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A SMOOTH MODEL OF DECISION MAKING UNDER AMBIGUITY

BY PETER KLIBANOFF, MASSIMO MARINACCI, AND SUJOY MUKERJI1

We propose and characterize a model of preferences over acts such that the decision
maker prefers act f to act g if and only if Eµφ(Eπu ◦ f ) ≥ Eµφ(Eπu ◦ g), where E is
the expectation operator, u is a von Neumann–Morgenstern utility function, φ is an in-
creasing transformation, and µ is a subjective probability over the set Π of probability
measures π that the decision maker thinks are relevant given his subjective informa-
tion. A key feature of our model is that it achieves a separation between ambiguity,
identified as a characteristic of the decision maker’s subjective beliefs, and ambiguity
attitude, a characteristic of the decision maker’s tastes. We show that attitudes toward
pure risk are characterized by the shape of u, as usual, while attitudes toward ambi-
guity are characterized by the shape of φ� Ambiguity itself is defined behaviorally and
is shown to be characterized by properties of the subjective set of measures Π. One
advantage of this model is that the well-developed machinery for dealing with risk atti-
tudes can be applied as well to ambiguity attitudes. The model is also distinct from many
in the literature on ambiguity in that it allows smooth, rather than kinked, indifference
curves. This leads to different behavior and improved tractability, while still sharing
the main features (e.g., Ellsberg’s paradox). The maxmin expected utility model (e.g.,
Gilboa and Schmeidler (1989)) with a given set of measures may be seen as a limit-
ing case of our model with infinite ambiguity aversion. Two illustrative portfolio choice
examples are offered.

KEYWORDS: Ambiguity, uncertainty, Knightian uncertainty, ambiguity aversion, un-
certainty aversion, Ellsberg paradox, ambiguity attitude.

1. INTRODUCTION

SAVAGE’S AXIOM P2, often referred to as the sure thing principle, states that,
if two acts are equal on a given event, then it should not matter (for rank-
ing the acts in terms of preferences) what they are equal to on that event. It
has been observed, however, that there is at least one kind of circumstance
where a decision maker (DM) might find the principle less persuasive—if the
DM were worried by cognitive or informational constraints that leave him un-
certain about what odds apply to the payoff relevant events. Ellsberg (1961)
presented examples inspired by this observation; Table I is a stylized descrip-
tion of one of those examples. The table shows four acts, f�g� f ′, and g′, with
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TABLE I

ELLSBERG EXAMPLE

A B C

f 10 0 0
g 0 10 0
f ′ 10 0 10
g′ 0 10 10

payoffs contingent on three (mutually exclusive and exhaustive) events, A, B,
and C .

Note that P2 implies that if f is preferred to g, then f ′ is preferred to g′. Con-
sider a situation where a DM, whose preferences over (objective) lotteries are
represented by an expected utility functional, “knows” that the probability of
event A occurring is 1/3, although he has no information about how the com-
plementary probability, 2/3, is “divided” between B and C . The DM decides
to choose f over g but g′ over f ′, justifying his choice as follows. He calculates
the expected utility from f , Eu(f )= u(10)× 1/3, but is uncertain about Eu(g)
beyond knowing that it lies in the interval [u(10)×0�u(10)×2/3]; similarly, he
calculates Eu(g′)= u(10)×2/3, but realizes ex ante evaluations for f ′, Eu(f ′),
could be any number in the interval [u(10)× 1/3�u(10)], depending on how
he assigns probability between B and C . He has some aversion to uncertainty
about ex ante evaluations: he worries that he may take the “wrong” decision
ex ante because he has a relatively vague idea as to what the true probability
assignment is. Hence, his choices.

This paper presents a model of decision making that can explicitly reflect the
circumstance that the DM is (subjectively) uncertain about the priors relevant
to his decision. The model allows for the relaxation of P2 under such a circum-
stance, so that behavior, given the uncertainty about ex ante evaluation, may
display aversion (or love) for that uncertainty along the lines of the justifica-
tion discussed above. Among other things, the model could be used to analyze
behavior in instances where the DM’s information is explicitly consistent with
multiple probabilities on the state space relevant to the decision at hand. One
instance is a portfolio investment decision. An investor, in the best circum-
stances, with access to all publicly available data, will in general be left with a
range of return distributions that are plausible. As a second example, think of
a monetary policy maker setting policy on the basis of a parametric model that
solves to yield a probability distribution on a set of macroeconomic variables
of interest. However, the probability distribution on variables is conditional on
the value of the parameters, which, in turn, is uncertain. That might cause the
DM to be concerned enough to seek a policy whose performance is more ro-
bust to the uncertainty as to which probability applies. Indeed, such a concern
is central to the recent literature investigating decision rules robust to model
misspecification or “model uncertainty” (e.g., Hansen and Sargent (2000)).
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Preferences characterized in this paper are shown to be represented by a
functional of the double expectational form,

V (f )=
∫
∆

φ

(∫
S

u(f )dπ

)
dµ≡ Eµφ(Eπu ◦ f )�(1)

where f is a real-valued function defined on a state space S (an “act”), u is a
von Neumann–Morgenstern (vN–M) utility function, π is a probability mea-
sure on S, and φ is a map from reals to reals. There may be subjective uncer-
tainty about what the “right” probability on S is: µ is the DM’s subjective prior
over ∆, the set of possible probabilities π over S, and therefore measures the
subjective relevance of a particular π as the “right” probability. While u, as
usual, characterizes attitude toward pure risk, we show that ambiguity attitude
is captured by φ. In particular, a concave φ characterizes ambiguity aversion,
which we define to be an aversion to mean preserving spreads in µf , where
µf is the distribution over expected utility values induced by µ and f . The
distribution µf represents the uncertainty about ex ante evaluation; it shows
the probabilities of different evaluations of the act f� We define behaviorally
what it means for a DM’s belief about an event to be ambiguous and go on to
show that, in our model, this definition is essentially equivalent to the DM be-
ing uncertain about the probability of the event, thereby identifying ambiguity
with uncertainty/multiplicity with respect to relevant priors and, hence, ex ante
evaluations. It is worth noting that this preference model does not, in general,
impose reduction between µ and the π’s in the support of µ. Such reduction
occurs only when φ is linear, a situation that we show is identified with ambi-
guity neutrality and wherein the preferences are observationally equivalent to
those of a subjective expected utility maximizer. The idea of modeling ambigu-
ity attitude by relaxing reduction between first and second order probabilities
first appeared in Segal (1987) and inspires the analysis in this paper.

The basic structure of the model and assumptions are as follows. Our focus
of interest is the DM’s preferences over acts on the state space S. This set of
acts is assumed to include a special subset of acts that we call lotteries, i.e.,
acts measurable with respect to a partition of S over which probabilities are
assumed to be objectively given (or unanimously agreed upon). We start by as-
suming preferences over these lotteries are expected utility preferences. From
preferences over lotteries, the DM’s risk preferences are revealed, represented
by vN–M index u. We then consider preferences over acts each of whose payoff
is contingent on which prior (on S) is the “right” probability: we call these acts
second order acts. For the moment, to fix ideas, think of these acts as “bets
over the right prior.” Our second assumption states that preferences over sec-
ond order acts are subjective expected utility (SEU) preferences. The point of
defining second order acts and imposing Assumption 2 is to model explicitly
the uncertainty about the “right probability” and uncover the DM’s subjective
beliefs with respect to this uncertainty and attitude to this uncertainty. Indeed,
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following this assumption, we recover µ and v: the former is a probability mea-
sure over possible priors on S that reveal the DM’s beliefs, whereas the latter
is the vN–M index that summarizes the DM’s attitude toward the uncertainty
over the “right” prior. Our third assumption connects preferences over second
order acts to preferences over acts on S. The assumption identifies an act f ,
defined on S, with a second order act that yields, for each prior π on S, the cer-
tainty equivalent of the lottery induced by f and π. Upon setting φ≡ v ◦ u−1,
the three assumptions lead to the representation given in (1).

Intuitively, ambiguity averse DMs prefer acts whose evaluation is more ro-
bust to the possible variation in probabilities. In our model that is translated as
an aversion to mean preserving spreads in the induced distribution of expected
utilities, µf . This is shown to be equivalent to concavity of φ and to the DM
being more averse to the subjective uncertainty about priors than he is to the
risk in lotteries. In an investment problem, we may think of second order acts
as bets on which return distribution is right. It is as if we imagine an ambiguity
averse DM to be thinking as follows: “My best guess of the chance that the
return distribution is ‘π’ is 20%. However, this is based on ‘softer’ information
than knowing that the chance of a particular outcome in an objective lottery
is 20%. Hence, I would like to behave with more caution with respect to the
former risk.”

Apart from providing (what we think is) a clarifying perspective on ambi-
guity and ambiguity attitude, this functional representation will be particularly
useful in economic modeling to answer comparative statics questions that in-
volve ambiguity. Take an economic model where agents’ beliefs reflect some
ambiguity. Next, without perturbing the information structure, suppose we
wanted to ask how the equilibrium would change if the extent of ambiguity
aversion were to decrease; e.g., if we were to replace ambiguity aversion with
ambiguity neutrality, holding information and risk attitude fixed. Another use-
ful comparative statics exercise is to hold ambiguity attitudes fixed and ask
how the equilibrium is affected if the perceived ambiguity is varied. Working
out such comparative statics properly requires a model that allows a concep-
tual/parametric separation of (possibly) ambiguous beliefs and ambiguity atti-
tude, analogous to the distinction usually made between risk and risk attitude.
The model and functional representation in the paper allow this separation,
whereas such a separation is not evident in the pioneering and most popu-
lar decision making models that incorporate ambiguity, namely, the maxmin
expected utility (MEU) preferences (Gilboa and Schmeidler (1989)) and the
Choquet expected utility model of Schmeidler (1989). A more recent contri-
bution, Ghirardato, Maccheroni, and Marinacci (2004), axiomatizes a model
termed α-MEU wherein it is possible in a certain sense to differentiate am-
biguity attitude from ambiguity. A more detailed discussion of this model is
deferred until Section 5.1. As will be explained in that discussion, the α-MEU
model does not, in general, facilitate the first comparative static exercise men-
tioned above.
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To illustrate how our model can facilitate comparative statics, we include, in
the final section of the paper, an (numerical) analysis of two simple portfolio
choice problems. The analysis considers how the choice of an optimal portfolio
is affected when ambiguity attitude is varied. This allows a comparison of the
effects of risk attitude in expected utility with that of ambiguity attitude.

The rest of the paper is organized as follows. Section 2 states our main as-
sumptions and derives the representation. Section 3 defines ambiguity attitude
and characterizes it in terms of the representation. Section 4 gives a behavioral
definition of an ambiguous event and relates this definition to the representa-
tion. Section 5 discusses related literature. Finally, Section 6 presents the sim-
ple portfolio choice problems. There is a brief concluding section. All proofs,
unless otherwise noted in the text, appear in the Appendix.

2. ASSUMPTIONS AND REPRESENTATION

2.1. Preliminaries

Let A be the Borel σ-algebra of a separable metric space Ω and let B1 be
the Borel σ-algebra of (0�1]. Consider the state space S =Ω× (0�1], endowed
with the product σ-algebra Σ ≡ A ⊗ B1. For the remainder of this paper, all
events will be assumed to belong to Σ unless stated otherwise.

We denote by f :S → C a Savage act, where C is the set of consequences.
We assume C to be an interval in R that contains the interval [−1�1]. Given
a preference � on the set of Savage acts, F denotes the set of all bounded
Σ-measurable Savage acts; i.e., f ∈ F if {s ∈ S : f (s) � x} ∈ Σ for each x ∈ C
and if there exist x′�x′′ ∈ C such that x′ � f � x′′.

The space (0�1] is introduced simply to model a rich set of lotteries as a set of
Savage acts. An act l ∈F is said to be a lottery if l depends only on (0�1]—i.e.,
l(ω1� r) = l(ω2� r) for any ω1�ω2 ∈ Ω and r ∈ (0�1]—and it is Riemann inte-
grable. The set of all such lotteries is L. If f ∈ L and r ∈ (0�1], we sometimes
write f (r), meaning f (ω� r) for any ω ∈Ω.2

Given the Lebesgue measure λ :B1 → [0�1], let π :Σ→ [0�1] be a count-
ably additive product probability such that π(A×B)= π(A× (0�1])λ(B) for
A ∈A and B ∈ B1. The set of all such probabilities π is denoted by ∆. Let
C(S) be the set of all continuous (with respect to (w.r.t.) the product topology
of S) and bounded real-valued functions on S. Using C(S) we can equip ∆ with

2Our modeling of lotteries in this way and use of a product state space is similar to the “single-
stage” approach in Sarin and Wakker (1992, 1997) and to Anscombe–Aumann-style models. By
the phrase “a rich set of lotteries,” we simply mean that, for any probability p ∈ [0�1], we may
construct an act that yields a consequence with that probability. While this richness is not required
in the statement of our axioms or in our representation result, it is invoked later in the paper in
Theorems 2 and 3.
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the vague topology, that is, the coarsest topology on ∆ that makes the following
functionals continuous:

π 	→
∫
ψdπ for each ψ ∈C(S) and π ∈ ∆�

Throughout the paper we assume ∆ to be endowed with the vague topol-
ogy. Let σ(∆) be the Borel σ-algebra on ∆ generated by the vague topology.
Lemma 5 in the Appendix shows a property of σ(∆) that we use to guarantee
that the integrals in our main representation theorem are well defined.

