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OVERVIEW 
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1) Random samples and random sampling 

2) Sample statistics and their properties 

3) The sample mean: mean, variance, and its distribution 

4) Location-scale family and their properties 

5) The case of unknown variance: t-Student distribution 

6) Properties of the t-Student 



RANDOM SAMPLES: “IIDNESS” 
• Often, data collected in an experiment consist of several 

observations on a variable of interest 
– Example:  daily stock prices between 1974 and 2012 

• In statistics it is often useful to think of such samples as the 
result of random sampling 

• Definition [RANDOM SAMPLING]: The random variables X1, ..., 
Xn are called a random sample of size n from the population f(x) 
if X1, ..., Xn are mutually independent random variables and the 
marginal pdf or pmf of each Xi is the same function, f(x) 
– X1, ... , Xn are called independent and identically distributed random 

variables with pdf or pmf f(x), IID random variables 
– Pdf = probability density function; pfm = probability mass function 

(in the case of discrete RVs) 
– Each of the X1, ... , Xn have the same marginal distribution f(x) 
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RANDOM SAMPLES: “IIDNESS” 
– The observations are obtained in such a way that the value of one 

observation has no effect on or relationship with any of the other 
observations: X1, ..., Xn are mutually independent  

– Because of this property, the joint pdf or pmf of X1, ... , Xn is: 
 

 where f(xi; ) is the pdf/pfm and  is a vector of parameters that 
enter the functional expression of the distribution 

• E.g., f(xi; ) = (1/[2π]1/2)exp(-x2), the standardized normal distribution 
– Soon our problem will be that  is unknown and must be estimated  
– Example 1: Suppose f(xi; ) = (1/θ)exp(- xi/θ), an exponential 

distribution parameterized by . Therefore  
 

• While in infinite samples the definition always holds, in finite 
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SAMPLE STATISTICS 
 samples, conditions must be imposed—for instance, repla-

cement of draws (“simple random sampling”) must be 
applied 
– In finance, most of what we think of, assumes that infinitely-sized 

samples are obtainable 
• When a sample X1, ..., Xn is drawn, some summary of the 

values is usually computed; any well-defined summary may 
be expressed as a function T(X1, ..., Xn) whose domain 
includes the sample space of the random vector (X1, ..., Xn) 
– The function T may be real-valued or vector-valued; thus the 

summary is a random variable (or vector), Y = T(X1, ..., Xn)  
– Because the sample X1 ,... , Xn has a simple probabilistic structure 

(because the Xis are IID), the (sampling) distribution of Y is tractable 
– T(X1, ..., Xn) is also called a sample statistic 
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SAMPLE STATISTICS 
– Two important properties of functions of a random sample are: 

 
 
 
 
 
 
 

– Most of what you think Statistics is, is in fact about sample statistics: 
the max value of a sample; the minimum value of a sample; the mean 
of a sample; the median of a sample; the variance of a sample, etc. 

• Three statistics provide good summaries of the sample: 
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PROPERTIES OF SAMPLE STATISTICS 
 
 
 
 

• Key result 1: Let X1,... ,Xn be a simple random sample from a 
population with mean  and variance 2 < . Then 
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Important  to make 
it unbiased 



PROPERTIES OF THE SAMPLE MEAN 
– These are just results concerning moments, what about the 

distribution of  sums of IID samples? 
– As X1,... ,Xn are IID, then Y = (X1 + X2 + ... + Xn) (i.e., the sum variable) 

has a pdf/pfm that is equal to  P(X1  x1, X2  x2, ..., Xn  xn) = P(X1  
x1)P(X2  x2) ...P(Xn  xn) = f(x1)f(x2) ...f(xn)  

– Thus, a result about the pdf of Y is easily transformed into a result 
about the pdf of  

– However, this stops here:  unless specific assumptions are made 
about f(X) in the first instance, if n is finite, then we know nothing 
about the distribution of  

– A similar property holds for moment generating fncts (mgfs) 
• Definition [MGF]: The mgf of a random variable X is the 

transformation:  
 and it’s useful for math tractability as E[Xk] = dkMX(s)/dXk 
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PROPERTIES OF THE SAMPLE MEAN 
– Because of the assumption of IIDness, then the following holds with 

reference to the sample mean: 
 
