ψ0(u)
k∏
j=1

τ¯̀•j ,0
(u).

The posterior characterization is then composed of two blocks, the first
concerning the root of the hierarchy in terms of µ̃0 and the second concerning
the vector of random probabilities.

Theorem 9. Suppose the data X are partially exchangeable and are
modeled as in (4). Then

(21) µ̃0 | (X,T , U0)
d
= η∗0 +

k∑
j=1

IjδX∗j

where the two summands on the right–hand side of the distributional identity
are independent and
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(i) η∗0 is a CRM with intensity

ν0(ds, dx) = e−U0sρ0(s)ds c0 P0(dx).

(ii) the Ij’s are independent and non–negative jumps with density

fj(s|X,T ) ∝ s¯̀•je−sU0ρ0(s)

It is worth noting that the posterior of µ̃0 depends on sample information
across the populations rather than population–specific, most notably the
number of different dishes served across restaurants. This clearly serves the
purpose of directing the dependence across populations. Theorem 9 allows
us then to establish the posterior distribution of a vector (µ̃1, . . . , µ̃d) of hi-
erarchical CRMs, conditional a vector U = (U1, . . . , Ud) whose components
are conditionally independent, given (X,T ), and with respective densities

(22) fi(u|X,T ) ∝ uNi−1e−cψ(u)
k∏
j=1

`i,j∏
t=1

τqi,j,t(u) i = 1, . . . , d.

The fundamental posterior characterization, where population–specific char-
acteristics come into play, can then be stated as follows.

Theorem 10. Suppose the data X are partially exchangeable and are
modeled as in (4). Then

(23) (µ̃1, . . . , µ̃d)|(X,T ,U , µ̃0)
d
= (µ̃∗1, . . . , µ̃

∗
d)+( k∑

j=1

`1,j∑
t=1

J1,j,tδX∗j , . . . ,

k∑
j=1

`d,j∑
t=1

Jd,j,tδX∗j

)
,

where the two summands on the right–hand–side are independent,
∑`i,j

t=1 Ji,j,t ≡
0 if ni,j = 0 and

(i) (µ̃∗1, . . . , µ̃
∗
d) is a vector of hierarchical CRMs and, conditional on µ̃∗0 =

η∗0 +
∑k

j=1 IjδX∗j in (21), each µ̃∗i has intensity

νi(ds, dx) = e−Uisρ(s)ds c p̃∗0(dx),

with p̃∗0 = µ̃∗0/µ̃
∗
0(X);

(ii) the jumps Ji,j,t are independent and non–negative random variables
whose density equals

fi,j,t(s) ∝ e−Uissqi,j,t ρ(s).

when ni,j ≥ 1, whereas Ji,j,t = 0, almost surely, if ni,j = 0.
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The expressions involved in the posterior characterization of Theorem 10
are somehow reminiscent of the ones provided in [23] for the exchangeable
case. This is due to the fact that, once accounted for the dependence struc-
ture inherited from the hierarchical construction, one has exchangeability
within each population.

We now illustrate the general results by means of two examples, related
to the hierarchical Dirichlet process and the hierarchical stable NRMI.

Example 5. Assume that ρ(s) = ρ0(s) = e−s/s, so we are considering
a vector of hierarchical Dirichlet processes. Recall that ψ(u) = ψ0(u) =
log(1 + u) and τq(u) = τq,0(u) = Γ(q)/(1 + u)q. In this case

f0(u) =
Γ(|`|+ c0)

Γ(|`|)Γ(c0)

u|`|−1

(1 + u)c0+|`| 1(0,∞)(u)

implying that U0/(1 +U0) ∼ Beta(|`|, c0). In the posterior representation of
µ̃0 as stated in Theorem 9, one has

(a) η∗0 is a gamma CRM with intensity e−(1+U0)ss−1 ds c0 P0(dx),

(b) Ij
ind∼ Ga(¯̀•j , 1 + U0), meaning that its density function is

(1 + U0)
¯̀•j

Γ(¯̀•j)
x

¯̀•j−1e−(1+U0)x1(0,∞)(x)