Since we wish to allow ∆ to be another domain of uncertainty for the DM
apart from S, we model it explicitly as such. Does the DM regard this domain
as uncertain and if so, what are the DM’s beliefs? To formally identify this,
we look at preferences over second order acts, which assign consequences to
elements of ∆.

DEFINITION 1: A second order act is any bounded σ(∆)-measurable function
f :∆→ C that associates an element of ∆ to a consequence. We denote by F the
set of all second order acts.

Let �2 be the DM’s preference ordering over F. The main focus of the model
is �, a preference relation defined on F (the set of acts on S)� It might be
helpful at this point to relate our structure to a more standard Savage-like
one. Consider a product state space S × ∆� In a Savage-type theory with this
state space, the objects of choice—Savage acts—would be all (appropriately
measurable) functions from S × ∆ to an outcome space C. The theory would
then take as primitive preferences over Savage acts. In contrast, our theory
concerns preferences over only two subsets of Savage acts—those acts that
depend either only on S or only on ∆�We do not consider any acts that depend
on both nor do we explicitly consider preferences between these two subsets.

While, formally, our second order acts may be considered to be a subset
of Savage acts, there is a question whether preferences with respect to these
acts are observable. The mapping from observable events to events in ∆ may
not always be evident. When it is not evident we may need something richer
than behavioral data, perhaps cognitive data or thought experiments, to help
us reveal the DM’s beliefs over ∆.

However, we would like to suggest that second order acts are not as strange
or unfamiliar as they might first appear. Consider any parametric setting, i.e.,
a finite dimensional parameter space Θ, such that ∆ = {πθ}θ∈Θ. Second order
acts would simply be bets on the value of the parameter. In a parametric port-
folio investment example, these could be bets about the parameter values that
characterize the asset returns, e.g., means, variances, and covariances. Simi-
larly, in model uncertainty applications, second order acts are bets about the
values of the relevant parameters in the underlying model. Closer to decision
theory, for an Ellsberg urn, second order acts may be viewed as bets on the
composition of the urn.
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2.2. Main Assumptions

Next we describe three assumptions on the preference orderings � and �2.
The first assumption applies to the preference ordering � when restricted to
the domain of lottery acts. Preferences over the lotteries are assumed to have
an expected utility representation.

ASSUMPTION 1 —Expected Utility on Lotteries: There exists a unique u :
C→ R� continuous, strictly increasing, and normalized so that u(0) = 0 and
u(1) = 1 such that, for all f�g ∈ L, f � g if and only if

∫
(0�1] u(f (r))dr ≥∫

(0�1] u(g(r))dr�

In the standard way, the utility function, u, represents the DM’s attitude
toward risk generated from the lottery part of the state space. 3 The next as-
sumption is on �2, the preferences over second order acts. These preferences
are assumed to have a subjective expected utility representation.

ASSUMPTION 2—Subjective Expected Utility on Second Order Acts: There
exists a countably additive probability µ :σ(∆)→ [0�1] with some J ∈ σ(∆) such
that 0 < µ(J) < 1 and a continuous, strictly increasing v :C → R, such that, for
all f�g ∈ F,

f �2 g ⇐⇒
∫
∆

v(f(π))dµ≥
∫
∆

v(g(π))dµ�

Moreover, µ is unique and v is unique up to positive affine transformations.

We denote by Π the support of µ, that is, the smallest closed (w.r.t. the
vague topology) subset of ∆ whose complement has measure zero; Π is the
subset of ∆ that the DM subjectively considers relevant. Given any E ⊆Π, we
interpret µ(E) as the DM’s subjective assessment of the likelihood that the
relevant probability lies in E; hence, µ may be thought of as a “second order
probability” over the first order probabilities π.4 Notice that Π may well be a
finite subset of ∆. Finally, the utility function v represents the DM’s attitude
toward risk generated by payoffs contingent on events in ∆.

3An alternative approach to deriving risk attitude, suggested to us by Mark Machina, would be
to assume appropriate smoothness of our preferences and apply Machina (2004) to identify risk
attitudes with preferences over “almost-objective” acts. It may be verified, given our representa-
tion, that such preferences are entirely determined by u(·)�

4We assume that µ is countably additive to avoid going into technicalities that involve the sup-
port. In any case, this is likely to be assumed in any application and, as a matter of theory, Arrow
(1971) showed that countably additive probabilities can be derived in an SEU model by adding
a monotone continuity axiom. As Arrow (1971, p. 48) remarked, “the assumption of Monotone
Continuity seems, I believe correctly, to be the harmless simplification almost inevitable in the
formalization of any real-life problem.” Furthermore, the foundations for Assumption 2 that we
cite in the next paragraph also show how to deliver countable additivity.
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Each of the first two assumptions could be replaced by more primitive as-
sumptions on � and �2, respectively, that deliver the expected utility rep-
resentations. For example, Assumption 1 can be derived along the lines of
Grandmont (1972) by identifying lottery acts with their respective distribu-
tions. Theorem V.6.1 of Wakker (1989) applied to �2 over second order acts
can be used to deliver Assumption 2. This theorem is an axiomatic characteri-
zation of continuous subjective expected utility for acts that map from general
state spaces to suitably rich consequence spaces. The key axiom in Wakker’s
treatment is a condition that requires consistency of trade-offs revealed by
preferences. These or any other axioms applied to second order acts may not
always be easily verifiable, because the payoffs of these acts are contingent on
elements of ∆� As observed earlier, in some instances it may not be possible
to empirically verify which element in ∆ actually obtains. On the other hand,
such empirical verification may be relatively simple in experimental settings: in
Ellsberg urn experiments, all you would need to do is dump the urn and verify
the proportion of balls in it. Verification may also be possible if one has the
opportunity to wait and observe a sufficiently long run of data generated by
repeated realizations from the π ∈ ∆ that obtains. For instance, a finance pro-
fessional using a parametric model to evaluate portfolios, where parameters
determine the relevant stochastic process on returns, may obtain (economet-
ric) estimates of the true parameter value if there is enough stationarity in the
data generating process.

Even when verifiability is an issue, preference axioms provide a useful con-
ceptual underpinning to choice criteria. For example, economists often apply
the subjective expected utility model to a variety of situations characterized by
limited verifiability. For instance, consider an investor’s portfolio choice prob-
lem. The relevant states of the world for a particular stock may include events
that take place inside the firm and in the wider market. It cannot be claimed
that it is easy to verify, if at all, which of these relevant states actually obtain.
Similarly, subjective expected utility is used to model agents in situations of
asymmetric information, in a Bayesian game for example, where agents have
beliefs about private signals and even beliefs about other players’ beliefs. Be-
cause signals and beliefs are private, it may not be possible for an observer to
verify which of them actually are realized. Nevertheless, in such situations pref-
erence axioms are commonly invoked to justify the use of the expected utility
criterion and play a useful role in understanding the meaning of this criterion.
In much the same way, we believe axioms on second order acts provide a sen-
sible foundation for our assumption of subjective expected utility over second
order acts. It is an open question whether an identical representation could be
derived using only preferences over acts in F .

Our final main assumption requires the preference ordering of primary in-
terest, �, to be consistent with Assumptions 1 and 2 in a certain way. Before
stating the assumption, we require a few preliminaries. An act f and a prob-
ability π induce a probability distribution πf on consequences. To define this
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formally, denote by Bc the Borel σ-algebra of C and define πf :Bc → [0�1] by
πf(B) = π(f−1(B)) for all B ∈ Bc . The next lemma shows that each distribu-
tion πf can be “replicated” by a suitable lottery act.

LEMMA 1: Given any f ∈ F and any π ∈ ∆, there exists a (nondecreasing)
lottery act lf (π) ∈L that has the same distribution as πf , i.e., such that λ(lf (π) ∈
B)= πf(B) for all B ∈ Bc .

NOTATION 1: In what follows, δx denotes the constant act with consequence
x ∈ C and cf (π) denotes the certainty equivalent of the lottery act lf (π); i.e.,
δcf (π) ∼ lf (π)�

Notice that since u is continuous and strictly increasing (Assumption 1), lot-
tery acts have a unique certainty equivalent.

Since f together with a possible probability π generates a distribution over
consequences identical to those generated by lf (π), we assume (for consistency
with Assumption 1) that the certainty equivalent of f , given π, is the same as
the certainty equivalent of lf (π). Thus, as the certainty equivalent of f depends
on which π is the right probability law, facing f is like facing a second order act,
f 2, yielding cf (π) for each particularπ� This motivates the following definition.

DEFINITION 2: Given f ∈ F , f 2 ∈ F denotes a second order act associated
with f� defined as

f 2(π)= cf (π) for all π ∈ ∆�
The assumption below says that the DM agrees with the reasoning above

and therefore orders acts f ∈F identically to the associated second order acts
f 2 ∈ F�

ASSUMPTION 3—Consistency with Preferences over Associated Second Or-
der Acts: Given f�g ∈F and f 2� g2 ∈ F,

f � g ⇐⇒ f 2 �2 g2�

2.3. The Representation

The preceding three assumptions are basic to our model in that they are
all that we invoke to obtain our representation result. Theorem 1 shows that
given these assumptions, � is represented by a functional that is an “expected
utility over expected utilities.” Evaluation of f ∈F proceeds in two stages: first,
compute all possible expected utilities of f , each expected utility corresponding
to a π in the support of µ; next, compute the expectation (with respect to the
measure µ) of the expected utilities obtained in the first stage, each expected
utility transformed by the increasing function φ.
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As will be shown in subsequent analysis, this representation allows a decom-
position of the DM’s tastes and beliefs: u determines risk attitude toward acts,
φ determines ambiguity attitude in the sense that a concave (convex)φ implies
ambiguity aversion (ambiguity loving), and µ determines the subjective belief,
including any ambiguity perceived therein by the DM.

NOTATION 2: Let U denote the range {u(x) :x ∈ C} of the utility function u�

THEOREM 1: Given Assumptions 1, 2, and 3, there exists a continuous and
strictly increasing φ :U → R such that � is represented by the preference func-
tional V :F → R given by

V (f )=
∫
∆

φ

[∫
S

u(f (s))dπ

]
dµ≡ Eµφ(Eπu ◦ f )�(2)

Given u, the function φ is unique up to positive affine transformations. Moreover,
if ũ= αu+β, α> 0, then the associated φ̃ is such that φ̃(αy+β)=φ(y), where
y ∈ U .

PROOF: By Assumption 3, f � g⇔ f 2 �2 g2. By Assumption 2, f 2 �2 g2 ⇔∫
v(cf (π))dµ≥ ∫

v(cg(π))dµ� Hence,

f � g ⇐⇒
∫
v(cf (π))dµ≥

∫
v(cg(π))dµ�(3)

Since v and u are strictly increasing, v(cf (π))=φ(u(cf (π))) for some strictly
increasing φ. Since v and u are continuous, so is φ. Substituting for v(cf (π))
in (3), we get

f � g ⇐⇒
∫
φ

(
u(cf (π))

)
dµ≥

∫
φ

(
u(cg(π))

)
dµ�(4)

Now, recall,

δcf (π) ∼ lf (π) ⇐⇒ u(cf (π))=
∫
(0�1]

u(lf (π)(r))dr�

So,

u(cf (π))=
∑

x∈supp(πf )

u(x)πf (x)=
∫
S

u(f (s))dπ�(5)

Thus, substituting (5) into (4),

f � g ⇐⇒
∫
φ

(∫
S

u(f (s))dπ

)
dµ≥

∫
φ

(∫
S

u(g(s))dπ

)
dµ�
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This proves the representation claim in the theorem. To see the uniqueness
properties of φ, notice that

v(cf (π))=φ(
u(cf (π))

) ⇐⇒ φ(y)= v(u−1(y))�

Let ũ= αu+β and let y ∈ U � Then

(ũ−1)(αy +β)= {x : ũ(x)= αy +β}
= {x :αu(x)+β= αy +β}
= {x :u(x)= y}
= u−1(y)�

Hence, ∀ y ∈ U , φ̃(αy +β)= (v ◦ ũ−1)(αy +β)= (v ◦ u−1)(y)=φ(y). Finally,
v is unique up to positive affine transformations according to Assumption 2,
so, fixing u, φ is as well. Q.E.D.

