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Time Series

= A time series consists of a sequence of random variables, y,, y,, ...,

y+ also known as a stochastic process {y, }{; , of which we only
observe the empirical realizations

0 An observed time series {y,}!_; (technically, a sub-sequence because
limited to a flnlte sample) of the realized values of a family of random
variables {Y;}/2° ., defined on an appropriate probability space

0 See difference between sample ({y,};-) and population ({Y;}{2° s

= A time series model for the observations {y;}!_, is a specification of

the joint distribution of the set of random variables of which the
sampled data are a realization

0 We often exploit the linearity of the process to specify only the first-
and second-order moments of the joint distribution, i.e., the mean,
variances and covariances of {V; }/2°
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Linear Processes

Definition

(Linear process) A time series {yt} is said to be a linear process if

it has the representation

-’Vt :/J-|— Z¢}'Zf—j"

J==0

for all 7 , where u is a constant, {gbj} is a sequence of constant co-

oD

efficients where ¢ =1 andz |9, [< o, and{z{} is a sequence

j” =00

of independent and identically distributed (IID) random variables
with a defined distribution function. In particular, we assume that

the distribution of 2z, is continuous, with E[z{]:0 and

Var(zt):o'j. Noticeably, if O'EZQ.Z <oo, then ), is weakly sta-
=1

tionary, with the meaning that we shall see below.

= [fatime series process is linear, modelling its conditional mean
and variance is sufficient in a mean-squared error sense
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Strict Stationarity

= To use past realizations of a variable of interest to forecast its
future values, it is necessary for the stochastic process that has
originated the observations to be stationary

= Loosely speaking, a process is said to be stationary if its statistical
properties do not change over time

Definition

(Strict stationarity) A process is strictly stationary if the joint
distribution of the variable associated to any sub-sequence of

times ¢ ,t,,..,t is the same as the joint distribution of the se-

quence of all times ¢, ,t, ,.,t , (where k is an arbitrary time

shift). In other words, a strictly stationary time series {yt} has

the following properties:

* therandom variables y, are identically distributed;

* the two random vectors [yf,ymf]' and [yl,y1+k]'have the

same joint distribution for any 7 and £ .
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Weak (Covariance) Stationarity

* [n many applications, a weaker form of stationarity generally
provides a useful sufficient condition

Definition

(Autocovariance function)  y, = E|:()/r —H, )(/Vr_h —H, )} Vh, with |y, | <.

(Weak stationarity) A stochastic process { yf} is weakly

stationary (or, alternatively, covariance stationary) if it has time
invariant first and second moments, i.e., if for any choice of
t =1,2,..,%, the following conditions hold:

/Jy EE(/VIL), with |/,ly | <0

ot =E[(y,~ 1, ) v, ~4,) |=E| (v, -n, ) | <

where A = ..., -3, -2, -1,1, 2,3, ....

" pn = Yr/Yo (Where y, is the variance) is called autocorrelation function

(ACF),

for h=..,-2,-1,1, 2, ...

O Often more meaningful than ACVF because it is expressed as pure
numbers that fall in [-1, 1]
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An Example of Stationary Series

AR(1) Simulated Data

0 WW |" b 4*’(“

AR(1) Simulated Data vs.
Random Walk Simulated Data

Panel (a) Panel (b)
= Atime series generated by a stationary process fluctuates around a
constant mean, because its memory of past shocks decays over time

0 The data plotted in panel (a) are 1,000 realizations of a first-order
autoregressive (henceforth, AR) process of the type y; = ¢y +

¢1yt—1 + €, with ¢0 = 0 and ¢1 = (0.2
O In panel (b) we have a nonstationary random walk, y; = y,_; + €

O We shall describe these models later
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White Noise Process

= A fundamental class of stationary processes is the fundamental
building block of all (covariance) stationary processes: white noise

(White Noise) A white noise (WN) process is a sequence of
random variables {Z{} with mean equal to zero, constant variance

Definition

equal to o, and zero autocovariances (and autocorrelations) ex-

cept at lag zero. If {z f} is normally distributed, we shall speak of a

Gaussian white noise.

Gaussian White Noise Data
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Sample Autocorrelation Function

= Stationary AR and white noise processes may sometimes be hard to
tell apart — what tools are available to identify them?