Now, since the normalized distributions of (a) and (b) do not depend on the
scale U0, it follows that

p̃∗0 = p̃0|(X,T ) ∼ D(c0P0 +
k∑
j=1

¯̀•jδX∗j ).

with D indicating a Dirichlet process. As far as the vector of random proba-
bilities (p̃1, . . . , p̃d) is concerned, by Theorem 10 one has that, conditional on
p̃∗0 and on (X,T ,U), the CRMs µ̃1, . . . , µ̃d are independent, and the distri-
bution of each µ̃i equals the probability distribution of the random measure
µ̃∗i +

∑k
j=1Hi,jδX∗i,j where

(a’) µ̃∗i a gamma CRM having intensity e−(1+Ui)ss−1 ds c p̃∗0(dx)

(b’) Hi,j =
∑`i,j

t=1 Ji,j,t, where Ji,j,t
ind∼ Ga(qi,j,t, Ui + 1), for t = 1, . . . , `i,j ,

thus implying that Hi,j ∼ Ga(ni,j , Ui + 1) if ni,j ≥ 1 and Hi,j = 0
almost surely if ni,j = 0, by virtue of Theorem 10(ii).
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Moreover, note that Ui/(1 + Ui)
ind∼ Beta(c,Ni). Hence, by the same argu-

ments as before, one has

p̃i|(X,T , p̃∗0) ∼ D
(
cp̃∗0 +

k∑
j=1

ni,jδX∗i,j

)
for i = 1, . . . , d. Note that the dependence on the table configuration T is
induced solely by p̃∗0, arguably a quite restrictive feature.

Example 6. For a hierarchical stable NRMI one has ρ(s) = σs−1−σ ds/Γ(1−
σ), for some σ ∈ (0, 1), ψ(u) = uσ and τq(u) = σ(1−σ)q−1 u

σ−q. Similar ex-
pressions hold true for ρ0, τq,0 and ψ0, with σ0 ∈ (0, 1) replacing σ. It is easily
seen that U0 is such that Uσ00 ∼ Ga(k, c0) and note that the distribution of
U0 depends on the observations only through k. Moreover

(a) η∗0 is a CRM with intensity

σ0

Γ(1− σ0)

e−U0s

sσ0+1
ds c0 P0(dx),

which is known as generalized gamma CRM (see, e.g, [29]).

(b) Ij
ind∼ Ga(¯̀•j − σ0, U0).

Hence p̃∗0 = (η∗0 +
∑k

j=1 Ij δX∗j )/(η∗0(X) +
∑k

j=1 Ij). Conditional on p̃∗0, and

on (X,T ,U), the CRMs µ̃1, . . . , µ̃d are independent and each µ̃i equals, in
distribution, µ̃∗i +

∑ki
j=1Hi,jδX∗i,j , where

(a’) µ̃∗i is a generalized gamma CRM whose intensity is

σ

Γ(1− σ)

e−Uis

sσ+1
ds c p̃∗0(dx);

(b’) Hi,j :=
∑`i,j

t=1 Ji,j,t, where Ji,j,t
ind∼ Ga(qi,j,t − σ, Ui), for t = 1, . . . , `i,j ,

thus implying that Hi,j
ind∼ Ga(ni,j−`i,jσ, Ui) if ni,j ≥ 1, while Hi,j = 0

almost surely if ni,j = 0.

Finally, Ui is such that Uσi ∼ Ga(k, c). This implies that the posterior dis-
tribution of (p̃1, . . . , p̃d), conditional on the data and a suitable latent struc-
ture, is a vector of normalized generalized gamma CRMs with fixed points
of discontinuity at the data points.
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5.2. Hierarchical PY posterior. Even if not obtained through the nor-
malization of a CRM, the techniques used in Theorems 9–10 apply, with
suitable modifications, to the determination of a posterior characterization
of the Pitman–Yor process. Hence, assume that data X are partially ex-
changeable as in (1) and the prior Qd is characterized by

p̃i | p̃0
iid∼ PY(σ, θ; p̃0) (i = 1, . . . , d), p̃0 ∼ PY(σ0, θ0;P0)

where p̃0 = µ̃0/µ̃0(X) and p̃i = µ̃i/µ̃i(X), for i = 1, . . . , d and, recall that,
in view of (8), here the random measures µ̃0 and µ̃i are not completely
random. The first step is again the posterior characterization of the root of
the hierarchy in terms of µ̃0.