The integrals in (2) are well defined because of Lemma 5 in the Appendix,
which guarantees their existence. Hereafter, when we write a preference rela-
tion �, we assume that it satisfies the conditions in Theorem 1. This theorem
can be viewed as a part of a more comprehensive representation result (re-
ported in Section A.2 as Theorem 4) for the two orderings � and �2 in which
Assumptions 1, 2, and 3 are both necessary and sufficient. Theorem 4 also notes
explicitly an important point evident in the proof of Theorem 1, that φ equals
v ◦ u−1. The functional representation is also invariant to positive affine trans-
forms of the vN–M utility index that applies to the lotteries. That is, when u is
translated by a positive affine transformation to u′, the class of associated φ′ is
simply the class of φ with domain shifted by the positive affine transformation.

We close this subsection by observing that, though Assumption 1 imposed
expected utility preferences on lotteries, we could relax that assumption by
allowing the preferences over lotteries to be rank dependent expected util-
ity preferences (see Quiggin (1993)) with a suitable probability distortion
ϕ : [0�1] → [0�1]. Then the representation of preferences over acts in F is as
given in the following corollary.

COROLLARY 1: Suppose there exists a continuous and nondecreasing function
ϕ : [0�1] → [0�1] such that, for all f�g ∈ L, f � g if and only if

∫
(0�1] u(f (r))×

dϕ(λ)≥ ∫
(0�1] u(g(r))dϕ(λ). If � satisfies Assumptions 2 and 3, then (2) of The-

orem 1 becomes

V (f )=
∫
∆

φ

[∫
S

u(f (s))dϕ(π)

]
dµ�(6)

PROOF: It is enough to observe that here (5) becomes u(cf (π)) =∫
S
u(f (s))dϕ(π).
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The rest of the proof is identical to that of Theorem 1. Q.E.D.

Note that while the outer integral is the usual one, the inner integral in (6) is
a Choquet integral, and the inner and outer integrals are well defined because
of Lemma 5.

3. AMBIGUITY ATTITUDE

In this section we first provide a definition of a DM’s ambiguity attitude and
show that this ambiguity attitude is characterized by properties ofφ, one of the
functions from our representation above. Comparison of ambiguity attitudes
across preference relations is dealt with in Section 3.2. Finally, Section 3.3 de-
scribes a useful regularity condition on ambiguity attitudes. It also shows that
this condition is implied by our other assumptions if φ is twice continuously
differentiable.

3.1. Characterizing Ambiguity Attitude

To discuss ambiguity attitude, we first require an additional assumption. In
the classical theory, it is commonly implicitly or explicitly assumed or derived
that a given individual will display the same risk attitude across settings in
which she might hold different subjective beliefs. We would like to assume
the same. In the context of our theory, this entails the assumption that risk
attitudes derived from lotteries and risk attitudes derived from second order
acts are independent of an individual’s beliefs. In fact, a weaker assumption
suffices for our purposes: the assumption that the two risk attitudes u and v do
not vary with Π, the support of an individual’s belief µ.

To state this formally in our setting, consider a family {�Π��2
Π}Π⊆∆ of pairs

of preference relations (over acts and over second order acts, respectively) that
characterize each DM. There is a pair of preference relations that correspond
to each possible support Π, that is, to each possible state of information the
DM may have about which probabilities π (over S) are relevant to his de-
cision problem. Assumptions 4 and 5, which follow here and in Section 3.3,
require certain properties of preferences to hold across the different pairs
{�Π��2

Π}Π⊆∆. We emphasize that these assumptions are of a somewhat differ-
ent nature than the three assumptions of the previous section. While the earlier
assumptions operate only within pairs of preferences (�Π��2

Π), Assumptions
4 and 5 operate across the entire family of pairs of preferences.

For all the definitions, assumptions, and results to come, it would be enough
if everywhere that we state something about an entire family {�Π��2

Π}Π⊆∆ of
pairs of preference relations, we limit our statement to the pair of original pref-
erences (���2) and a pair {�Π��2

Π} withΠ that contains exactly two measures



DECISION MAKING UNDER AMBIGUITY 1861

that have disjoint support.5 While we stick with the stronger formulations that
use all Π for ease of statement, this observation indicates that many fewer
pairs of preference relations need to be considered (two rather than an infinite
number) than the stronger versions would lead one to think.

ASSUMPTION 4—Separation of Tastes and Beliefs: Fix a family of preference
relationships {�Π��2

Π}Π⊆∆ for a given DM.
(i) The restriction of �Π to lottery acts remains the same for every support

Π ⊆ ∆.
(ii) The same invariance with respect toΠ holds for the risk preferences derived

from �2
Π �

Imposing Assumption 4 in addition to the earlier assumptions guarantees
that as the support of a DM’s subjective belief varies (say, due to conditioning
on different information), the DM’s attitude toward risk in lotteries, as em-
bodied in u (from Assumption 1), and attitude toward risk on the space ∆, as
embodied in v (from Assumption 2), remain unchanged. Importantly, this will
also mean that the same φmay be used to represent each �Π for a DM. To see
this, recall that φ is v ◦ u−1.

Notice that there is no restriction on the DM’s belief associated with each �Π

and �2
Π except that of having support Π. Although we do not need to assume

it for our results, a natural possibility is that all such beliefs are connected via
conditioning from some “original” common belief.

We now proceed to develop a formal notion of ambiguity attitude. Recall
that an act f together with a probability π induces a distribution πf on conse-
quences. Each such distribution is naturally associated with a lottery lf (π) ∈L,
which has a certainty equivalent cf (π). Fixing an act f , the probability µ may
then be used to induce a measure µf on {u(cf (π)) :π ∈Π}, the set of expected
utility values generated by f corresponding to the different π’s inΠ (using the
utility function u from Assumption 1). When necessary, we denote the belief
associated with �Π by µΠ and the corresponding µf by µΠ�f � To introduce µf
formally, we need the following lemma. Here Bu denotes the Borel σ-algebra
of U and u(B)= {u(x) :x ∈ B}.6

LEMMA 2: We have Bu = {u(B) :B ∈ Bc}.

5The significance of two measures with disjoint support is that they allow the entire space
of pairs of expected utility values to be generated by varying the act under consideration. This
richness is needed for preference over acts to fully pin down convexity properties of φ. Such
richness comes for free in expected utility theory because acts are not summed over states before
the utility function is applied.

6Since U is an interval, Bu coincides with the restriction on U of the Borel σ-algebra B of
the real line. The same applies to B1 and Bc , which are the restrictions of B on (0�1] and C,
respectively.
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By Lemma 2, µf is defined on Bu.

DEFINITION 3: Given f ∈ F , the induced distribution µf :Bu → [0�1] is
given by

µf(u(B))≡ µ(
(f 2)−1(B)

)
for each B ∈ Bc�

Given an act f , the derived (subjective) probability distribution over ex-
pected utilities, µf , smoothly aggregates the information the DM has about
the relevant π’s and how each such π evaluates f without imposing reduction
between µ and the π’s. In this framework the induced distribution µf repre-
sents the DM’s subjective uncertainty about the “right” (ex ante) evaluation
of an act. The greater the spread in µf , the greater the uncertainty about the
ex ante evaluation. In our model it is this uncertainty through which ambigu-
ity about beliefs may affect behavior: ambiguity aversion is an aversion to the
subjective uncertainty about ex ante evaluations. Analogous to risk aversion,
aversion to this uncertainty is taken to be the same as disliking a mean preserv-
ing spread in µf .7 Just as in the theory of risk aversion, this may be expressed
as a preference for getting a sure “average” to getting the act that induces µf .
To state this formally, we need notation for the mean of µf , i.e., for the average
expected utility from f�

NOTATION 3: Let e(µf )≡ ∫
U xdµf . Notice u−1(e(µf )) ∈ C�

Thus δu−1(e(µf ))
is the constant act valued at the average utility of f .

DEFINITION 4: A DM displays smooth ambiguity aversion at (f�Π) if

δu−1(e(µf ))
�Π f�

where µ has support Π� A DM displays smooth ambiguity aversion if she dis-
plays smooth ambiguity aversion at (f�Π) for all f ∈F and all supportsΠ ⊆ ∆.

In a similar way, we can define smooth ambiguity love and neutrality. The
proposition below shows that smooth ambiguity aversion is characterized in
the representing functional by the concavity of φ. The proposition also shows
that smooth ambiguity aversion is equivalent to the DM being more risk averse
to the subjective uncertainty about the right prior on S than he is to the risk
generated by lotteries (whose probabilities are objectively known). A result
characterizing smooth ambiguity love by convexity of φ follows from the same
argument. Similarly, smooth ambiguity neutrality is characterized by φ linear.

7It is important to keep in mind the distinction between µ and µf : while µ is a measure on
probabilities and does not vary with f , µf is a measure on utilities and depends on f .
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It is worth noting that a straightforward adaptation of the proof of the analo-
gous result in risk theory does not suffice here. The reason is that the needed
diversity of associated second order acts is not guaranteed in general.

PROPOSITION 1: Under Assumptions 1–4, the following conditions are equiva-
lent:

(i) The function φ :U → R is concave.
(ii) Attitude v is a concave transform of u.
(iii) The DM displays smooth ambiguity aversion.

The proposition has the following corollary (whose simple proof is omitted),
which shows that the usual reduction (between µ and π) applies whenever
ambiguity neutrality holds. In that case, we are back to subjective expected
utility. An ambiguity neutral DM, though informed of the multiplicity of π’s, is
indifferent to the spread in the ex ante evaluation of an act caused by this mul-
tiplicity; the DM only cares about the evaluation using the “expected prior” η.

COROLLARY 2: Under Assumptions 1–4, the following properties are equiva-
lent:

(i) The DM is smoothly ambiguity neutral.
(ii) The function φ is linear.
(iii) The preference functional V (f ) = ∫

S
u(f (s))dη, where η(E) =∫

∆
π(E)dµ for all E ∈ Σ.

REMARK 1: An ambiguity averse DM in this model prefers the lottery act,
�̂, that pays x with an objective probability p (and 0 with probability 1 −p) to
the second order act, f̂ 2, that pays x contingent on an event E ⊆ ∆ to which
the DM assigns a subjective prior µ(E)= p (and pays 0 elsewhere). These two
options expose the DM to the same uncertainty over payoffs generated in two
different ways. Ambiguity aversion is the relative dislike of payoff uncertainty
generated by subjective beliefs over probability distributions on S compared to
payoff uncertainty generated by lotteries.

Notice that this model does not deal with objective probabilities on ∆; µ is
a subjective measure. However, it may be useful to suggest one interpreta-
tion of how an “objective µ” might be viewed by the DM. Suppose the DM is
informed that each π ∈ ∆ obtains with an objective probability p(π), gener-
ated, for example, by a randomizing device, such as a roulette wheel. It seems
plausible that the DM would then view the second order act f̂ 2 as equivalent
to the lottery act �̂� The interpretation seems appropriate since f̂ 2 and �̂ are
identified with identical objective probability distributions over consequences.
More generally, in such a case second order acts can be regarded as lotteries,
so there is no motivation to distinguish between v and u, i.e., v = u� Hence
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φ is the identity and the DM evaluates acts by expected utility. Needless to
say this is only an interpretation. Being strictly formal, lotteries and second
order acts are different objects. Hence, it is possible that v could be more con-
cave than u even with objective probabilities. For some recent experimental
evidence on this point, see Halevy (2004). These interpretations are limited to
the case where the uncertainty about second order acts is wholly objective; it is
far from obvious what an appropriate interpretation is if this uncertainty were
a combination of objective and subjective.

3.2. Comparison of Ambiguity Attitudes

In this section we study differences in ambiguity aversion across DMs. As in
the previous section, we identify each DM with a family of preferences {�Π�
�2
Π}Π⊆∆, parametrized byΠ. Throughout the section, we assume Assumption 4

holds in addition to the first three assumptions. Hence, ambiguity attitudes do
not depend on the support Π of µ.

We begin with our definition of what makes one preference order more am-
biguity averse than another.

DEFINITION 5: Let A and B be two DMs whose families of preferences
share the same probability measures µΠ for each support Π. We say that A is
more ambiguity averse than B if

f �A
Π l �⇒ f �B

Π l(7)

for every f ∈F , every l ∈L, and every support Π ⊆ ∆.

The idea behind this definition is that if two DMs, A and B, share the same
beliefs but B prefers an uncertain act over a (purely) risky act wheneverA does
so, then this must be due to B’s comparatively lower aversion to ambiguity.
Given a lottery l, the set of uncertain acts that B prefers to l is larger than
A’s preferred set of uncertain acts. Since A and B share the same beliefs, the
only factor that could explain the larger set preferred by B is difference in
attitudes to the uncertainty. However, differing attitudes toward lotteries (i.e.,
risk) cannot be the reason. Given that the act f in preference condition (7) may
itself be a lottery act and that the condition holds for every l ∈L, it essentially
follows thatA and Bmust rank lotteries the same way, hence leaving ambiguity
attitude as the only factor that may explain the difference in preferences.