* The sample ACF reflects important information about the linear
dependence of a series at different times

Definition (Sample autocorrelations) Given a sample of 7' observations of
the variable y_, y,,r,,... ¥, the estimated or sample autocorre-

lation function p, (where / is a positive integer) is computed as
T
2 (y-a)r,-a)

- ,
Z(yr_'&)z o

T
where /I is the sample mean computed as =7 Zyr :

t=1

= If {Y;}{2° o is an i.i.d. process with finite variance, then for a large
sample, the estimated autocorrelations will be asymptotically

normally distributed with mean zero and variance 1/T
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Sample Autocorrelation Function

O

O
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U (AR coefficient = 0.2, mean = 0) ]

0.50 0.50 4
0.25 4
L oo —
-0.25 - Autocorrelation of Random Walk

Simulated Data (Drift=0)
-0-50 T | T T T T | T T T T | T T T T | T T T T -0-50 T T T T | T T T T | T T T T | T T T T | T T T T
5 10 15 20 5 10 15 20
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The dashed lines correspond to approximate (asymptotic) 95%
confidence intervals built as +1.96/+/T

The SACF in panel (a) shows that a stationary process quickly
“forgets” information from a distant past

The theoretical ACF for a random walk process shall be exactly one at
all lags but because SACF is a downward biased estimates of the true

and unobserved ACF the sample coefficients are less than 1
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Ljung-Box Test for SACF

= [tis also possible to jointly test whether several (say, M ) con-
secutive autocorrelation coefficients are equal to zero:
Ho:p1=pp==py =0 vs.Hy:Isomejs.t.p;j #0

= Box and Pierce (1970) and
Ljung and Box (1978) deve-
loped a well-known port-

~

Q*(M)=T(T +2)Y e

2

h
h

2

MZM

manteau test based on the Q- or LB-statistic

Serial Correlation Structure of Qimulated AR(1) Data ] Serial Correlation Structure of Simulated White Noise Data ]
Autocorrelation Partial Correlation AC PAC Q-Stat Prob Autocorrelation Partial Correlation AC PAC Q-Stat Prob P'I‘l]b
I '. 1 0.168 0.168 28.433 0.000 lll 1] 1 0.022 0.022 0.4673 0.494 —
I 11 2 0.039 0.010 29.925 0.000 i I 2 -0.010 -0.010 0.5598 0.756
PI"D]J il i 3 0.006 -0.002 29.961 0.000 1] ] 3 0.051 0.0513.1776 0.365 ﬂ 494
I I|I 4 0.006 0.005 29.997 0.000 III i 4 0.027 0.0253.9294 0.416 .
] 11 5 0.025 0.0;4-30‘.’6’46 0.000 [ [l 5 -0.056 -0.056 7.1017 0.213
1! ”l 6 0.015--U.007 30.873 0.000 il 1l 6 0.033 0.034 8.2260 0.222 0.756
0.000 a [ |-7700045 -0.052 32.956 0.000 ! 0L 7 0.004 -0.001 8.2428 0.312%_
. 1 | 8 -0.018 -0.003 33.282 0.000 I ] 8 0.006 0.0118.2735 0.407 GSEE
mo "'1" 9 0.018 0.024 33.594 0.000 Il il 9 -0.011 -0.012 8.4026 0.494
0.000 ] (O ih 10 0.020 0.013 34.001 0.000 1 ih 10 0.028 0.0249.2163 0.512 ~0.416
| [ i 11 0.023 0.016 34.531 0.000 ] I 11 -0.033 -0.032 10.308 0.503
0.000 | - ull i 12 0.032 0.028 35.566 0.000 i i 12 -0.051 -0.050 12.961 0.372 0.213
,,,,,,, il i 13 0.014 0.005 35.764 0.001 1 (] 13 -0.031 -0.031 13.937 0.378
0.000 t+ ] 1] 14 0.045 0.038 37.802 0.001 I 1 14 0.008 0.008 13.996 0.450 0222
i III 15 -0.005 -0.022 37.828 0.001 g 1] 15 0.059 0.069 17.483 0.291
0.000 Il i 16 -0.001 0.002 37.829 0.002 I 1! 16 0.010 0.008 17.584 0.349 0.312
Il I 17 -0.001 -0.000 37.829 0.003 1 1] 17 -0.013 -0.015 17.752 0.405 '
0.000 il 11 18 0.040 0.042 39.502 0.002 1 1 18 0.020 0.013 18.143 0.446 0.407
n i 19 0.029 0.016 40.336 0.003 I ] 19 0.014 0.013 18.333 0.500 '
0.000 1] 1] 20 0.059 0.051 43.884 0.002 ' 1| 20 0.051 0.059 21.024 0.396 0.494
Il il 21 -0.001 -0.018 43.884 0.002 1 1]l 21 -0.009 -0.014 21.100 0.453 .
'D'DUI] | T 22 -0.094 -0.099 52.881 0.000 l:l i1 22 -0.037 -0.041 22.539 0.428
1 Il 23 -0.028 -0.001 53.672 0.000 g1 11 23 -0.033 -0.039 23.667 0.422
0.000 1 ]! 24 0.038 0.046 55.161 0.000 (] i 24 -0.037 -0.042 25.038 0.404 11
Panel (a) Panel M




