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THE AFFINE FAMILY: DEFINITION 
• Are you looking for generally realistic, potentially complex 

and yet tractable time series models of financial returns? 
Then you are after affine models 
– This tractability derives from the knowledge of closed-form 

solutions to several “transforms” of affine processes which are 
Markov processes 

– Intuitively, an affine process Y is one for which the conditional 
mean and variance are affine functions of Y, but we shall see 
that the family is much wider and more interesting 

– They can appear as continuous time processes (possibly then 
discretized) or directly as discrete time processes 

• Unless otherwise noted, we assume that Y is observable 
• Definition 7 [Markov process] A process Y is Markov if, for 

any measurable function g: D  R and for any fixed times 
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THE AFFINE FAMILY: DEFINITION 
 t and s > t ,                                              for some fnct h: D  R  

– In short, the conditional distribution of Ys only depends on the 
current state Yt 
• When the conditional distribution of Y depends on additional lags 

of Y , one can often expand the dimension of the state vector to 
obtain a new, first-order Markov process Y* 

• Even when, in continuous time, the conditional distribution of Ys 
depends on a continuum of lagged values of Yt, it is often possible 
to define a new state variable that captures this dependence 

– Let’s define CCFs and CMGFs: the conditional characteristic 
function (CCF) of a  
Markov process YT, condi- 
tioned on current and lagged  
information is given by the  
Fourier transform of its conditional density function (  T – t) 
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THE AFFINE FAMILY: DEFINITION 
– Similarly, the conditional moment-generating function (CMGF) is 

given by the Laplace transform of Y : 
 
 
 

• Definition 8 [Affine process] A Markov process Y is said to 
be an affine process if either its CCF or CMGF has the 
exponential affine form 

 
 where φ0t and φYt are complex (real) coefficients indexed by 

t to allow for time dependence of moments 
– In continuous time, affine processes relate to special restrictions 

to be imposed on jump-diffusion processes 
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THE AFFINE FAMILY: JUMP DIFFUSION CASE 
– A jump-diffusion process is a Markov process solving the 

stochastic differential equation 
 
– Zt is a pure-jump process whose jump amplitudes have a fixed 

probability distribution  on RN and arrive with intensity {(Yt): 
t≥0}, for some : D  [0,∞), and   RK is the vector of unknown 
parameters governing the model for Yt 
• Cox process construction of jumps: conditional on {Ys: 0 ≤ s ≤ t }, 

the times of jumps in [0, t] are the jump times of a Poisson 
process with time-varying intensity {(Ys): 0 ≤ s ≤ t }; the size of the 
jump distribution  is assumed to be independent of {Ys: 0 ≤ s < T} 

– The special case of an affine-jump diffusion is obtained by 
requiring that μ, σσ’, and  all be affine functions on D: 
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THE AFFINE FAMILY: JUMP DIFFUSION CASE 
 

– When jumps are present, the jump intensity (t) is assumed to 
also be a positive, affine function of the state Yt 
 

 and the jump-size distribution fJ is assumed to be determined by 
its characteristic function  

– Singleton (2001, JoE) shows that in this case the CCF has a linear 
affine structure with coefficients satisfying a system or Riccati 
equations: 
 
 

 where                                                        and boundary conditions 
YT = iu and 0T = 0 
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THE AFFINE FAMILY: JUMP DIFFUSION CASE 
– Focusing on case of an affine diffusion (no jumps) and i = 0 i, 

the affine structure of the drift and instantaneous variance 
carries over to the conditional moments of {Yt}:  
 

 

 where X is a NxN matrix s.t.                      is diagonal  
• These are obtained evaluating the nth derivative of the CCF with 

respect to u at 0 
• K governs the degree of mean reversion in the process toward its 

“long-run” or unconditional mean 
• This corresponds to a “half-life” of exp(-K) = 0.5 

– Because i = 0 for all i, then Yt is a Gaussian process 
– Alternatively, if K is diagonal with ith element i ,  is diagonal 
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ADMISSIBILITY 
 with ith element σi, i is zero except in the ith location (where it 

is unity), and αi = 0 for all i, then Y is a vector of N independent 
square root diffusions with conditional variance of Yi: 
 
 

• The fact that                                                does not imply that 
the model is automatically admissible 
– Implicit in the requirements for well defined CCF and CMGF are 

conditions that ensure that even powered conditional moments 
of the distribution of Y are nonnegative 