We can now state our comparative result, which shows that differences in
ambiguity aversion across DMs who share the same belief µ are completely
characterized by the relative concavity of their functions φ. Significantly, the
result shows that Definition 5 implies that ambiguity aversion is comparable
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across two DMs only if their risk attitudes coincide.8 Note that the relative con-
cavity of φ plays here a role analogous to the role of the relative concavity of
utility functions in standard risk theory.

THEOREM 2: LetA and B be two DMs whose families of preferences share the
same probability µΠ for each supportΠ. ThenA is more ambiguity averse than B
if and only if they share the same (normalized) vN–M utility function u and

φA = h ◦φB
for some strictly increasing and concave h :φB(U)→ R.

Using results from standard risk theory, we get the following corollary as an
immediate consequence of Theorem 2.

COROLLARY 3: Suppose the hypothesis of Theorem 2 holds. If φA and φB are
twice continuously differentiable, then A is more ambiguity averse than B if and
only if they share the same (normalized) vN–M utility function u and, for every
x ∈ U ,

−φ
′′
A(x)

φ′
A(x)

≥ −φ
′′
B(x)

φ′
B(x)

�

Analogous to risk theory, we will call the ratio

α(x)= −φ
′′(x)
φ′(x)

the coefficient of ambiguity aversion at x ∈ U .

COROLLARY 4: A DM’s preferences are represented using a concave φ if and
only if he is more ambiguity averse than some expected utility DM (i.e., a DM all
of whose associated preferences �Π are expected utility).

REMARK 2: Corollary 4 connects our definition of smooth ambiguity aver-
sion (Definition 4) to the comparative notion of ambiguity aversion in Defi-
nition 5. It shows that they agree, with expected utility taken as the dividing
line between ambiguity aversion and ambiguity loving. It can also be shown
(see Klibanoff, Marinacci, and Mukerji (2003)) that if our Assumption 5 (pre-
sented in the next section) holds, nothing would change if we were to take
probabilistic sophistication, rather than expected utility, as the benchmark.

8This feature, that comparison of ambiguity attitudes is restricted to DMs with the same risk
attitude, is shared by the α-MEU type models. See, for instance, Proposition 6 in Ghirardato,
Maccheroni, and Marinacci (2004). It is also present in the approaches to comparative ambiguity
aversion developed in Epstein (1999) and Ghirardato and Marinacci (2002).
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We close this section by considering the two important special cases of con-
stant and extreme ambiguity attitudes. We begin by defining a notion of con-
stant ambiguity attitude.

DEFINITION 6: We say that the DM displays constant ambiguity attitude if,
for each support Π ⊆ ∆,

f �Π g ⇐⇒ f ′ �Π g
′

whenever acts f , g, f ′, and g′ are such that, for some k ∈ R and for each s ∈ S,

u(f ′(s))= u(f (s))+ k�(8)

u(g′(s))= u(g(s))+ k�
Recall that under Assumption 1 (or a Grandmont (1972) style axiomatiza-

tion thereof) u may be recovered from preferences on lotteries only up to nor-
malization. However, this is enough for the definition to be meaningful, since
any quadruple of acts satisfies the conditions in the definition with u if and only
if it satisfies such conditions with any renormalization ũ= αu+β for any α> 0
and β ∈ R (the particular values of k relating the acts may change, but this is
immaterial).

To see the spirit of the definition, notice that by bumping up utility (not the
raw payoffs) in each state by a constant amount we achieve a uniform shift in
the induced distribution over ex ante evaluations, i.e.,

µf ′(z+ k)= µf(z) and µg′(z+ k)= µg(z)�
The intuition of constant ambiguity attitude is that the DM views the “ambi-
guity content” in µf and its “translation” µf ′ to be the same, and so ranking
them the same through preferences reveals ambiguity attitude unchanged by
the shift in well being. Next we show that constant ambiguity attitudes are char-
acterized by an exponentialφ. It is of some interest to note that the proposition
does not assume that φ is differentiable.

PROPOSITION 2: The DM displays constant ambiguity attitude if and only if
either φ(x) = x for all x ∈ U or there exists an α �= 0 such that φ(x) = − 1

α
e−αx

for all x ∈ U , up to positive affine transformations.

We now turn to extreme ambiguity attitudes. The next proposition shows
that when ambiguity aversion is taken to infinity our model essentially exhibits
a maxmin expected utility behavior à la Gilboa and Schmeidler (1989), where
Π is the given set of measures.9

9Tomasz Strzalecki helped us improve this result from that in an earlier version and provided
a key step in its proof. Observe that when C is bounded, then by the Dini theorem, condition (iii)
can be weakened to limn αn(x)= +∞ for all x ∈ U .
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NOTATION 4: Set ess infΠ Eπu(f )= sup{t ∈ R :µΠ({π : Eπu(f ) < t})= 0}.
PROPOSITION 3: Let An be any sequence of DMs such that:

(i) all An share the same measures µΠ ;
(ii) for all n, An+1 is more ambiguity averse than An;
(iii) limn(infx∈U αn(x))= +∞;
(iv) each φAn is everywhere twice continuously differentiable.
Given any f and g in F , if f �An

Π g for all n sufficiently large, then

ess inf
Π

Eπu(f )≥ ess inf
Π

Eπu(g)�

Moreover,

ess inf
Π

Eπu(f ) > ess inf
Π

Eπu(g)

implies that, for all n large enough, f �An
Π g.

To make the connection to MEU, observe that when Π is finite, then
ess infΠ Eπu(f ) = minπ∈Π Eπu(f ). This also holds under standard topological
assumptions, as the next lemma shows.

LEMMA 3: If f is upper semicontinuous (i.e., all preference intervals {f � x}
are closed), then ess infΠ Eπu(f ) = infΠ Eπu(f ). If, in addition, Π is compact
and f is continuous, then ess infΠ Eπu(f )= minπ∈Π Eπu(f ).

We have claimed that our representation of preferences over acts in F allows
a separation of beliefs and tastes. We now make explicit the sense in which this
is so. In the representation, subjective beliefs (or information) are captured
by µ, including the ambiguity in the beliefs, as the results and discussion in
Section 4 explain. With respect to tastes, three conceptually distinct attitudes
are present in our model: risk attitude on acts in F , risk attitude on second
order acts in F, and ambiguity attitude on acts in F . To what extent are the
representations of these attitudes separately embodied in u�v, and φ, respec-
tively? It is clear from Assumption 1 that u represents risk attitude on lotteries
(a subset of acts in F). However, given our three main assumptions, certainty
equivalents of acts in F given a probability π over S are the same as those of
the corresponding lotteries. In this sense, u also represents risk attitude for all
acts in F and not simply lotteries. (See footnote 3 for an additional justification
that u represents risk attitude toward acts in F �) Assumption 2 guarantees that
v represents risk attitude on second order acts in F. Proposition 1 shows that
φ represents absolute ambiguity attitude on acts in F ; i.e., the shape of φ com-
pletely determines whether the DM is ambiguity averse, ambiguity loving, or
ambiguity neutral. Theorem 2 shows the sense in which φ represents compara-
tive ambiguity attitude; the comparison of ambiguity attitudes of two DMs who
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share the same information, µ, is completely determined by the comparative
concavity of the respective φ’s; however, the ambiguity attitudes of two DMs
are not comparable if they do not share the same risk attitude, as represented
by u. To claim a complete separation of these three attitudes and beliefs, it
would have to be possible to meaningfully compare properties of preferences
with representations involving (arbitrarily) different specifications of µ�φ� u,
and v� However, our separation is not complete in this sense because of two
limitations, which are explained next.

First, it is clear that a three-way separation of taste “parameters” φ, v, and u
is not possible, because they are related by the equation φ= v ◦u−1� Neverthe-
less, it is equally clear that any two of these three parameters φ, v, and u may
be specified independently when using the model. For example, any φ may be
combined with any u (and then v will be φ ◦ u). We are primarily interested in
behavior toward acts in F ; hence, the fact that we are able to specify φ and u
(which, unlike v, represent attitudes toward acts in F) independently is ar-
guably “good enough.” For instance, much of the impact of the well-known
preference model due to Epstein and Zin (1989) rests on the fact that they,
unlike standard models, allow a separation of intertemporal substitution from
intratemporal risk aversion. However, just as here, there are three attitudinal
aspects of preference in their model: willingness to intertemporally substitute,
intratemporal risk aversion, and preference over the timing of the resolution
of risk. Moreover, only two aspects may be specified separately, and once this
is done, the third is constrained. Nonetheless, it is customarily accepted that
in their model there is an effective separation of the two attitudes of pri-
mary interest—intertemporal substitution and intratemporal risk aversion—
and that this separation is good enough for economic modeling where one is
less often interested in the third attitude.

A second limitation arises due to the fact that even though we may specify
φ, u, and µ independently of each other, our results limit the extent to which
we may infer ambiguity attitude on the basis of φ when comparing preferences
across these specifications. Comparing preferences of two DMs, we can infer
(using Proposition 1) whether each DM is ambiguity averse or ambiguity loving
or neutral purely by looking at the shape of the φ’s in the respective specifica-
tions, irrespective of the u’s and µ’s involved. However, Theorem 2 allows us
to rank the two DMs in terms of their comparative ambiguity aversion on the
basis of the relative concavity of φ only when the DMs share the same µ and,
furthermore, shows that we can only compare ambiguity aversion across the
two when they share the same risk attitude, u (although there is no restriction
on the shared µ and u). As noted earlier, our approach is not unique in having
this last feature.

Separation of this kind, with the two limitations mentioned, is nevertheless
a significant advance in terms of what it allows in economic modeling. In par-
ticular, it allows a comparison of two DMs who share the same beliefs and risk
attitude toward acts, but one of whom is sensitive to expected utility (thus is
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ambiguity neutral) and the other is sensitive to ambiguity, say ambiguity averse.
This comparative static is important because it is precisely what is needed to
answer a question such as, “What is the pure effect of introducing ambiguity
sensitivity into a given economic situation?” This is a most basic question and
yet this cannot even be posed, let alone answered, within the framework of
the other models of decision making that incorporate ambiguity such as MEU,
CEU, and α-MEU. (See Section 5.1 for further clarification of this point.)

3.3. A Regularity Assumption on Ambiguity Attitude

In this section, we state a restriction on the DM’s preferences that requires
ambiguity attitude to be “well behaved.” This good behavior will be useful in
the next section when we discuss ambiguous events and acts. In words, the re-
striction is that if a preference is not neutral to ambiguity, then there exists
at least one interval over which we require that the DM display either strict
ambiguity aversion or strict ambiguity love, but not both. What is ruled out is
the possibility that the DM’s ambiguity attitude everywhere flits between am-
biguity aversion and ambiguity love, continuously from one point to the next.
Note that it is entirely permissible that there be several intervals, over some
of which the DM is ambiguity averse, while over others he is ambiguity loving.
The statement of the assumption is immediately followed by a proposition that
gives an equivalent characterization in terms of φ�

ASSUMPTION 5 —Consistent Ambiguity Attitude over Some Interval: The
DM’s family of preferences satisfies at least one of the following three conditions:

(i) Smooth ambiguity neutrality holds everywhere.
(ii) There exists an open interval J ⊆ U such that smooth ambiguity aversion

holds strictly at all (f�Π) for which supp(µΠ�f ) is a nonsingleton subset of J.
(iii) There exists an open intervalK ⊆ U such that smooth ambiguity love holds

strictly when limited to all (f�Π) for which supp(µΠ�f ) is a nonsingleton subset
of K.

PROPOSITION 4: Under Assumptions 1–4, we have the following:
1. Assumption 5(i) holds if and only if φ linear.
2. Assumption 5(ii) holds if and only ifφ strictly concave on some open interval

J ⊆ U .
3. Assumption 5(iii) holds if and only if φ strictly convex on some open interval

K ⊆ U .

The following lemma and remark show that if φ were twice continuously
differentiable, as it is likely to be in any application, then Assumption 5 would
actually be implied by the other assumptions and is not an additional assump-
tion.
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LEMMA 4: Suppose φ is twice continuously differentiable. If φ is not linear,
then φ is either strictly concave or convex over some open interval.

REMARK 3: It follows immediately from Proposition 4 and Lemma 4 that
under twice continuous differentiability of φ, Assumptions 1–4 imply Assump-
tion 5. Note that the conclusion of Lemma 4 may not hold if the hypothesis is
weakened to simply φ continuous.

4. AMBIGUITY

We have mentioned that an attractive feature of our model is that it allows
one to separate ambiguity from ambiguity attitude. In this section we concen-
trate on the ambiguity part. First, we propose a preference based definition of
ambiguity. We then show that this notion of ambiguity has a particularly simple
characterization in our model. Finally, we briefly comment on the relationship
with other notions of ambiguity.