Sample Partial Autocorrelation Function

* The partial autocorrelation between y; and y;_; is the
autocorrelation between the two random variables in the time
series, conditional on y;_1, V¢_o, ..o, Vi—n41

* Or, the ACF measured after netting out the portion of the variability
linearly explained already by the lags between y;_; and y;_j,q€

O The sample estimate of the partial autocorrelation at lag h is obtained
as the ordinary least square estimator of | ¢, | in an autoregressive

model: Ve = ¢Po+ P1YVi—1 + P2Ve—2 TF OpYe—n + €

Serial Correlation Structure OF Simulated AR(1) Data ] Serial Correlation Structure oﬂSimulated White Noise Datzﬁ

Autocorrelation Partial Correlation AC PAC Q-Stat Prob Autocorrelation Partial Correlation AC PAC Q-Stat Prob
([ ([m 1 0.168 0.168 28.433 0.000 Al Ir 1 0.022 0.022 0.4673 0.494
il il 2 0.039 0.010 29.925 0.000 i 1 2 -0.010 -0.010 0.5598 0.756
1 I 3 0.006 -0.002 29.961 0.000 ] [ 3 0.051 0.0513.1776 0.365
1 I 4 0.006 0.00529.997 0.000 Al III 4 0.027 0.025 3.9294 0.416
1] 11 5 0.025 0.024 30.646 0.000 il (il 5 -0.056 -0.056 7.1017 0.213
Il il 6 0.015 0.007 30.873 0.000 i 1 6 0.033 0.034 8.2260 0.222
a (] 7 -0.045 -0.052 32.956 0.000 i 11 7 0.004 -0.001 8.2428 0.312
1 I 8 -0.018 -0.003 33.282 0.000 i il 8 0.006 0.011 8.2735 0.407
il il 9 0.018 0.024 33.594 0.000 i ! 9 -0.011 -0.012 8.4026 0.494
il il 10 0.020 0.013 34.001 0.000 Al III 10 0.028 0.024 9.2163 0.512
il 1 11 0.023 0.016 34.531 0.000 i Ill 11 -0.033 -0.032 10.308 0.503
il I 12 0.032 0.028 35.566 0.000 a (il 12 -0.051 -0.050 12.961 0.372
i I 13 0.014 0.005 35.764 0.001 1 i 13 -0.031 -0.031 13.937 0.378
1] il 14 0.045 0.038 37.802 0.001 i ! 14 0.008 0.008 13.996 0.450
1 L 15 -0.005 -0.022 37.828 0.001 | | 15 0.059 0.069 17.483 0.291
1 I 16 -0.001 0.002 37.829 0.002 I|I I|I 16 0.010 0.008 17.584 0.349
L I 17 -0.001 -0.000 37.829 0.003 III III 17 -0.013 -0.015 17.752 0.405
1 1] 18 0.040 0.042 39.502 0.002 I ih 18 0.020 0.013 18.143 0.446
il il 19 0.029 0.016 40.336 0.003 i il 19 0.014 0.013 18.333 0.500
g P 20 0.059 0.051 43.884 0.002 | | 20 0.051 0.059 21.024 0.396
1 L 21 -0.001 -0.018 43.884 0.002 i ! 21 -0.009 -0.014 21.100 0.453
o ]l 22 -0.094 -0.099 52.881 0.000 Ill Ill 22 -0.037 -0.041 22.539 0.428
1 I 23 -0.028 -0.001 53.672 0.000 Ill Ill 23 -0.033 -0.039 23.667 0.422 12
i i 24 0.038 0.046 55.161 0.000 i i 24 -0.037 -0.042 25.038 0.404

Panel M) Panel MM