– Example 6 [Two- 
factor affine 
model]  
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ADMISSIBILITY 
– The constraint that Y2t does not appear in the drift and volatility 

of Y1t imply that the first variable Y1 is an autonomous square-
root diffusion; as such, so long as σ1 > 0 and κ11θ1 > 0, Y1 is 
guaranteed to be nonnegative 
• For (Y1, Y2)’ to be well-defined, the instantaneous  variances Y1t 

and α2+β21Y1t must be nonnegative 
– Further, this process is specified so that the volatility of Y2t 

depends only on Y1t : the constraints α2 > 0 and β21 > 0 
guarantee that α2 + β21Y1t ≥ 0 
• This admissible parameterization illustrates the point that if the 

state vector is divided up into the subvector that drives volatility 
(Y1t) and the remaining variables (Y2t), and sufficient structure is 
imposed on the first subvector, then we are assured admissibility 
up to the imposition of sign restrictions 

– There is no admissibility problem if βi = 0, for all i, because in 
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ADMISSIBILITY 
 the instantaneous conditional volatilities are all constants 
– However, outside this special case, to ensure admissibility it is 

necessary to constrain the drift (K and ) and diffusion 
coefficients 

– Requirements for admissibility become increasingly stringent as 
the number of state variables determining Sii,t increases 

– To formalize this consider the case where there are M state 
variables (WLOG, the first M) driving the instantaneous 
conditional variances of the N-vector Y, so M = rank(B) 

– We define a set of N+1 benchmark models AM(N) as follows: (1) 
partition Yt as Y  (YV’, YD’), where YV is M × 1 and YD is (N−M)×1, 
and define 
 

 (K unconstrained if M=0) 
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ADMISSIBILITY 
 (2)  
 
 
 (3) 
 
 
 (4) under the following 

parametric restrictions:   
 

 
– AM(N) implies that the conditional variances are controlled by 

the first M state variables 
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ADMISSIBILITY 
– As long as Yv

t  (Y1, Y2, ..., YM) is nonnegative with probability 
one, the benchmark representation of Yt  (YV

t, YD
t) is admissible 

– To analyze this, note that YV
t follows the diffusion 

 
– To ensure that Yv

t is bounded at zero from below, the drift of YV
t 

must be nonnegative and its diffusion must vanish at the zero 
boundary. Necessary and sufficient conditions for this are C1:  
 
 
 
• Please read Singleton as to the specific reasons for each of C1-C5 

– Notice that not all affine models are special cases of these 
canonical models. For models outside these subfamilies, 
admissibility should be verified, on a case-by-case basis 
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DISCRETE TIME AFFINE MODELS 
• General principle: a discretization of a continuous-time 

model typically does not lead to a well-defined discrete-
time counterpart of an AM(N) model 

• To construct discrete-time affine models with same featu-
res of the AM(N) family one is better off starting from the 
primitive assumption that the CMGF of Yt+1 is an 
exponential-affine function of Yt, 

• Importantly, starting with the CMGF may allow for richer 
formulations of the dynamics of Y than in standard affine 
diffusion models 

• A discrete-time affine process is obtained by positing a 
functional form for the φ0t and φYt that defines CMGFt 
– E.g .,                                              
– This  can be interpreted as the discrete-time counterpart to 

Lecture 4: Affine vs. Non-Affine Models – Prof. Guidolin a.a. 14/15 p. 14 



DISCRETE TIME AFFINE MODELS 
 continuous-time models as length of the sampling interval 

shrinks to zero: 
• Let                                                                            , then as t  0, DT 

process converges to Gaussian O-U:   
– Another popular case occurs under the assumption that the 

CMGF of a scalar Markov process Y is given by 
 

– This is the CMGF of an autoregressive gamma (AG) process 
obtained from setting 
 

• First two conditional moments of Yt+1: 
 

• Also in this case, the continuous time limit of the process, based 
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DISCRETE TIME AFFINE MODELS 
 on                                                                              shows that 
 

 so that Yt converges to square-root process:  
 
– To construct the discrete- 

time counterparts to many  
multivariate affine  
diffusions, we need to  
combine multivariate  
Gaussian and AG processes 