Theorem 11. Let V0 be such that V σ0
0 ∼ Ga(k+θ0/σ0, 1). Then µ̃0|(X,T , V0)

equals, in distribution, the random measure η∗0 +
∑k

j=1 IjδX∗j , where η∗0 is a
generalized gamma CRM whose intensity is

σ0

Γ(1− σ0)

e−V0s

s1+σ0
dsP0(dx),

the jumps {Ij : j = 1, . . . , k} and η∗0 are independent and Ij
ind∼ Ga(¯̀•j −

σ0, V0), for j = 1, . . . , k.

Given this result, one can establish the following posterior characteri-
zation of the vector of random measures (µ̃1, . . . , µ̃d) whose normalization
yields a vector of hierarchical PY processes.

Theorem 12. Let Vi be such that V σ
i

ind∼ Ga(¯̀
i• + θ/σ, 1), for i =

1, . . . , d. Then (µ̃1, . . . , µ̃d)|(X,T ,V , p̃∗0) equals, in distribution, the random
measure

(µ̃∗1, . . . , µ̃
∗
d) +

( k∑
j=1

H1,jδX∗j , . . . ,
k∑
j=1

Hd,jδX∗j

)
where the two summands in the above expression are independent, p̃∗0 =
(η∗0 +

∑k
j=1 IjδX∗j )/(η∗0(X) +

∑k
j=1 Ij) and

(i) µ̃∗1, . . . , µ̃
∗
d are independent and each µ̃∗i is a generalized gamma CRM

with intensity
σ

Γ(1− σ)

e−Vis

s1+σ
ds p̃∗0(dx)

(ii) Hi,j
ind∼ Ga(ni,j − `i,jσ, Vi) if ni,j ≥ 1 and Hi,j = 0, almost surely, if

ni,j = 0.
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From Theorems 11– 12 the posterior distribution of p̃0 and of the p̃i’s,
conditional on p̃0, immediately follow. However, given the special features of
the PY process, one can further simplify such a representation and discard
the dependence on the latent random elements V0 and V = (V1, . . . , Vd)
leading to a simple posterior representation, which completes the picture of
the posterior behaviour of hierarchical PY process. In stating the result, we
set ki = card{j : ni,j ≥ 1} and agree that the Dirichlet distribution with
parameters (ni,1 − `i,1σ, . . . , ni,k − `i,kσ, θ + ¯̀

i•σ) is on the ki–dimensional
simplex, after removing the parameters having ni,j = 0.

Theorem 13. The posterior distribution of p̃0, conditional on (X,T ),
equals the distribution of the random probability measure

(24)

k∑
j=1

WjδX∗j +Wk+1 p̃0,k

where (W1, . . . ,Wk) is a k–variate Dirichlet random vector with parameters
(¯̀•1−σ0, . . . , ¯̀•k−σ0, θ0+kσ0), Wk+1 = 1−

∑k
i=1Wi and p̃0,k ∼ PY(σ0, θ0+

kσ0;P0). Moreover, conditional on (p̃0,X,T ), the posterior distribution of
each p̃∗i = (µ̃∗i +

∑k
j=1Hi,jδX∗j )/(µ̃∗i (X) +

∑k
j=1Hi,j) equals the distribution

of the random measure

(25)

k∑
j=1

Wi,j δX∗j +Wi,k+1 p̃i,k

where (Wi,1, . . . ,Wi,k) is a k–variate Dirichlet random vector with param-

eters (ni,1 − `i,1σ, . . . , ni,k − `i,kσ, θ + ¯̀
i•σ), Wi,k+1 = 1 −

∑k
j=1Wi,j and

p̃i,k | p̃0
ind∼ PY(σ, θ + ¯̀

i•σ; p̃0).