What makes an event ambiguous or unambiguous by our definition rests on
a test of behavior, with respect to bets on the event, inspired by the Ellsberg
two-color experiment (Ellsberg (1961)). The role corresponding to bets on the
draw from the urn with the known mixture of balls is played here by bets on
events in {Ω} × B1. We say an event E ∈ Σ is ambiguous if, analogous to the
modal behavior observed in the Ellsberg experiment, betting on E is less de-
sirable than betting on some event B in {Ω} × B1, and betting on Ec is also
less desirable than betting on Bc� Similarly, we would also say E is ambiguous
if both comparisons were reversed or if one were indifference and the other
were not.

NOTATION 5: If x� y ∈ C and A ∈ Σ, xAy denotes the binary act that pays x
if s ∈A and y otherwise.

DEFINITION 7: An event E ∈ Σ is unambiguous if, for each event B ∈
{Ω} × B1 and for each x� y ∈ C such that δx � δy� either [xEy � xBy and
yEx ≺ yBx], [xEy ≺ xBy and yEx � yBx], or [xEy ∼ xBy and yEx ∼ yBx]�
An event is ambiguous if it is not unambiguous.

The next proposition shows a shorter form of the definition that is equivalent
to the original given our first three assumptions. Although this form lacks im-
mediate identification with the Ellsberg experiment, it helps in understanding
what makes an event unambiguous: an event is unambiguous if it is possible to
calibrate the likelihood of the event with respect to events in {Ω} ×B1.

PROPOSITION 5: Assume � satisfies the conditions in Theorem 1. An event
E ∈ Σ is unambiguous if and only if for each x and y with δx � δy ,

xEy ∼ xBy ⇐⇒ yEx∼ yBx�(9)
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whenever B ∈ {Ω} ×B1.

Our definition and the analogy with Ellsberg is most compelling when the
events in {Ω} × B1 are themselves unambiguous. Given any particular prefer-
ence relation, it may be checked using our definition whether this is so. Ob-
serve that if � satisfies Assumption 1, then all events in {Ω} × B1 are indeed
unambiguous.10

The next theorem relates ambiguity of an event to event probabilities in our
representation.

THEOREM 3: Assume � satisfies the conditions in Theorem 1. If the event E
is ambiguous according to Definition 7, then there exist µ-nonnull sets Π′�Π′′ ∈
σ(∆) and γ ∈ (0�1), such that π(E) < γ for all π ∈ Π′ and π(E) > γ for all
π ∈Π′′. If the event E is unambiguous according to Definition 7, then, provided
� satisfies Assumptions 4 and 5 and is not smoothly ambiguity neutral, there exists
a γ ∈ [0�1] such that π(E)= γ, µ-almost-everywhere.

Thus, in our model, if there is agreement about an event’s probability, then
that event is unambiguous. Furthermore, if � has some range over which it
is either strictly smooth ambiguity averse or strictly smooth ambiguity loving,
then disagreement about an event’s probability implies that the event is am-
biguous. When the supportΠ of µ is finite, the meaning of disagreement about
an event’s probability in the theorem above simplifies to: there exist π�π ′ ∈Π
such that π(E) �= π ′(E).

To understand why conditions are needed for one direction of the theorem,
think of the case of ambiguity neutrality, i.e., φ linear. Recall that in this case,
even if the measures in Π disagree on the probability of an event, the DM be-
haves as if he assigns that event its µ-average probability. Recall that Lemma 4
and Remark 3 showed that under conditions likely to be assumed in any appli-
cation (twice continuous differentiability of the function φ and Assumption 4),
ambiguity neutrality is the only case where there will fail to be a range of strict
ambiguity aversion (or love) and so is the only case where disagreement about
an event’s probability will not imply that the event is ambiguous.

REMARK 4: Epstein and Zhang (2001) and Ghirardato and Marinacci
(2002) have proposed behavioral notions of ambiguity meant to apply to a
wide range of preferences. In the context of our model, how do their notions
compare to the one presented above? It can be shown that Ghirardato and

10Note that the role of B1 in our definition may be played equally well by some other rich set
of events over which preferences display a likelihood relation representable by a convex-ranged
probability measure. Furthermore, the product structure of our state space also does not play
an essential role in formulating such a definition. In general, replace {Ω} × B1 with the desired
alternative set.
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Marinacci (2002) would identify the same set of ambiguous and unambigu-
ous events as we do, while Epstein and Zhang (2001) would yield a somewhat
different classification. These results, a discussion of nonconstant ambiguity
attitude as a source of difference from Epstein and Zhang (2001), and further
characterizations and discussion of our definition can be found in Klibanoff,
Marinacci, and Mukerji (2003). A result relevant to this discussion also proved
in that paper is that, given Assumptions 1–4, the only departures from expected
utility that may arise in this model are also departures from probabilistic so-
phistication.

5. RELATED LITERATURE

5.1. MEU and Related Models

Schmeidler (1989) was seminal in formalizing a decision theoretic model
of ambiguity. It introduced the Choquet expected utility (CEU) model, which
models uncertainty with nonadditive measures, with respect to which one takes
the Choquet integral of the utility function. The MEU model of Gilboa and
Schmeidler (1989) suggests that a DM entertains a set of priors, and computes
the minimal expected utility for each act, where the prior ranges on this set.
In general, the two models are distinct, but for a convex nonadditive measure
(taking the set of priors to be the core of this measure), the two models give
the same decision rule. The CEU and MEU models have been influential and
have been applied in a variety of economic settings. Many applications of CEU
use convex nonadditive measures, so they can be viewed as using either CEU
or MEU. However, observers have criticized the MEU/CEU model with the
question, “Why evaluate acts by their minimal expected utility? Isn’t this too
extreme?” One could argue that it is not as extreme as it might first appear:
the minimum is taken over a set of priors, but this need not be the set of priors
that is literally deemed possible by the DM. However, this argument under-
mines the attractive cognitive interpretation of the set of priors as the am-
biguous information the DM has. For instance, take two DMs who share the
same information, i.e., they both think a certain set of priors is possible. One
is less cautious than the other, however. Suppose the first evaluates an action
by the minimum expected utility over the literal set of priors, while the other
uses the expected utility at the 25th percentile rather than the minimum. The
MEU sets of priors that represent the two DMs’ preferences would be differ-
ent and thus at least one must differ from the literal set of priors. In contrast
to the CEU/MEU model, the present paper offers a model that allows for a
set of priors that may be interpreted literally without necessarily implying the
maxmin criterion.

Next we consider the relationship with a generalization of the maxmin func-
tional to the α-maxmin EU model (α-MEU):

V̂ (f )= αmax
π∈Π

Eπ(u ◦ f )+ (1 − α)min
π∈Π

Eπ(u ◦ f )�(10)
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As in the MEU model, Π still might not be the literal set of priors, although
there is more flexibility with α-MEU in capturing the ambiguity attitude (pa-
rameterized by α) of the DM. If one does interpret the Π literally, the model
shares with MEU the limitation that it does not smoothly aggregate how the act
performs under each possible π, but only looks at the extremal performance
values (the best and the worst). For instance, take two acts f and g that share
the same extremal valuations (i.e., maxπ∈Π Eπ(u ◦ f ) = maxπ∈Π Eπ(u ◦ g) and
minπ∈Π Eπ(u ◦ f )= minπ∈Π Eπ(u ◦ g)) but for “almost all” probabilities in Π,
Eπ(u ◦ f ) > Eπ(u ◦ g)� The α-maxmin rule must rank the acts equally, while
our model would not. For a recent axiomatization and extension of the α-MEU
model and a discussion of the extent to which it may offer a separation between
ambiguity and ambiguity attitude, see Ghirardato, Maccheroni, and Marinacci
(2004).

We have remarked that a unique contribution of the smooth ambiguity
model is that it provides a formal way to compare the choice of two DMs,
both of whom share the same information and the same risk attitude toward
lotteries, but one of whom is ambiguity sensitive (say, ambiguity averse) while
the other is ambiguity neutral (i.e., SEU). This comparative static is of primary
importance, since it identifies the pure effect of introducing ambiguity attitude
into a model. In contrast, the extent of separation of ambiguity and ambiguity
attitude achieved in the α-MEU model is not strong enough to address this
comparative static question. To see this, consider the class of preferences rep-
resented by V̂ (f ) which share a given set of priors Π but with α ranging over
the interval [0�1]. This class of preferences may not, in general, include an
SEU preference, since for a nonsingleton set Π there may not exist an α that
corresponds to an SEU preference. (The same is also true of the generalization
of α-MEU in Ghirardato, Maccheroni, and Marinacci (2004).)

Finally, we remark that it may be helpful to think of another difference be-
tween the model in this paper and models such as CEU, MEU, and α-MEU
as analogous to that between models of first and second order risk aversion
(Segal and Spivak (1990), Loomes and Segal (1994)). Models such as MEU
and α-MEU display ambiguity sensitive behavior only when the corresponding
indifference curves in the utility space are kinked (behavior that may be called
first order ambiguity sensitivity). The model in this paper focuses on incorpo-
rating sensitivity to ambiguity even when the indifference curves are not kinked
(“second order ambiguity sensitivity”), thus the moniker “a smooth theory.”

5.2. Models that Relax Reduction

A key idea in the present paper, relaxing reduction between first and sec-
ond order probabilities to accommodate ambiguity sensitive preferences, owes
its inspiration to the research reported in Segal (1987, 1990). The former pa-
per presented a model of decision making under uncertainty that assumes a
unique second order probability over a set of given first order probabilities,
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but relaxes reduction and weights the probabilities nonlinearly. Using exam-
ples, Segal observed that such a model would be flexible enough to accom-
modate both Allais- and Ellsberg-type behavior. While ambiguity aversion is
not defined per se, Theorem 4.2 in that paper, which gives conditions (on the
weighting function on the probabilities) under which a (binary) “nonambigu-
ous lottery is preferred to an ambiguous one,” appears to conceptualize aver-
sion to ambiguity as an aversion to spreads in the second order probability.
In our model the second order probability is µ. For general acts, aversion to
spreads in µ and aversion to spreads in µf are distinct. Recall from Section 3
that we define ambiguity aversion as aversion to spreads in µf . Segal (1990)
developed the key idea of relaxing reduction further in the context of choice
under risk and obtained a novel axiomatization of the anticipated utility model.

Neilson (1993) uses lack of reduction to axiomatize a model of ambiguity
attitude with a functional form identical to ours. This work, of which we were
unaware while writing this paper, also contains the idea of using an Arrow–
Pratt-type index to measure ambiguity aversion. The axiomatic setup differs
from ours and the nature of ambiguity (as opposed to ambiguity attitude) is
not explored. Another paper that relaxes reduction is Nau (2003) (a revised
and expanded version of Nau (2001)). The paper presents an axiomatic model
of partially separable preferences where the DM may satisfy the independence
axiom selectively within partitions of the state space whose elements have “sim-
ilar degrees of uncertainty.” The axiomatization makes no attempt to uniquely
separate beliefs from state-dependent utilities. Section 5 of that paper dis-
cusses, without axiomatization, a functional form like ours with separate first
and second order probabilities as a special case of the state-dependent utility
form. A major contribution of the paper is to present an intuitive notion of
ambiguity aversion in a state-dependent utility framework.

Ergin and Gul (2002) considers a preference framework very analogous to
Nau’s and obtains a representation that, at least in a special case, is essentially
the same as obtained in this paper. Just as Nau’s framework has two possi-
ble partitions of the state space with the DM being (possibly) differently risk
averse on one partition as compared to the other, Ergin and Gul’s framework
is a product state space. Their key axiom permits the DM to have different risk
attitudes on different ordinates of the product space. A significant feature of
Ergin and Gul’s model is that it allows probabilistically sophisticated nonex-
pected utility preference conditional on each ordinate. Unlike Nau, Ergin and
Gul do not allow for state dependence.

An important difference between our paper and Ergin and Gul is the domain
over which preferences are defined. Ergin and Gul denote their product space
Ωa ×Ωb. The objects of choice in their theory are the full set of Savage acts
that map Ωa ×Ωb to an outcome space. How does this relate to our structure?
First, observe that it is not the case thatΩa×Ωb corresponds to S×∆; rather it
corresponds to (0�1]×∆ in our model. We derive a recursive representation of
preferences over acts on S that is completely determined by preferences over
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acts that depend only on ∆ and acts that depend only on (0�1], while Ergin and
Gul derive a recursive representation of preferences over acts on Ωa ×Ωb that
is completely determined by preferences over acts that depend only on Ωb and
acts that depend only on Ωa. This difference in the domain of acts over which
a recursive representation is derived has strong implications for the modeling
of ambiguity. Specifically, if the domain is Ωa × Ωb as in Ergin and Gul, for
any preferences either (1) preference is globally probabilistically sophisticated
and all events are unambiguous; or (2) all nonnull events that do not depend
exclusively on either Ωa or Ωb alone are ambiguous (in the sense of our de-
finition in Section 4). Thus, if ambiguity is present in their model, its scope
is determined entirely by the exogenous structure of the state space. In con-
trast, in our model, the events in the Ω part of S may display a wide variety of
patterns of ambiguity/unambiguity. The DM’s preferences reveal which events
are ambiguous and which are not, offering flexibility in modeling ambiguity
and (partially) endogenizing its domain.

