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The past decade has seen a remarkable development in the area of Bayesian nonparametric inference from both theoretical and applied
perspectives. As for the latter, the celebrated Dirichlet process has been successfully exploited within Bayesian mixture models, leading to
many interesting applications. As for the former, some new discrete nonparametric priors have been recently proposed in the literature that
have natural use as alternatives to the Dirichlet process in a Bayesian hierarchical model for density estimation. When using such models
for concrete applications, an investigation of their statistical properties is mandatory. Of these properties, a prominent role is to be assigned
to consistency. Indeed, strong consistency of Bayesian nonparametric procedures for density estimation has been the focus of a considerable
amount of research; in particular, much attention has been devoted to the normal mixture of Dirichlet process. In this article we improve on
previous contributions by establishing strong consistency of the mixture of Dirichlet process under fairly general conditions. Besides the
usual Kullback–Leibler support condition, consistency is achieved by finiteness of the mean of the base measure of the Dirichlet process
and an exponential decay of the prior on the standard deviation. We show that the same conditions are also sufficient for mixtures based
on priors more general than the Dirichlet process. This leads to the easy establishment of consistency for many recently proposed mixture
models.

KEY WORDS: Bayesian nonparametrics; Density estimation; Mixture of Dirichlet process; Neutral to the right process; Normalized
random measure; Normal mixture model; Random discrete distribution; Species sampling model; Strong consistency.

1. INTRODUCTION

Consistency of Bayesian nonparametric procedures has been
the focus of a considerable amount of research in recent years.
Most contributions in the literature exploit the “frequentist”
approach to Bayesian consistency, also termed the “what if”
method according to Diaconis and Freedman (1986). This es-
sentially consists of verifying what would happen to the poste-
rior distribution if the data were generated from a “true” fixed
density function f0: Does the posterior accumulate in suitably
defined neighborhoods of f0?

Early works on consistency were concerned with weak con-
sistency. (The reader is referred to, e.g., Freedman 1963 and
Diaconis and Freedman 1986 for some interesting examples of
possible inconsistency.) A sufficient condition for weak con-
sistency, which is solely a support condition, was provided by
Schwartz (1965).

When considering problems of density estimation, it is nat-
ural to ask for the strong consistency of posterior distributions.
An early contribution in this area was made by Barron (1988).
Later developments combined techniques from the theory of
empirical processes with results on uniformly consistent tests
achieved by Barron (1988) and provided sufficient conditions
for strong consistency relying on the construction of suitable
sieves. General results have been derived by Barron, Schervish,
and Wasserman (1999) and Ghosal, Ghosh, and Ramamoorthi
(1999), whereas significant priors were studied by Petrone and
Wasserman (2002) and Choudhuri, Ghosal, and Roy (2004),
among others. The “sieve-approach” was treated in great de-
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tail in the monograph by Ghosh and Ramamoorthi (2003) (see
also Wasserman 1998 for a more concise account). A review
of Bayesian asymptotics from a different perspective was pro-
vided by Walker (2004a). Recently, a new approach to the study
of strong consistency for Bayesian density estimation was in-
troduced by Walker (2004b), who obtained a simple sufficient
condition for strong consistency not relying on sieves.

In the framework of Bayesian density estimation, one is nat-
urally led to think of the mixture of Dirichlet process (MDP),
a cornerstone in the area. This model was introduced by Lo
(1984) and later popularized by Escobar (1988) and Escobar
and West (1995), who developed suitable simulation techniques
(see also MacEachern 1994; MacEachern and Müller 1998).
The MDP was extensively reviewed in the book edited by Dey,
Müller, and Sinha (1998) and by Müller and Quintana (2004),
who emphasized applications and simulation algorithms. As
far as consistency is concerned, the normal MDP model was
analyzed by Ghosal et al. (1999) by exploiting the sieve ap-
proach.