As previously mentioned, in (25) one has P[Wi,j = 0] = 1 whenever
ni,j = 0 and the distribution of (Wi,1, . . . ,Wi,k) degenerates on a lower–
dimensional simplex. Both representations (24) and (25) are reminiscent of
the one given in the exchangeable case by [38]. The common thread is the
so–called quasi-conjugacy property characteristic of the PY process. See [33].

6. Algorithms. The theoretical findings in Sections 3 and 5 are essen-
tial for deriving, respectively, marginal and conditional sampling schemes.
Note that, based on the pEPPFs provided in Theorems 3–4, one can derive
the predictive distributions associated to hierarchical normalized random
measures. However, the analytical complexity inherent to the hierarchical
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construction does not allow to deduce closed form expressions. Therefore, the
best route for a concrete implementation is represented by the derivation of
suitable sampling schemes. In Section 6.1 we state the marginal sampler aris-
ing from the pEPPF in the context of prediction problems, when p̃1, . . . , p̃d
model directly the data and one is interested in specific features of additional
samples (Xi,Ni+1, . . . , Xi,Ni+m), conditional on X(Ni) = (Xi,1, . . . , Xi,Ni),
for i = 1, . . . , d. The algorithm can be adapted in a straightforward way
to mixture models with p̃1, . . . , p̃d modeling latent random variables in de-
pendent mixtures. Finally, in Section 6.2 we devise a conditional algorithm,
which allows to simulate the trajectories of (p̃1, . . . , p̃d) from its posterior
distribution. These posterior trajectories can then be immediately used for
prediction and mixture modeling.

6.1. Blackwell–MacQueen urn scheme. The pEPPFs established in The-
orems 3–4 arise upon marginalizing out the hierarchical random probability
measures and naturally lend themselves to be used for addressing predictive
inferential issues. To be more specific, conditional on observed data X(Ni),
we aim at determining the probability distribution of the mi additional out-
comes for each population i = 1, . . . , d

(26) P[∩di=1{X(mi|Ni) ∈ Ai}|X(N1), . . . ,X(Nd)]

=

∫
PX

d∏
i=1

p
(mi)
i (Ai)Qd(dp1, . . . ,dpd|X(N1), . . . ,X(Nd))

where X(mi|Ni) = (Xi,Ni+1, . . . , Xi,Ni+mi) and Ai ∈ X mi . Based on (26),
one can predict specific features of X(mi|Ni), for i = 1, . . . , d, such as, e.g.,
the number of new distinct values in the additional mi sample data or the
number of distinct values that have appeared r times in the observed sample
X(Ni) that will be recorded in X(mi|Ni). These, and a number of related
problems, have been extensively studied in the exchangeable case in view of
species sampling applications where such quantities can be seen as measures
of species diversity. See, e.g., [13, 28]. The results of this paper allow to cover
also the more realistic partially exchangeable case for the first time.

The direct evaluation of (26) is unfeasible and one needs to resort to some
simulation scheme. To this end, one may rely on the pEPPF in (12)–(15)
to devise a Blackwell–MacQueen urn scheme, for any d ≥ 2, that generates
X(mi|Ni) for any hierarchical NRMI. In order to simplify the notation and
the description of the algorithm, we consider the case d = 2. The goal is to
generate samples X1,N1+1, . . . , X1,N1+m1 and X2,N2+1, . . . , X2,N2+m2 , condi-
tional on X(N1) and X(N2), for any two positive integers m1 and m2. One
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needs to introduce N1 + m1 + N2 + m2 latent variables T1,1, . . . , T1,N1+m1 ,
T2,1, . . . , T2,N2+m2 , which are the labels identifying the tables at which the
different costumers are seated in the restaurants. The determination of
the full conditionals follows immediately from Theorems 3–4 and, more
specifically, (14). The sampler allows one to generate (Ti,1, . . . , Ti,Ni) and
(Xi,Ni+r, Ti,Ni+r), for r = 1, . . . ,mi and i = 1, 2. In order to provide details
on this, the label −r is used to identify a quantity determined after removing
r–th element. Hence, for each i = 1, 2, one has

(1) At t = 0, start from an initial configuration X
(0)
l,Nl+1, . . . , X

(0)
l,Nl+ml

and

T
(0)
l,1 , . . . , T

(0)
l,Nl+mi

, for l = 1, 2.