The seminal work of Kreps and Porteus (1978) is not concerned with am-
biguity, or indeed with subjective probabilities, but is related to our modeling
approach in that the representation we derive has a two-stage recursive form
with expected utility at each stage. Grant, Kajii, and Polak (2001) gives an in-
teresting application of such a recursive expected utility framework. In this ap-
plication, reduction is relaxed, replaced by a recursive formulation, to model
the idea that agents may not want to “conflate” probabilistic information from
two different sources of uncertainty. Halevy and Feltkamp (2005) try to “ratio-
nalize” ambiguity aversion by assuming that a DM mistakenly views his choice
of an action as determining payoffs for two positively related replications of
the same environment, rather than simply for a single environment. If he is
risk averse and has expected utility preferences over a single instance, then
this “bundling” of problems results in violations of reduction and may lead to
Ellsberg-type behavior. Chew and Sagi (2003) presents a model with endoge-
nously defined “domains” within which the DM has the same risk attitude but
across which they do not. Their approach involves domain-specific applications
of the independence axiom that lead to “domain recursive” preferences.

6. PORTFOLIO CHOICE EXAMPLES

In this section we consider two examples of simple portfolio choice prob-
lems. The examples are intended both as a concrete illustration of our frame-
work and as suggestive of the potential of our approach in applications. We
focus, in particular, on comparative statics in ambiguity attitude and a compar-
ison with comparative statics in risk attitude.

The environment for the examples is as follows. The space Ω contains two
elements,ω1 andω2� The measure µ assigns probability 1/2 to both π1 and π2,
which yield marginals on Ω of

π1(ω1)= 1
4 � π1(ω2)= 3

4 and π2(ω1)= 3
4 � π2(ω2)= 1

4 �
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respectively. The function u is given by

u(x)=




1 + x1−ρ − 1
21−ρ − 1

� if ρ≥ 0, ρ �= 1,

1 + ln(x)
ln(2)

� if ρ= 1.

This utility function displays constant relative risk aversion with ρ as the co-
efficient of relative risk aversion, and is normalized so that u(1) = 1 and
u(2)= 2.11 The function φ is given by

φ(x)=



1 − e−αx

1 − e−α � if α> 0,

x� if α= 0.

This function may be said to display constant ambiguity aversion with this ter-
minology justified by Proposition 2 in Section 3. Thus α is the coefficient of
ambiguity aversion.

Table II illustrates the acts that will appear in our examples. Each of these
acts is meant to represent the gross payoff (in dollars) per dollar invested in a
particular asset as a function of the state of the world.

Observe that f is an example of an ambiguous act, because its payoff de-
pends on the ambiguous events ω1 × (0�1] and ω2 × (0�1]; l is an example of
an unambiguous, but risky, act (it is also a lottery); and δ1�15 is an example of a
constant act, involving neither risk nor ambiguity. Thinking of these in terms of
assets and asset returns, f reflects a 100% return when the state of the world
s ∈ ω1 × (0�1] and 0% otherwise; l reflects a return of 200% with probabil-
ity 1/2 and a return of 0% with probability 1/2; and δ1�15 reflects a sure return
of 15%.

TABLE II

GROSS DOLLAR PAYOFF PER DOLLAR INVESTED FOR
EACH OF THREE ASSETS

ω1 × (0� 1
2 ] ω1 × ( 1

2 �1] ω2 × (0� 1
2 ] ω2 × ( 1

2 �1]

f 2 2 1 1
l 3 1 3 1
δ1�15 1.15 1.15 1.15 1.15

11Notice that we normalized u at 1 and 2 instead of 0 and 1 to avoid the singularity at 0.
Formally this would require a corresponding change to Assumption 1 to specify this normalization
instead. It is clear, however, that there is no substantive issue involved in this change and that one
may specify whatever normalization is convenient as long as one chooses a single normalization
for an entire problem.
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EXAMPLE 1—Allocating $1 Between a Safe Asset and an Ambiguous Asset:
Consider allocating a dollar across the assets that underlie f and δ1�15. The clas-
sic simple example of a static portfolio choice problem is the decision of how to
allocate wealth between a safe asset and a purely risky asset. As is well known,
for an expected utility DM, an increase in risk aversion leads less wealth to be
invested in the risky asset. Here, however, the asset underlying f is ambiguous;
δ1�15 is a safe asset. Just as in the case of a purely risky asset, for an expected
utility DM (α= 0), an increase in risk aversion (ρ) leads less to be invested in
the ambiguous asset. Furthermore, holding risk aversion (ρ) fixed, an increase
in ambiguity aversion (α) leads less to be invested in the ambiguous asset. Ta-
ble III gives a numerical illustration of this effect when risk aversion is fixed at
ρ= 2.12

In this example, ambiguity aversion and risk aversion work in the same di-
rection. If we view the ambiguous asset as a proxy for equities, this example
suggests that if observed portfolio allocations between equities and safe assets
are rationalized by risk aversion only—ignoring ambiguity aversion and thus
implicitly assuming that α = 0—then levels of risk aversion may be overesti-
mated. Ambiguity aversion acts like extra risk aversion. Thus ambiguity aver-
sion may play a role in helping to explain the equity premium puzzle. A number
of previous papers have noted this possible role for ambiguity aversion, includ-
ing Chen and Epstein (2002), and Epstein and Wang (1994). Also, work includ-
ing Hansen, Sargent, and Tallarini (1999) has suggested that model uncertainty
plays a similar role in reinforcing risk. While the cited papers are complete dy-
namic models and we present merely a very simple static example, one reason
to think that our approach may be useful here is the separation between tastes
(ρ, α) and beliefs (µ) it provides, which allows one to be confident in doing
comparative statics where only tastes (or only beliefs) are being varied.

Our second example will show that ambiguity aversion does not always push
behavior in the same direction as increased risk aversion would for an expected
utility DM.

TABLE III

OPTIMAL AMOUNT OUT OF $1 ALLOCATED TO THE AMBIGUOUS
ASSET HOLDING RISK AVERSION AT ρ= 2

Ambiguity Aversion (α) Amount Allocated to f

0 1.31521
1 1.07809
2 0.916966
5 0.660381

20 0.418877

12The numbers may be larger than 1 due to short sales of the safe asset.
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EXAMPLE 2—Allocating $1 Between a Safe Asset, a Risky Asset, and an Am-
biguous Asset: Here we consider the allocation problem where the risky (but
unambiguous) asset that underlies l is available in addition to the ambiguous
and safe assets of the previous example. Notice that l has a higher expected
return than f . For an expected utility DM, as risk aversion increases, the agent
will want to diversify into both the safe asset and the ambiguous asset f (since
it is not perfectly correlated with l), trading off expected return against risk.
In particular, the ratio of holdings of f to l increases. On the other hand, as
ambiguity aversion increases, holding risk aversion fixed, the ambiguity about
the payoff from f drives the agent away from it as f becomes a less effective di-
versifier and less valuable. Hence the ratio of holdings of f to l decreases. Risk
aversion and ambiguity aversion are working in opposite directions in terms of
the composition of the risky part of the agent’s portfolio. Tables IV and V give
numerical illustrations of these effects.13,14

In this case, if such behavior is examined, ignoring ambiguity aversion, not
only will the amount allocated to the safe asset seem to indicate higher risk
aversion, as in the previous example, but an examination of the mix of risky
assets (ratio of holdings of f to l) would appear to reveal a lower level of risk
aversion than the agent possesses. This suggests that ambiguity may play a role
in explaining the underdiversification puzzle—the finding that the portfolios
of risky assets that individuals hold are not diversified as much as plausible
levels of risk aversion say they should be. Note that such a story relies on the

TABLE IV

OPTIMAL AMOUNT OUT OF $1 ALLOCATED TO THE RISKY (l) AND
AMBIGUOUS (f ) ASSETS AS RISK AVERSION INCREASES

ASSUMING AMBIGUITY NEUTRALITY (α= 0)

Risk Amount Amount Ratio
Aversion (ρ) Allocated to l Allocated to f f/l

0.75 4.47151 2.07989 0.46514
1.25 2.36052 1.86083 0.78831
2 1.19612 1.2136 1.0146
5 0.357606 0.444743 1.2437

20 0.0761992 0.102747 1.3484

13It is worth noting that the direction of these numerical comparative statics on the ratio of
holdings of f to l as ambiguity aversion increases is unchanged when the safe asset is elimated
from this example, when f rather than l has the higher average payoff (switch the 3’s and 2’s), or
when f and l yield the same average payoff (replace the 3’s with 2’s). However the risk aversion
result for EU is sensitive to the direction of diversification. If f and l have the same expected
return, then the ratio is constant in risk aversion under EU. If f has the higher expected return,
risk aversion in EU pushes the ratio toward l just as ambiguity aversion does, so that this case
would be similar to the first portfolio example.

14The numbers in a row may sum to more than 1 due to short sales of the safe asset.
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TABLE V

OPTIMAL AMOUNT OUT OF $1 ALLOCATED TO THE RISKY (l) AND
AMBIGUOUS (f ) ASSETS AS AMBIGUITY AVERSION INCREASES,

HOLDING RISK AVERSION AT ρ= 2

Ambiguity Amount Amount Ratio
Aversion (α) Allocated to l Allocated to f f/l

0 1.19612 1.2136 1.0146
1 1.20169 1.04758 0.87176
2 1.2052 0.922631 0.76554
5 1.21016 0.694279 0.57371

20 1.2139 0.407139 0.3354

assets that risk aversion would push one to diversify into being perceived as
more ambiguous than other assets. One example of the underdiversification
puzzle is home bias, where the assets that are not sufficiently diversified into
are those of companies geographically removed from the investor. If one hy-
pothesizes that investors are ambiguity averse and perceive more ambiguity
with increased distance, then this could generate home bias. Generation of un-
derdiversification in the context of a model uncertainty framework appears in
Uppal and Wang (2003). Epstein and Miao (2003) generates home bias in a
heterogeneous agent dynamic multiple priors setting. See also Schroder and
Skiadas (2003) for a related general framework.

7. CONCLUSION

In conclusion, we summarize the main contributions of this paper. First, it of-
fers a model that allows for a set of priors to be present in a decision problem
without necessarily implying the maxmin criterion. In doing so it generalizes
MEU to a class of less extreme decision rules while allowing a separation of
tastes and beliefs, and a full range of ambiguity attitudes (including ambigu-
ity neutrality) for any given beliefs. Second, the paper also shows how familiar
techniques from the literature on risk and risk attitude may be used to analyze
ambiguity and ambiguity attitude. Third, the paper provides a simple behav-
ioral definition of an ambiguous event. It shows that such events are identified
in an easy and natural way within the model. Finally, it offers a model that is
smooth. Rather than the minimum operator, which generates kinks, here the
model allows for smooth operators that are much easier to use in economic
applications.
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APPENDIX: PROOFS AND RELATED MATERIAL

A.1. Preliminaries

Denote by
∫
ψdϕ(π) the standard Choquet integral, i.e.,

∫
ψdϕ(π)=

∫ +∞

0
ϕ(π(ψ≥ t))dt +

∫ 0

−∞

(
1 −ϕ(π(ψ≥ t)))dt

w.r.t. the set function ϕ(π) :Σ→ [0�1] induced by a continuous and nonde-
creasing function ϕ : [0�1] → R.

LEMMA 5: Given a continuous and nondecreasing function ϕ : [0�1] → R and
a ψ ∈ B(Σ), the map

π 	→
∫
ψdϕ(π)�

from ∆ to R, is σ(∆)-measurable.

PROOF: The case ϕ(x)= x for each x ∈ [0�1] is a standard result (see, e.g.,
Aliprantis and Border (1999, p. 483)). Let ϕ : [0�1] → R be any continuous
and nondecreasing function. Given ψ ∈ B(Σ), let Iψ :∆→ R and Lψ :∆→ R

be given by Iψ(π) = ∫
ψdϕ(π) and Lψ(π) = ∫

ψdπ, respectively. Suppose
first that ψ= 1E for E ∈ Σ. In this case I1E(π)= ϕ(π(E)) and L1E (π)= π(E),
and so I1E = ϕ ◦L1E . Hence, I1E is σ(∆)-measurable since L1E is.