In this article, we face the issue of consistency of the MDP
by exploiting the approach set out by Walker (2004b). This
leads to quite a dramatic improvement on previous results.
We essentially show that an MDP model is consistent if the
base measure of the Dirichlet process has finite mean and the
prior on the standard deviation has an exponentially decay-
ing tail in a neighborhood of 0. Our results carry over to nor-
mal mixture models, where the Dirichlet process is replaced by
a general discrete nonparametric prior, thus establishing con-
sistency of many models recently proposed in the literature.
In particular, one can easily establish consistency of normal
mixtures based on (a) species sampling models and relevant
subclasses, namely homogeneous normalized random measures
with independent increments, stick-breaking priors and neutral
to the right species sampling models; (b) nonhomogeneous nor-
malized random measures with independent increments; and
(c) neutral to the right processes.
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The article is structured as follows. In Section 2, after giving
a concise description of the normal mixture model, we state the
main result. Then we provide illustrations describing how the
result applies to a variety of nonparametric priors. Finally, in
Section 3 we provide a detailed proof.

2. THE CONSISTENCY RESULT

2.1 The Bayesian Normal Mixture Model

Nowadays the most common use of Bayesian nonparametric
procedures is represented by density estimation via a mixture
model based on a random discrete distribution. In particular,
attention has been focused on normal mixtures, that is,

f̃
σ,P̃

(x) = φσ ∗ P̃ =
∫

φσ (x − θ)P̃ (dθ), (1)

where for each positive σ , φσ is the density function of the nor-
mal distribution with mean 0 and variance σ 2. P̃ is a random
probability distribution on R whose law, $, selects discrete dis-
tributions almost surely. Moreover, σ has a prior distribution,
which we denote by µ. The model (1) can be equivalently ex-
pressed in hierarchical form as

(Xi |θi ,σ )
ind∼ N(Xi; θi ,σ 2), i = 1, . . . , n;

(θi |P̃ )
iid∼ P̃ , i = 1, . . . , n;

P̃ ∼ $;
and

σ ∼ µ,

where µ and $ are independent and N(·; θ,σ 2) denotes for
the normal distribution with mean θ and variance σ 2. Clearly,
the MDP model is obtained when P̃ in (1) coincides with the
Dirichlet process with parameter-measure α, a finite nonnull
measure (see Ferguson 1973).

An important element in prior specification that we consider
later is the prior guess at the shape of P̃ , that is,

P0(C) = E[P̃ (C)], (2)

for any C belonging to the Borel σ -field of R, denoted
by B(R).

2.2 A Sufficient Condition for Strong Consistency

The relevance, both theoretical and applied, of normal mix-
ture models motivates a study of their asymptotic properties.
Among these properties, consistency plays a prominent role.
Because the aim is density estimation, the appropriate notion to
deal with is strong consistency. Consider a sequence of observa-
tions (Xn)n≥1 each taking values in R, and let F be the space of
probability density functions with respect to the Lebesgue mea-
sure on R. Let & be the prior distribution of the random density
function f̃σ,P̃ in (1). Then the posterior distribution, given the
observations (X1, . . . ,Xn), coincides with

&n(B) =
∫
B

∏n
i=1 f (Xi)&(df )∫

F

∏n
i=1 f (Xi)&(df )

for all measurable subsets B of F . Let us assume that there ex-
ists a “true” density function f0 such that the observations Xn’s
are iid from f0, and let F0 denote the probability distribution

corresponding to f0. Hence & is said to be strongly consistent
at f0 in F if, for any ε > 0,

&n(Aε) → 1 a.s. [F∞
0 ]

as n → +∞, where Aε is an L1-neighborhood of f0 with radius
ε and F∞

0 denotes the infinite product measure on R∞.
Hereinafter we assume that the density f0 is in the Kullback–

Leibler support of the prior &. This means that & assigns pos-
itive masses to any Kullback–Leibler neighborhood of f0. It is
known that such an assumption is sufficient to ensure weak con-
sistency of & at f0 (see Schwartz 1965). Conditions for f0 to
be in the Kullback–Leibler support of the normal mixture model
prior & defined in (1) have been given by Ghosal et al. (1999).
However, because we aim to establish the stronger property
of L1 consistency, the Kullback–Leibler support condition is
not enough.