(2) At iteration t ≥ 1

(2.a) With Xi,r = X∗h generate latent variables T
(t)
i,r , for r = 1, . . . , Ni, from

P(Ti,r = “new”| · · · ) = wh,r

Φ
(Ni)
¯̀−r
i• +1,i

(q−ri,1 , . . . , (q
−r
i,h , 1), . . . , q−ri,k )

Φ
(Ni−1)
¯̀−r
i• ,i

(q−r1,1, . . . , q
−r
1,h, . . . , q

−r
i,k )

and, for κ = 1, . . . , `−ri,h ,

P(Ti,r = T ∗,−ri,h,κ | · · · ) =
Φ

(Ni)
¯̀−r
i• ,i

(q−ri,1 , . . . , q
−r
i,h + 1κ, . . . , q

−r
i,k )

Φ
(Ni−1)
¯̀−r
i• ,i

(q−ri,1 , . . . , q
−r
i,h , . . . , q

−r
i,k )

where

wh,r =
Φ

(|`−r |+1)
k,0 (¯̀−r

•1 , . . . ,
¯̀−r
•h + 1, . . . , ¯̀−r

•k )

Φ
(|`−r |)
k,0 (¯̀−r

•1 , . . . ,
¯̀−r
•h , . . . ,

¯̀−r
•k )

1{0}c(¯̀−r
i,h) + 1{0}(¯̀−r

i,h)

and 1κ is a vector of dimension `−ri,h with all components being zero but

the κ–th which equals 1. Moreover, T ∗,−ri,h,1 , . . . , T
∗,−r
i,h,`−ri,h

are the tables at

the first restaurant where the h-th dish is served, after the removal of
Ti,r.

(2.b) For r = 1, . . . ,mi, generate (X
(t)
i,Ni+r

, T
(t)
i,Ni+r

) from the following pre-
dictive distributions

P(Xi,Ni+r = “new”, Ti,Ni+r = “new”| · · · ) =

Φ
(|`−r|+1)
k+j−r+1,0

(¯̀−r
•1 , . . . ,

¯̀−r
•k+j−r , 1)

Φ
(|`−r|)
k+j−r,0(¯̀−r

•1 , . . . ,
¯̀−r
•k+j−r)

Φ
(Ni+mi)
¯̀−r
i• +1,i

(q−ri,1 , . . . , q
−r
i,k , 1)

Φ
(Ni+mi−1)
¯̀−r
i• ,i

(q−ri,1 , . . . , q
−r
i,k )



HIERARCHICAL PROCESSES 23

while, for any h = 1, · · · , k + j−r and κ = 1, · · · , `−ri,h ,

P(Xi,Ni+r = X∗,−rh , Ti,Ni+r = “new”| · · · ) =

Φ
(|`−r|+1)
k+j−r,0 (¯̀−r

•1 , . . . ,
¯̀−r
1,h + 1, . . . , ¯̀−r

•k+j−r)

Φ
(|`−r|)
k+j−r,0(¯̀−r

•1 , . . . ,
¯̀−r
•k+j−r)

×
Φ

(Ni+mi)
¯̀−r
i• +1,i

(q−ri,1 , . . . , (q
−r
i,h , 1), . . . , q−ri,k )

Φ
(Ni+mi−1)
¯̀−r
i• ,i

(q−ri,1 , . . . , q
−r
i,k )