 
 
 
 
 

• This is fundamental: if you know Mx(s), then you know the 
MGF of the sample mean. In particular, if  
 

 then 
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PROPERTIES OF THE SAMPLE MEAN 
• Key result 2: Let X1,... ,Xn be a simple random sample from a 

normal population with mean  and variance 2 < , N(, 2), 
then 
 

• Another useful result concerns the so-called location-scale 
family, often used in financial applications 

• Definition [LOCATION-SCALE FAMILY]: Let X1,... ,Xn be a 
random sample from a population with mean  and variance 
2 < . Then Xi is location-scale if f(Xi) = (1/)f((Xi - )/)), i.e., 
the pdf/pfm of the standardized (Xi - )/ scales up to the 
pdf/pfm of Xi. 
– Xi  N (, 2) is clearly location-scale as f(Xi) = (1/), where  is a 

N(0, 1) pdf; in fact, if we set Zi = (Xi - )/, then Xi =  + Zi 
• Key result 3: Let X1,... ,Xn be a simple random sample from a 
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PROPERTIES OF SAMPLE MEAN AND VARIANCE 
 a location-scale family with mean  and variance 2 < . Then if 

g(Z) is the distribution of the sample mean of Z1, ... , Zn, then  
 

– Moreover, note that 
 

• Result 2 is usefully integrated by two additional properties 
that are useful in financial econometrics under normality:  
– (i) the sample mean and the sample variance (       and S2

n) are 
independent;  

– (ii) the [(n-1) S2
n/2] of the sample variance has a chi-squared 

distribution with n-1 degrees of freedom 
• The chi-square distribution will play a fundamental role in your 

studies; its density (for a generic X  2
p) is: 
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PROPERTIES OF SAMPLE MEAN AND VARIANCE 
 

– () is the gamma function that can be computed recursively 
– Two properties of the chi-square are of frequent use: 
 If Y is a N(0, 1) random variable, then Y2  2

1, E[2
p] = p, Var[2

p] = 2p 
 If X1,... ,Xn are independent and Xi  2

pi then Xp1 + Xp2 + ... Xpn   
2

p1+p2+ ... +pn that is, independent chi squared variables add to a chi-
squared variable, and degrees of freedom add up 

• These distributional results are just a first step even under the 
assumption of normality: we have assumed that the variance 
of the population X1,... ,Xn is known 

• In reality: most of the time the variance will be unknown and 
will have to be estimated jointly with the mean 
– How? Obvious idea, let’s try and use S2 
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THE CASE OF UNKNOWN VARIANCE 
– Here one very old result established by Gosset, who wrote under the 

pseudonym of “Student” is that  
 
 

 where tn-1 indicates a new, special distribution, the t-Student with n-1 
degrees of freedom 

• This derives from 
 
 

 where  the distributions at the numerator and denominator are 
independent and the denominator derives from [(n-1) S2

n/2]  2
n-1  

S2
n/2   2

n-1/(n-1) 

• Definition [t-Student distribution]: Let X1,... ,Xn be a random 
sample from a N(,2) distribution. Then (      - )/(S/) has a 
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THE CASE OF UNKNOWN VARIANCE 
 Student's t distribution with n - 1 degrees of freedom and 

density 
 
– Student's t has no mgf because it does not have moments of all 

orders  
– If there are p degrees of freedom, then there are only p- 1 moments: 

hence, a t1 has no mean, a t2 has no variance, etc.  
– The problem set makes you check that if Tp is a random variable with 

a tp distribution, then E[Tp] = 0, if p > 1, and Var[Tp] = p/(p-2) if p > 2 
• One exercise in your problem set, also derives another useful 

characterization 
• Key result 4: If T  tp, then 
 In words, when p, a t-Student becomes a standard normal 

distribution 
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USEFUL NOTIONS REVIEWED IN THIS LECTURE 
Let me give you a list to follow up to: 
• What is a random sample and what it means to be IID 
• What is a sample statistic and how it maps into useful objects 

in finance and economics 
• Sample means, variances, and standard deviations and their 

properties 
• The moment generating function 
• The chi-square distribution and its moments 
• The t-Student distribution and its properties 
• Relationship between t-Student and normal distribution 
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