Note that & is determined both by $ and by the prior distrib-
ution for σ , which we have denoted by µ. As for the latter, from
the standpoint of consistency the most important values of σ are
those included in a right-neighborhood of 0. Thus, with no loss
of generality, we can choose µ such that its support coincides
with (0,M] for some positive and finite M .

The main result on strong consistency of normal mixture
models can now be stated. In the sequel g(x) ∼ h(x), as x tends
to +∞, means that g(x)/h(x) tends to 1 as x tends to +∞. Re-
call the definition of P0 as the prior guess at P̃ given in (2). The
proof to the following result can be found in Section 3.

Theorem 1. Let f0 be a density in the Kullback–Leibler sup-
port of &. Suppose that the following conditions hold:

(a)
∫

R |θ |P0(dθ) < +∞
(b) µ{σ < σk} ≤ exp{−γ k} for some sufficiently large γ ,

where (σk)k≥1 is any sequence such that σk ∼ k−1 as k → ∞.

Then & is consistent at f0.

By the foregoing result, strong consistency follows from a
simple condition on the prior guess P0 combined with a con-
dition on the probabilities assigned by µ on shrinking neigh-
borhoods of the origin. Note that the value for which γ can be
considered sufficiently large is determined in the proof; see (8).

Theorem 1 can be compared with the results obtained in
Ghosal et al. (1999) for the MDP. Their theorem has three con-
ditions (i)–(iii). Indeed, our condition (a) improves on their con-
dition (i), which essentially requires that α have exponential
tails. Moreover, our condition (b) and their condition (ii) coin-
cide. Finally, we have no need for their condition (iii).

Some comments on our condition (a) are in order. Notice,
for instance, that it is satisfied by even heavy-tailed distribu-
tions, that is, by those P0’s for which P0([−θ, θ]c) ∼ θ−γ , for
some γ > 1, as θ → +∞. Weakening the tail condition for P0
from an exponential to a power law decay seems to be a quite
remarkable achievement.

2.3 Illustrations

In this section we show how condition (a) translates for a va-
riety of normal mixture models, thus giving a simple criterion
for establishing their strong consistency. It is worth stressing
that strong consistency for the more general mixtures that we
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are going to consider has not yet been considered in the liter-
ature. Note, moreover, that Theorem 1 also applies to mixture
models directed by random probability measures P̃ , whose sup-
port contains continuous distributions. But such cases seem to
be not of particular interest, because, commonly in applications
one wishes to exploit the clustering behavior arising from a dis-
crete random probability measure P̃ .

First, recall that the celebrated MDP is recovered by setting
P̃ to be the Dirichlet process with parameter-measure α. In this
case P0 = α/α(R), and condition (a) reduces to

∫

R
|θ |α(dθ) < ∞. (3)

Let us now consider more general nonparametric mixture
models. Kingman (1975) proposed modeling random probabil-
ities in the context of storage problems by normalizing a sub-
ordinator, that is, an increasing and purely discontinuous Lévy
process with stationary increments. Recently, Regazzini, Lijoi,
and Prünster (2003) extended this class of random probability
measures to the so-called “nonhomogeneous” case and devel-
oped it from a Bayesian perspective. Such random probabili-
ties include, as a special case, the Dirichlet process and here
are referred to, according to the terminology set of Regazzini
et al. (2003), as normalized random measures with indepen-
dent increments (NRMI). A wide class of mixtures can then be
achieved by setting P̃ to be an NRMI, as was done by Nieto-
Barajas, Prünster, and Walker (2004). It can be shown that the
prior guess is given by

P0(C) =
∫

C

∫ +∞

0
e−ψ(u)

×
{∫ +∞

0
e−uvvρ(dv|θ)dv

}
duα(dθ) (4)

for any C in B(R), where να(dv,dθ) = ρ(dv|θ)α(dθ) is the
Poisson intensity measure on (0,+∞) × R associated with
the increasing additive process ξ that generates P̃ . Moreover,
ψ denotes the Laplace exponent of ξ , which can be deter-
mined via the well-known Lévy–Khintchine representation the-
orem (for details, see Regazzini et al. 2003; James 2002). When
ρ(dv|θ) = ρ(dv), for each θ ∈ R, P̃ is said to be homogeneous,
the prior guess in (4) reduces to

P0(C) = α(C)

α(R)
for any C ∈ B(R),

and condition (a) coincides with (3). Apart from the Dirichlet
process, the most notable prior within this class, which leads
to explicit forms for quantities of statistical interest, is the so-
called normalized inverse Gaussian process studied by Lijoi,
Mena, and Prünster (2005).