P(Xi,Ni+r = X∗,−rh , Ti,Ni+r = T ∗,−ri,h,κ | · · · ) =

Φ
(Ni+mi)
¯̀−r
i• ,i

(q−ri,1 , . . . , q
−r
i,h + 1κ, . . . , q

−r
i,k , 1)

Φ
(Ni+mi−1)
¯̀−r
i• ,i

(q−ri,1 , . . . , q
−r
i,h , . . . , q

−r
i,k )

1{n−ri,h>0}

where X∗,−rh , for h = 1, . . . , k + j−r denote the distinct dishes in the
whole franchise after the removal of the r–th observation, while the
condition n−ri,h > 0 entails that the h–th dish is served in the i–th
restaurant.

The above algorithm holds for any hierarchical NRMI and only requires
insertion of the specific ρ, ρ0 and P0 to specialize to a particular instance
of hierarchical NRMI. The sampling schemes outlined above can also be
tailored, in a quite straightforward way, to the hierarchical Pitman–Yor case
(see the supplementary material [3] for details and [4] for applications).
Finally note that the proposed algorithm can also be adapted to yield a
marginal sampling schemes for mixture models with dependent hierarchical
mixing measures.

6.2. Simulation of (p̃1, . . . p̃d) from its posterior distribution. The poste-
rior representations derived in Theorems 10 and 13 are of great importance
also from a computational standpoint as they allow to establish algorithms
that generate the trajectories of p̃1, . . . , p̃d from their posterior distributions,
conditional on T . The resulting sampling scheme can be viewed as an ex-
tension of a Ferguson & Klass–type algorithm (see [15, 44] for additional
details) to a partially exchangeable setting. With respect to the generalized
Blackwell–MacQueen urn scheme described in Section 6.1, the possibility of
generating posterior samples of hierarchical processes is a significant addi-
tion. Just to give an example, it allows to obtain estimates of non–linear



24 F. CAMERLENGHI, A. LIJOI, P. ORBANZ AND I. PRÜNSTER

functionals, such as credible intervals, of the vector (p̃1, · · · , p̃d) that cannot
be otherwise achieved.

For the sake of simplicity assume that X = R+. Using a representation
of Xt given in [15] and the notation of Theorems 9–10, one has

(27) η∗0((0, t]) =

∞∑
h=1

J
(0)
h 1{Vh ≤ P0((0, t])},

with V1, V2, . . .
iid∼ U(0, 1). The jumps J

(0)
h are in decreasing order and can

be obtained by solving the following

(28) Sh,0 = c0

∫ ∞
J
(0)
h

e−U0sρ0(s) ds.

where S1,0, S2,0, . . . are the points of a standard Poisson process on R+, that
is to say Sh,0 − Sh−1,0 are i.i.d. exponential random variables having unit
mean. Similarly, one has

(29) µ̃∗i ((0, t]) =
∞∑
h=1

J
(i)
h 1{Vh ≤ p̃

∗
0((0, t])},

where the ordered jumps J
(i)
h are now the solution of

(30) Sh,i = c

∫ ∞
J
(i)
h

e−Uis ρ(s) ds,

where S1,i, S2,i−S1,i, . . . are i.i.d. exponential random variables having unit
mean. In view of these representations, once one has sampled the latent
variables T through the algorithm described in Section 6.1, one can proceed
as follows:

(1) Generate p̃0 from its posterior distribution, described in Theorem 9,
namely:

(1.a) Generate U0 from f0( · |X,T ) in (20);

(1.b) Generate Ij from fj( · |X,T ) in Theorem 9(ii), for any j = 1, . . . , k;

(1.c) Fix ε > 0 and for any h ≥ 1

– Generate unit mean exponential random variables Sh,0 − Sh−1,0

– Determine jumps J
(0)
h according to (28)

– Stop at h̄ = min{h ≥ 1 : J
(0)
h ≤ ε}
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– Generate i.i.d. V1, . . . , Vh̄ from a U(0, 1)

and evaluate an approximate draw of η∗0 on (0, t] as

η∗0((0, t]) ≈
h̄∑
h=1

J
(0)
h 1{Vh ≤ P0((0, t])},

(1.d) Evaluate an approximate draw of a posterior sample of p̃0 as

p̃∗0((0, t]) ≈
∑h̄

h=1 J
(0)
h 1{Vh ≤ P0((0, t])}+

∑k
j=1 IjδX∗j ((0, t])∑h̄

h=1 J
(0)
h +

∑k
j=1 Ij

.