Now, suppose ψ is a simple Σ-measurable function. Then ψ can be written
as ψ= α0 + ∑n

i=1 αi1Ei with {αi}ni=1 ⊆ R+ and E1 ⊆ · · · ⊆ En. Hence,

Iψ(π)=
∫
ψdϕ(π)= α0 +

n∑
i=1

αiϕ(π(Ei))

= α0 +
n∑
i=1

αiI
1Ei (π)� ∀π ∈ ∆�

and so Iψ is σ(∆)-measurable since each I1Ei is.
Finally, suppose ψ is any function in B(Σ). Then there exists a sequence

{ψn}n of simple Σ-measurable functions that uniformly converge to ψ. Hence,
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limn I
ψn(π) = Iψ(π) for each π ∈ ∆ and so Iψ is σ(∆)-measurable since each

Iψn is. Q.E.D.

The lottery act lf (π) of Lemma 1 is constructed as follows: define a Borel
probability measure ρ :B → [0�1] by ρ(B) = πf(B ∩ C) for all Borel subsets
of R and set

F(x)= ρ((−∞�x]) for all x ∈ R�

Define its generalized inverse F−1 : (0�1] → R by

F−1(r)= inf{x ∈ R :F(x)≥ r} for each r ∈ (0�1]�
Since f is bounded, supp(πf )= supp(ρ) is a compact subset of R and so F−1(r)
is well defined for all r ∈ (0�1]. The desired lottery lf (π) is then given by
lf (π)(ω� r)= F−1(r) for each r ∈ (0�1] and each ω ∈Ω.

For example, consider a simple act f , that is, an act taking on a finite num-
ber of values. In this case, supp(πf ) is finite, say supp(πf )= {x1� � � � � xn}, with
x1 < · · ·< xn. It is easily seen that here lf (π) is given by

lf (π)(ω� r)= F−1(r)

=




x1� if r ∈ (0�πf (x1)],
x2� if r ∈ (πf (x1)�πf (x2)+πf(x1)],
���

���
���

xn� if r ∈
(
n−1∑
i=1

πf(xi)�

n∑
i=1

πf(xi)= 1

]

for each r ∈ (0�1] and each ω ∈Ω.

PROOF OF LEMMA 1: For each x ∈ R we have F−1(r) ≤ x if and only if
F(x)≥ r, so that

λ
({r ∈ (0�1] :F−1(r)≤ x}) = λ((0�F(x)]) = F(x)= ρ((−∞�x])�

In turn, this implies λ({r ∈ (0�1] :F−1(r) ∈ B})= ρ(B) for all B ∈ B, and so

λ
({r ∈ (0�1] :F−1(r) ∈ B}) = πf(B) for all B ∈ Bc

(see, e.g., Aliprantis and Border (1999, p. 611)). We conclude that the desired
lottery act lf (π) is given by lf (ω� r)= F−1(r) for each r ∈ (0�1] and eachω ∈Ω
(notice that F−1 is nondecreasing and so it is Riemann integrable). Q.E.D.
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A.2. Representation Theorem

We state the more comprehensive representation result mentioned right af-
ter Theorem 1 in which the assumptions are both necessary and sufficient.

THEOREM 4: Let � and �2 be two binary relations on F and F, respectively.
The following statements are equivalent:

(i) Assumptions 1, 2, and 3 hold.
(ii) There exists a continuous, strictly increasing φ :U → R, a unique count-

ably additive probability µ :σ(∆)→ [0�1], and continuous and strictly increasing
utility functions v :C → R and u :C → R such that

(a) φ= v ◦ u−1;
(b) �2 is represented by the preference functional V 2 :F → R given by

V 2(f)=
∫
∆

v(f)dµ;

(c) � is represented by the preference functional V :F → R given by

V (f )=
∫
U
φ(x)dµf =

∫
∆

φ

[∫
S

u(f )dπ

]
dµ≡ Eµφ(Eπu ◦ f )�

Moreover, v and u are unique up to positive affine transformations, and if ũ=
αu+β, α> 0, then the associated φ̃ is such that φ̃(αy+β)=φ(y), where y ∈ U .

A.3. Results on Ambiguity Attitude

PROOF OF LEMMA 2: First notice that, since both C and U are Borel sub-
sets of R, both Bc and Bu coincide with the restrictions of the Borel σ-algebra
of R on C and U , respectively. Since u is injective and Borel measurable,
each set u(B), with B ∈ Bc , belongs to Bu (see, e.g., Corollary 15.2 of Kechris
(1995)). Hence, {u(B) :B ∈ Bc} ⊆ Bu. On the other hand, let B ∈ Bu. Since u is
Borel measurable, u−1(B) ∈ Bc . Hence, B= u(u−1(B)) ∈ {u(B) :B ∈ Bc}, as de-
sired. Q.E.D.

We next state a lemma (see Theorems 88 and 91 in Hardy, Littlewood, and
Polya (1952)) useful in several proofs to follow.

LEMMA 6: Let φ :A⊆ R → R be a continuous function defined on a convex
set A. Then φ is concave (strictly concave) if and only if there exists λ ∈ (0�1)
such that, for all x� y ∈A with x �= y ,

φ(λx+ (1 − λ)y)≥ (>) λφ(x)+ (1 − λ)φ(y)�(11)
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PROOF OF PROPOSITION 1: Part (i) implies (iii): By the Jensen inequality,
φ(

∫
xdµΠ�f )≥ ∫

φ(x)dµΠ�f . Thus, φ(e(µΠ�f ))≥ ∫
φ(x)dµΠ�f , which in turn

implies δu−1(e(µΠ�f ))
�Π f by Theorem 1.

Part (iii) implies (i): SupposeΠ consists of two mutually singular probability
measures π ′ and π ′′, i.e., there is some event E with π ′(E)= 1 and π ′′(E)= 0.
Given any x� y ∈ U , let a = u−1(x) and b = u−1(y). Hence, a�b ∈ C and so
f ≡ aEb ∈ F . Then u(cf (π ′))= u(a)= x and u(cf (π ′′))= u(b)= y . Since, by
definition, µΠ has full support on Π, there is λ ∈ (0�1) such that µΠ(π ′) = λ
and µΠ(π ′′) = 1 − λ. Thus, µΠ�f (x) = λ and µΠ�f (y) = 1 − λ. By (iii) and the
representation,

φ(λx+ (1 − λ)y)≥ λφ(x)+ (1 − λ)φ(y)�(12)

so there exists λ ∈ (0�1) such that, given any x� y ∈ U , (12) holds. By Lemma 6,
φ is concave. Finally, by Assumption 4, φ is independent of the choice of Π
above.

That part (i) is equivalent to (ii) follows from the fact that φ = v ◦ u−1 and
thus v=φ ◦ u up to a positive affine transformation. Q.E.D.

PROOF OF THEOREM 2: The “if” part follows easily from the Jensen in-
equality.

As to the “only if” part, we first show that A and B share the same vN–M
utility function u. Let L∗ be the set of all lottery acts that are step functions
of the form

∑n

i=1 xi1(ri−1�ri], with r0 = 0, rn = 1, xi ∈ C for each i= 1� � � � � n, and
x1 < · · ·< xn. Such lottery acts are in one-to-one correspondence with simple
probability measures p on C, i.e., measures such that p(A)= 1 for some finite
set A⊆ C. In fact, each such p induces a unique lp ∈L∗ given by

lp(ω� r)=




x1� if r ∈ (0�p(x1)],
x2� if r ∈ (

p(x1)�p(x2)+p(x1)
]
,

���
���

���

xn� if r ∈
(
n−1∑
i=1

p(xi)�

n∑
i=1

p(xi)= 1

]
,

where {x1� � � � � xn} is the support of p, with x1 < · · ·< xn. On the other hand,
each l ∈ L∗ induces a unique simple probability measure pl on C with support
{x1� � � � � xn} given by p(xi)= λ(l−1(xi)) for each i= 1� � � � � n.

Let P be the set of all simple probability measures on C. Define �A
Π on P by

p�A
Π q ⇐⇒ lp �A

Π lq�(13)

In a similar way, define �B
Π on P . Both �A

Π and �B
Π are well defined by what

was just observed. Moreover, defineUA :P → R byUA(p)= ∑
x∈supp(p) uA(x)×
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p(x), where uA is the vN–M utility index given by Assumption 1. In a similar
way, define UB :P → R.

Clearly, UA(p) = ∫
(0�1] u(lp(r))dr for all p ∈ P , and so Assumption 1

and (13) imply that p�A
Π q if and only if UA(p)≥UA(q) for all p�q ∈P .

Let l� l′ ∈L∗. By (7),

l �A
Π l

′ �⇒ l �B
Π l

′�

Hence, for all p�q ∈P ,

p�A
Π q �⇒ p�B

Π q�

Since UA and UB are nonconstant affine functionals on P , by Corollary B.3
of Ghirardato, Maccheroni, and Marinacci (2004) there exist α > 0 and β ∈ R

such that UA = αUB +β. Hence, uA = αuB +β. Along with the normalization
uA(0)= uB(0)= 0 and uA(1)= uB(1)= 1, this implies uA = uB, as desired.

Set u = uA = uB and h(x) = (φA ◦φ−1
B )(x) for all x ∈ U . The function h is

clearly strictly increasing. Moreover, since (φ−1
A ◦φA)(x)= x= (φ−1

B ◦φB)(x)
for all x ∈ U , we have φA = h ◦φB. We want to show that h is concave if and
only if A is more ambiguity averse than B.

By Definition 5,
∫
φA dµf ≥ φA(u(x)) implies

∫
φB dµf ≥ φB(u(x)) for all

f ∈ F and x ∈ C. Since U is an interval, given any f ∈ F there exists xf ∈ C
such that

∫
φA dµf = φA(u(xf )). Hence, f ∼1 δxf and so, by (7),

∫
φB dµf ≥

φB(u(xf )). In turn this implies that, for all f ∈F ,

φ−1
B

(∫
φB dµf

)
≥φ−1

A

(∫
φA dµf

)

and so

h

(∫
φB dµf

)
≥

∫
φA dµf =

∫
(h ◦φB)dµf �(14)

Let φB(x)�φB(y) ∈ φB(U). By proceeding as in the proof of Proposition 1,
there is a set Π, an act f , and a λ ∈ (0�1) such that µΠ�f (x)= λ and µΠ�f (y)=
1 − λ. Hence, (14) reduces to

h
(
λφ(x)+ (1 − λ)φ(y)) ≥ λh(φ(x))+ (1 − λ)h(φ(y))�

Since φB(U) is an interval, by Lemma 6 we conclude that h is concave.
Q.E.D.

PROOF OF PROPOSITION 2: Without loss of generality, assume that U =
[0�1]. Let k ∈ (0�1) and set Uk = [0�1−k]. Let Ck ⊆ C be such that u(Ck)= Uk
and consider

Fk = {f ∈F : f (s) ∈ Ck for each s ∈ S}�
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Define �k
Π on Fk as f �k

Π g if and only if

∫
φk

(∫
u(f (s))dπ

)
dµΠ ≥

∫
φk

(∫
u(g(s))dπ

)
dµΠ�

where φk(x) = φ(x + k) for each x ∈ Uk. For any f ∈ Fk, l ∈ L ∩ Fk and
corresponding f ′ and l′ as in Definition 6, we have

f �k
Π l ⇐⇒

∫
φk

(∫
u(f (s))dπ

)
dµΠ ≥φk

(∫
(0�1]

u(l(r))dr

)

⇐⇒
∫
φ

(∫ (
u(f (s))+ k)

dπ

)
dµΠ

≥φ
(∫

(0�1]

(
u(l(r))+ k)

dr

)

⇐⇒
∫
φ

(∫
u(f ′(s))dπ

)
dµΠ ≥φ

(∫
(0�1]

u(l′(r))dr
)

⇐⇒ f ′ �Π l
′ ⇐⇒ f �Π l�

where the last equivalence follows from Definition 6. Hence, �k is as ambiguity
averse as � when restricted to Fk. By Theorem 2, there exist a(k) > 0 and
b(k) ∈ R such that, for all x ∈ [0�1 − k],

φ(x+ k)=φk(x)= a(k)φ(x)+ b(k)�(15)

Since k was arbitrary, we conclude that the functional equation (15) holds
for all k ∈ (0�1) and all x ∈ (0�1) such that x + k ≤ 1. This is a variation of
Cauchy’s functional equation (see p. 150 of Aczel (1966)), and its only strictly
increasing solutions are (up to positive affine transformations) φ(x) = x or
φ(x)= − 1

α
e−αx, α �= 0. Q.E.D.

PROOF OF PROPOSITION 3: We begin with a couple of lemmas. The first one
is proved in Maccheroni, Marinacci, and Rustichini (2004), and is a variation
on a result of Donsker and Varadhan (see, e.g., Proposition 1.4.1 of Dupuis
and Ellis (1997)).

LEMMA 7: Given any bounded σ(∆)-measurable function ψ :∆→ R and any
finitely additive probability measure η on σ(∆), we have

lim
n→+∞

−1
n

log
∫
∆

e−nψ dη= ess infψ�
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Observe that, if we set φn(x)= −e−nx for all x ∈ψ(∆), we can write

φ−1
n

(∫
∆

φn(ψ)dη

)
= −1

n
log

∫
∆

e−nψ dη�

where φ−1
n (x) = −(1/n) log(−x) for all x ∈ φn(ψ(∆)) ⊆ (−∞�0). Next we

generalize Lemma 7 to general sequences of functions φn.