Another interesting class of mixture models, first consid-
ered by Ishwaran and James (2001) and further developed by
Ishwaran and James (2003a), arises when P̃ is chosen to be
a stick-breaking prior. Such a prior depends on the specifica-
tion of a stick-breaking procedure and of a measure α that is
absolutely continuous with respect to the Lebesgue measure
on R. The prior guess P0 coincides with α/α(R), and again
(a) becomes (3). Among these priors, it is worth mentioning the
two-parameter Poisson–Dirichlet process (see Pitman 1996).

A further possibility is represented by the choice of the back-
ground driving P̃ as a neutral to the right (NTR) process, a class
of priors introduced by Doksum (1974) (see also Ferguson
1974; Ferguson and Phadia 1979). In such a case the probability
distribution function corresponding to P0 can be expressed as

P0
(
(−∞, θ]

)
= 1 − E(e−ξ

θ ) for any θ ∈ R,

where ξ is a suitable increasing additive process characteriz-
ing P̃ . For instance, if P̃ is the beta–Stacy process, due to
Walker and Muliere (1997), that P̃ can be easily centered on
any desired choice of P0, leading to a straightforward verifi-
cation of condition (a). James (2003) considered mixtures of
NTR processes, and extended NTR priors to a spatial setting.
By deriving the corresponding exchangeable probability parti-
tion function and combining it with an absolutely continuous
finite measure α, James obtained a new family of random prob-
ability measures termed spatial NTR species sampling models.
Again the prior guess coincides with α/α(R), and condition (a)
reduces to (3).

It must to be remarked that spatial NTR species sampling
models, stick-breaking priors, and homogeneous (but not non-
homogeneous) NRMI essentially belong to the class of species
sampling models due to Pitman (1996), for which

P0(C) = α(C)

α(R)
for any C ∈ B(R).

Hence condition (a) is again equivalent to (3). The class of
species sampling models is quite rich and allows investigation
of the structural properties of its members. However, unless
it is possible to effectively assess the weights in the species
sampling representation, no explicit expression for quantities
of statistical interest is achievable. Indeed, the three subclasses
mentioned earlier are to our current knowledge the only species
sampling models that are sufficiently tractable to be useful in
applications. Species sampling mixture models, with empha-
sis on the two-parameter Poisson–Dirichlet process, were dealt
with by Ishwaran and James (2003b).

These illustrations stress the usefulness of Theorem 1 in
checking the consistency of normal mixture models based on
a number of alternatives to the Dirichlet process as a mixing
distribution.

3. THE PROOF

3.1 Preliminary Result

Recall that Ac
ε is the complement of the L1-neighborhood

of f0 with radius ε. By separability of F , such a set can
be covered by a countable union of disjoint sets Bj , where
Bj ⊆ B∗

j := {f :∥f − fj∥ < η}, fj are densities in Ac
ε , ∥ ·∥ is

the L1-norm and η is any number in (0, ε). An extension of a
result of Walker (2004b) can be stated as follows: If for some
β ∈ (0,1) and for some covering (Bj )j≥1 as before,

∑

j≥1

(&(Bj ))
β < +∞, (5)

then & is consistent at f0, with the proviso that f0 is in the
Kullback–Leibler support of &. This result is a key ingredient
in the following proof.
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3.2 The Proof