Having drawn p̃∗0, one can now rely on Theorem 10 in order to approxi-
mately sample (p̃1, . . . , p̃d) from its posterior distribution. This can be easily
deduced and described as follows.

(2) For any i = 1, . . . , d, generate p̃i|(X,T , p̃∗0) as follows

(2.a) Generate Ui from fi( · |X,T ) in (22);

(2.b) Generate Ji,j,t from fi,j,t( · |X,T ) in Theorem 10(ii)

(2.c) Fix ε > 0 and for any h ≥ 1

– Generate unit mean exponential random variables Sh,i − Sh−1,i

– Determine jumps J
(i)
h according to (30)

– Stop at h̄i = min{h ≥ 1 : J
(i)
h ≤ ε}

and evaluate an approximate sample of the posterior trajectory of p̃i
as follows

p̃i((0, t]) ≈
∑h̄i

h=1 J
(i)
h 1{Vh ≤ p̃

∗
0((0, t])}+

∑k
j=1

∑`i,j
t=1 Ji,j,tδX∗j ((0, t])∑h̄i

h=1 J
(i)
h +

∑ki
j=1

∑`i,j
t=1 Ji,j,t

.

An important, and well–known, advantage of the procedure is the fact that

it generates jumps J
(0)
h and J

(i)
h , for i = 1, . . . , d, in decreasing order. This

entails that the truncation at h̄ or h̄i is such that the most relevant jumps
are taken into account and one is discarding a negligible random mass of
the actual trajectory. Future work, of more computational nature, will aim
at: (i) investigating the implementation of the algorithm to applied prob-
lems, such as density estimation with accurate uncertainty quantification,
allowed by the conditional structure of the algorithm and (ii) comparing the
performance of our proposal with the so–called direct assignment algorithm,
which is widely used within estimation problems involving the hierarchical
Dirichlet process.
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SUPPLEMENTARY MATERIAL

Supplement A: Distribution theory for hierarchical processes:
supplementary material
(doi: COMPLETED BY THE TYPESETTER; supplementary.pdf). We pro-
vide the proofs of the theoretical results and specialize the Blackwell–MacQueen
urn scheme of Section 6.1 to the case of hierarchies of Pitman–Yor processes.

Acknowledgments. The authors are grateful to an Associate Editor
and three anonymous Referees for their valuable comments and insight-
ful suggestions, which led to a substantial improvement of the paper. F.
Camerlenghi has completed the paper while being a postdoctoral fellow at
the University of Bologna. He is deeply grateful to the Department of Sta-
tistical Sciences for the support.

References.
[1] Adams, M., Kelley, J., Polymeropoulos, M., Xiao, H., Merril, C., Wu, A.,

Olde, B., Moreno, R., Kerlavage, A., McCombe, W. and Venter, J. (1991).
Complementary DNA sequencing: Expressed Sequence Tags and human genome
project. Science 252, 1651–1656.

[2] Blei, D.M., Ng, A.Y. and Jordan, M.I. (2003). Latent Dirichlet allocation. J. Mach.
Learn. Res. 3, 993–1022.

[3] Camerlenghi, F., Lijoi, A., Orbanz, P. and Prünster, I. (2017). Distribution
theory for hierarchical processes: supplementary material.

[4] Camerlenghi, F., Lijoi, A. and Prünster, I. (2017). Bayesian prediction with
multiple–sample information. J. Multivariate Anal., 156, 18–28.

[5] Caron, F., Davy, M., Doucet, A. (2007). Generalized Pólya urn for time-varying
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