LEMMA 8: Let ψ be a bounded σ(∆)-measurable function ψ :∆→ R and let
η be a finitely additive probability measure on σ(∆). Suppose {φn}n is a sequence
of real-valued functions φn : I → R defined on an interval I of R with Arrow–
Pratt coefficients αn : I → R such that limn→∞(infx∈I αn(x))= +∞ and αn(x) ≤
αn+1(x) for each x ∈ I and each n. Then

lim
n→+∞

φ−1
n

(∫
∆

φn(ψ)dη

)
= ess infψ�(16)

PROOF: Given any strictly increasing function χ : I → R, we have
∫
∆
χ(ψ)×

dη≥ χ(ess infψ) and so

χ−1

(∫
∆

χ(ψ)dη

)
≥ ess infψ�(17)

Now let χ1 : I → R and χ2 : I → R be any two concave and strictly increasing
functions with Arrow–Pratt coefficients α1 and α2 such that α1(x)≥ α2(x) for
each x ∈ I. Since I is an interval and α1 ≥ α2, by Theorem 1 of Pratt (1964) the
function (χ1 ◦χ−1

2 )(t) is concave in t. Hence, by the Jensen inequality,∫
∆

χ1(ψ)dη=
∫
∆

(χ1 ◦χ−1
2 ◦χ2)(ψ)dη=

∫
∆

(χ1 ◦χ−1
2 )(χ2(ψ))dη

≤ (χ1 ◦χ−1
2 )

(∫
∆

χ2(ψ)dη

)
�

so that, being χ1 strictly increasing,

χ−1
1

(∫
∆

χ1(ψ)dη

)
≤ χ−1

2

(∫
∆

χ2(ψ)dη

)
�(18)

In particular, given any m and n with m> n, (18) implies

φ−1
m

(∫
∆

φm(ψ)dη

)
≤φ−1

n

(∫
∆

φn(ψ)dη

)
�(19)

Hence, limn→+∞φ−1
n (

∫
∆
φn(ψ)dη) exists.
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By (17) with χ(x) = −e−nx, we have − 1
n

log
∫
∆
e−nψ dη ≥ ess infψ for each

n≥ 1. Hence, given any ε > 0, by Lemma 7 there is nε ≥ 1 such that

− 1
nε

log
∫
∆

exp(−nεψ)dη− ess infψ≤ ε�

Since limn→∞(infx∈U αn(x))= +∞, there exists nε ≥ 1 such that infx∈U αn(x)≥ nε
for each n ≥ nε. Hence, if n ≥ nε, the Arrow–Pratt coefficient αn of each φn
is larger than nε, which is the Arrow–Pratt coefficient of −exp(−nεx). As a
result, (18) implies

φ−1
n

(∫
∆

φn(ψ)dη

)
≤ − 1

nε
log

∫
∆

exp(−nεψ)dη� ∀n≥ nε�

and so

φ−1
n

(∫
∆

φn(ψ)dη

)
− ess infψ

≤ − 1
nε

log
∫
∆

exp(−nεψ)dη− ess infψ≤ ε� ∀n≥ nε�

Since ε was arbitrary, this implies

lim
n→+∞

φ−1
n

(∫
∆

φn(ψ)dη

)
≤ ess infψ�

On the other hand, since each φn : I → R is strictly increasing, by (17) we
have φ−1

n (
∫
∆
φn(ψ)dη) ≥ ess infψ for each n ≥ 1 and we conclude that (16)

holds. Q.E.D.

We can now prove Proposition 3. Let �An
Π be the orderings on F that

share the same measures µΠ . Since, for all n, An+1 is more ambiguity averse
thanAn, Theorem 2 implies that all the �An

Π share the same vN–M utility func-
tion u. Given f�g ∈ F , set F(π)= ∫

u(f )dπ and G(π)= ∫
u(g)dπ for each

π ∈ ∆. Since u(f ), u(g) are in B(Σ), by Lemma 5 both F and G are bounded
σ(∆)-measurable functions. Suppose that, for some n0, f �An

Π g for each
n≥ n0. Set φn =φAn . By Theorem 1,∫

∆

φn(F(π))dµΠ ≥
∫
∆

φn(G(π))dµΠ� ∀n≥ n0

and so

φ−1
n

(∫
∆

φn(F(π))dµΠ

)
≥φ−1

n

(∫
∆

φn(G(π))dµΠ

)
� ∀n≥ n0�
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Since U is an interval, we can apply Lemma 8 and so we have ess infΠ F ≥
ess infΠ G, as desired.

To complete the proof, suppose ess infΠ F > ess infΠ G. By Lemma 8, there
exists n0 large enough so that, for all n≥ n0,∣∣∣∣φ−1

n

(∫
∆

φn(G(π))dµΠ

)
− ess infΠ G

∣∣∣∣< ess infΠ F − ess infΠ G
2

�

Hence, since φ−1
n (

∫
∆
φn(F(π))dµΠ)≥ ess infΠ F ,

φ−1
n

(∫
∆

φn(F(π))dµΠ

)

>φ−1
n

(∫
∆

φn(G(π))dµΠ

)
� for all n≥ n0�

which in turn implies f �An
Π g for all n≥ n0. Q.E.D.

PROOF OF LEMMA 3: Suppose f is upper semicontinuous. As u is contin-
uous, then u(f ) as well is upper semicontinuous. Then the map π → Eπu(f )
is upper semicontinuous in the vague topology of ∆ (see, e.g., Theorem 14.5
in Aliprantis and Border (1999)). Clearly, µ(Eπu(f ) ≥ ess infΠ Eπu(f )) = 1.
Since the map π → Eπu(f ) is upper semicontinuous, the set (Eπu(f ) ≥
ess infΠ Eπu(f )) is closed in ∆ and so by the definition of support we have
Π ⊆ (Eπu(f ) ≥ ess infΠ Eπu(f )). Hence, infΠ Eπu(f ) ≥ ess infΠ Eπu(f ). On
the other hand, µ(Eπu(f ) < infΠ Eπu(f )) ≤ µ(Πc) = 0 and so, by the de-
finition of ess infΠ Eπu(f ), infΠ Eπu(f ) ≤ ess infΠ Eπu(f ). We conclude that
infΠ Eπu(f )= ess infΠ Eπu(f ), as desired.

Finally, if f is continuous and Π is compact, then the map π → Eπu(f ) is
continuous on a compact set and so by the Weierstrass theorem it attains a
minimum on Π. Q.E.D.

PROOF OF PROPOSITION 4: To prove part 1, apply Proposition 1 and its ana-
logue for smooth ambiguity love, and note that φ both concave and convex
is equivalent to φ linear. Now turn to the proof of part 2, where φ strictly
concave on an open interval J ⊆ U implies φ(

∫
xdµΠ�f ) >

∫
φ(x)dµΠ�f for all

µΠ�f with nonsingleton supp(µΠ�f )⊆ J by the strict version of Jensen’s inequal-
ity. Thus φ(e(µΠ�f )) >

∫
φ(x)dµΠ�f , which in turn implies δu−1(e(µΠ))

�Π f for
all (f�Π) with nonsingleton supp(µΠ�f ) ⊆ J by Theorem 1. The reverse di-
rection follows directly from the argument in the proof of Proposition 1 that
smooth ambiguity aversion implies concavity of φ with the weak inequali-
ties replaced by strict and attention limited to x� y ∈ J ⊆ U . Part 3 follows
exactly as 2 with concavity replaced by convexity, inequalities reversed, and
x� y ∈K ⊆ U . Q.E.D.
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PROOF OF LEMMA 4: Suppose φ :U → R is twice continuously differen-
tiable and is not linear. There exists x0 ∈ U such that φ′′(x0) �= 0. Suppose
per contra that φ′′(x) = 0 for all x ∈ U . Then φ′(x) = k ∈ R for all x ∈ U .
Hence, φ(x) = kx + c for some k� c ∈ R, a contradiction. We conclude that
there is x0 ∈ U such that φ′′(x0) �= 0. Since φ′′ is continuous, there exists an in-
terval (α�β)⊆ U , with x0 ∈ [α�β], such thatφ′′(x)φ′′(x0) > 0 for all x ∈ (α�β),
which implies the desired conclusion. Q.E.D.

A.4. Results on Ambiguity

PROOF OF PROPOSITION 5: Suppose (9) holds. Let E be such that xEy �
xBy . By Theorem 1, V (xBy)=φ(u(x)β+ u(y)(1 −β)), where β= π(B) for
all π ∈Π. Since φ(u(y))≤ V (xEy)≤φ(u(x)), by the continuity of φ there is
β∗ ≥ β such that

φ
(
u(x)β∗ + u(y)(1 −β∗)

) = V (xEy)�(20)

Since λ is nonatomic, there is {Ω} × B1 � B∗ ⊇ B such that π(B∗) = β∗ for
all π ∈Π. Hence, by (20) and by Theorem 1, xEy ∼ xB∗y . By (9), this implies
that yEx∼ yB∗x. Whereasφ is strictly increasing,φ(u(x)(1−β∗)+u(y)β∗) <
φ(u(x)(1 − β) + u(y)β) and so, by Theorem 1, yB∗x ≺ yBx. Hence, yEx ≺
yBx and we conclude that

xEy � xBy �⇒ yEx≺ yBx�
A similar argument proves the converse implication and so

xEy � xBy ⇐⇒ yEx≺ yBx�
Finally, again a similar argument shows that

xEy ≺ xBy ⇐⇒ yEx� yBx�
as desired. This completes the proof because the “only if” part is trivial.

Q.E.D.

PROOF OF THEOREM 3: By assumption, � satisfies the conditions in Theo-
rem 1 and so the representation there applies. Fix an eventE ∈ Σ. Suppose that
E is ambiguous. This means that there exists an event B ∈ {Ω}×B1 and x� y ∈ C
with δx � δy such that either [xEy � xBy and yEx� yBx] or [xEy ≺ xBy and
yEx� yBx] or [xEy ∼ xBy and yEx� yBx]. Let β denote π(B) (which is the
same for all π ∈ ∆). If π(E) were equal to some fixed α ∈ [0�1] for µ-almost-all
π, then, by the representation, for all w�z ∈ C,

wEz �wBz ⇐⇒ αu(w)+ (1 − α)u(z)≥ βu(w)+ (1 −β)u(z)�
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However, this makes it impossible for E to be ambiguous. Therefore π(E)
must vary across ∆. Specifically, if γ = ∫

∆
π(E)dµ, then there exist µ-nonnull

sets Π′ ∈ σ(∆) and Π′′ ∈ σ(∆) such that π(E) < γ for π ∈Π′ and π(E) > γ
for π ∈Π′′, and the first claim in the theorem is proved.

Next, suppose that � are not smoothly ambiguity neutral, Assumptions
4 and 5 hold and E is unambiguous. Proposition 4 implies that φ is strictly con-
cave (or strictly convex) on a nonempty open interval (u1�u2)⊆ U . Fix k� l ∈ U
such that u1 <k< l < u2. Let γ = ∫

∆
π(E)dµ�One can think of γ as the DM’s

“expected” probability of the event E. According to our representation of pref-
erences, the following equalities are true:

V
(
u−1(l){Ω} × (0�γ]u−1(k)

) =φ(γl+ (1 − γ)k)�
V

(
u−1(l)Eu−1(k)

) =
∫
∆

φ
(
π(E)l+ (1 −π(E))k)

dµ�

V
(
u−1(k){Ω} × (0�γ]u−1(l)

) =φ(γk+ (1 − γ)l)�
V

(
u−1(k)Eu−1(l)

) =
∫
∆

φ
(
π(E)k+ (1 −π(E))l)dµ�

Since φ is strictly concave (the strictly convex case follows similarly) on the
interval [k� l], Jensen’s inequality (and the definition of γ) implies that

V
(
u−1(l)Eu−1(k)

) ≤ V (
u−1(l){Ω} × (0�γ]u−1(k)

)
and

V
(
u−1(k)Eu−1(l)

) ≤ V (
u−1(k){Ω} × (0�γ]u−1(l)

)
with both inequalities strict if it is not the case that π(E) takes on the same
value everywhere (specifically, π(E) = γ for µ-almost-all π). Suppose that
both inequalities are indeed strict. This says that

u−1(l)Eu−1(k)≺ u−1(l){Ω} × (0�γ]u−1(k)

and

u−1(k)Eu−1(l)≺ u−1(k){Ω} × (0�γ]u−1(l)�

implying that E is ambiguous, a contradiction. Therefore, it must be that
π(E) = γ µ-almost-everywhere and the second claim in the theorem is
proved. Q.E.D.
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