Let us first set some useful notation. For any a > 0 and
σ > 0, let

F U
σ,a,δ = {φσ ∗ P :P([−a, a]) ≥ 1 − δ},

F L
σ,a,δ = {φσ ∗ P :P([−a, a]) < 1 − δ},

and F M
σ,a,δ = ⋃

σ<σ ′<M F U
σ ′,a,δ . For G ⊂ F and η > 0, de-

fine J (η,G) to be the L1-metric entropy of the set G. This
means that J (η,G) is the logarithm of the minimum number
of L1-balls of radius η that cover G. From Ghosal et al. (1999),
we have

J (δ,F M
σ,a,δ) ≤ Ca

σ
,

where C depends only on M and δ.
Take (an)n≥1 to be any increasing sequence of positive num-

bers such that limn an = +∞, and let (σn)n≥1 be a decreasing
sequence of positive numbers such that limn σn = 0. For our
purposes, it is useful to consider sets of the type

Gσ,aj ,δ :=
{
φσ ∗ P :P([−aj , aj ]) ≥ 1 − δ,

P ([−aj−1, aj−1]) < 1 − δ
}
.

These sets are pairwise disjoint, and limj Gσ,aj ,δ = ∅ for any
positive σ and δ. This definition entails the following in-
clusions: Gσ,aj ,δ ⊂ F U

σ,aj ,δ and Gσ,aj ,δ ⊂ F L
σ,aj−1,δ

. Moreover,
F L

σ,aj ,δ ↓ ∅ as j tends to +∞. Thus for any η > 0, there exists
an integer N such that for any j ≥ N ,

J
(
η,F L

σ,aj ,δ

)
≤ J

(
η,F U

σ,aN ,δ

)
.

Set

GM
σk,aj ,δ =

⋃

σk<σ<M

Gσ,aj ,δ,

and note that
⋃

j,k≥1

GM
σk,aj ,δ = F .

Because GM
σk,aj ,δ is included in

⋃
σk<σ<M F L

σ,aj ,δ , we have

J
(
η,GM

σk,aj ,δ

)
≤ CaN

σk
(6)

for any j ≥ N . But the inclusion GM
σk,aj ,δ ⊂ F M

σk,aj ,δ entails
that (6) holds true also for any j < N . These findings can
be summarized by saying that G

σk−1
σk,aj ,δ has a finite η-covering

{Cj,k,l : l = 1,2, . . . ,Nj,k}, where Nj,k ≤ [exp(CaN/σk)] + 1.
Here we let [x] denote the integer part of a real number x. Now
define the sets

Bj,δ = {P :P([−aj , aj ]) ≥ 1 − δ,P ([−aj−1, aj−1]) < 1 − δ}
for each j ≥ 1. The condition for convergence (5) would be
implied by

∑

j,k≥1

Nj,k∑

l=1

(&(Cj,k,l))
β

≤
∑

j,k≥1

Nj,k

{
&

(
G

σk−1
σk,aj ,δ

)}β

≤
∑

k≥1

eCaN/σk {µ(σk < σ ≤ σk−1)}β
∑

j≥1

{$(Bj,δ)}β

< +∞, (7)

where σ0 = M . Now consider the part concerning the mixing
measure $. Let Aj = (−∞,−aj−1) ∪ (aj−1,+∞) and note
that

Bj,δ ⊂ {P :P(Aj ) > δ′},
with δ′ > δ. Hence, by Markov’s inequality,

$(Bj,δ) ≤ $
(
{P :P(Aj ) > δ′}

)
≤ 1

δ′ P0(Aj ),

and thus (7) is implied by
∑

k≥1

eC′/σk {µ(σk < σ ≤ σk−1)}β
∑

j≥1

{P0(Aj )}β < +∞.

At this stage, we can fix aj ∼ j as j → +∞. Condition (a) is
then equivalent to P0(Aj ) = O(j−(1+r)), which in turn ensures
the convergence of

∑
j≥1{P0(Aj )}β for any β such that (1 +

r)−1 < β < 1. Moreover, take

γ > C′/β, (8)

so that condition (b) implies the prior µ to be such that
∑

k≥1

eC′/σk {µ(σk < σ ≤ σk−1)}β

converges. The proof of Theorem 1 is now complete.
[Received November 2004. Revised February 2005.]
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