– In a series of papers, Dai, Le 
and Singleton have  
partioned the Nx1 vector  
Xt  (Z’t, Y’t)’ and defined it as 
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DISCRETE TIME AFFINE MODELS 
 a DAM(N) process if: (i) Zt is an autonomous DAM(M) process; 

and (ii) conditional on Yt and Zt , Yt+1 is normally distributed with 
a conditional variance that depends on Zt; (iii) the M ×1 
autonomous Zt  follows a vector autoregressive gamma process 
• To construct a joint density of Xt+1 given Xt, they exploit f(Zt+1|Xt) = 

f (Zt+1|Zt) and that, Zt+1 and Yt+1 are independent 
– This assumption amounts to within-period shocks to Z and Y 

being independent, which is more restrictive than for conti-
nuous-time models since the latter models allowed for nonzero 
(instantaneous) correlations across the YV and YD models 

– Under these assumptions, the conditional Laplace transform of 
Xt+1 given Xt is exponential-affine and in the continuous time 
limit, Xt becomes the canonical model AM(N) 

• As seen, Fourier transforms of the conditional density (the 
CCF) of Yt+1, discretely sampled from an affine diffusion, is 
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TRANSFORMS FOR AFFINE MODELS 
 known in closed form, CCFt =                  ; it turns out that 

more general transforms of affine processes are known and 
these transforms play a central role in pricing bonds 
– Start by introducing the discount rate function R: D  R and 

assume it is also affine 
– A transform is based on a “characteristic” 

where  are the parameters of the discount function and K, H, l, 
and  are parameters of the affine model: 
 

 
 

 where E is under the distribution of Y determined by χ  
• Tχ differs from the CCF of the distribution of YT because of the 

discounting at rate R(Yt) 
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TRANSFORMS FOR AFFINE MODELS 
– Duffie, Pan, and Singleton (2000, ECMA) show that under 

technical regularity conditions: 
 

 where 0t and Yt satisfy a system of complex valued ODEs 
• In some applications, explicit solutions for these ODEs are known 

(e.g., for square-root diffusions); in other cases, solutions are 
found numerically 

• How do you estimate affine models? First idea: because 
differentiating the CCF yields conditional moments, then 
GMM is a natural, albeit inefficient, approach 
– These moments can be computed from the derivatives of the 

CCF (or CMGF when it exists) evaluated at u = 0: 
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GMM AND QML ESTIMATION 
 so that the orthogonality conditions are 
 

 
– Although in a GMM it would be a bad idea to only use the first 

two moments, with the first two conditional moments in hand, a 
QML estimator with the normal log-lik can be computed 

– However, both GMM and QML are dramatically inefficient in the 
case of affine models because—apart from the case of Gaussian 
diffusions—the “innovations” in affine models are nonnormal 
• E.g., noncentral chi-square in the case of square-root diffusions 

– The “high way” in the case of affine models is represented by 
methods that exploit (at least to some extent) knowledge of the 
density functions 

• Three options: (a) full-information ML; (b) simulated ML; 
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MAXIMUM LIKELIHOOD ESTIMATION 
 (3) approximate MLE 

– If the conditional density of Yt+1 given Yt , f(Yt+1|Yt; 0), is known 
in closed form, then we can proceed directly to write and 
maximize the conditional log-likelihood of the sample 
• Examples of affine diffusions with known conditional density 

functions are the cases where Yt is a vector Gaussian process (M = 
0) and Yt is a vector of independent square-root processes (M = N 
and K is diagonal) 

• In the former case, Yt+τ conditional on Yt is normally distributed, in 
the latter case noncentral chi-square 

– An example of a jump-diffusion model with a known likelihood 
function is the pure-jump diffusion 
 

 where the jump amplitude J(t) is distributed as N (mJ, 2) 
– Conditional on the number of jumps L = l (over the sampling 
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MAXIMUM LIKELIHOOD ESTIMATION 
 interval of the data), the distribution of Yt is 
 

• This is an implication of the jump amplitudes Jt be normally 
distributed and that, conditional on L, Yt is the sum of L + 1 
independent normal random variables, N (nμY, nσ2

Y) + J1 + ... + JL 
• The density of Yt is then obtained by “integrating out” over the 

density of the number of jumps: 
 

 
• One advantage of casting an affine model in discrete time is 

that the likelihood of the data is known in closed form for a 
much larger class of models than in continuous case 
– If Zt+1 conditional on Zt follows an autoregressive gamma 

process, Yt+1 conditional on Xt = (Zt, Yt) is Gaussian, then the 
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SIMULATED MAXIMUM LIKELIHOOD 
 likelihood function for X can be constructed in closed form 
– The idea is to divide each sampling interval [t, t+1] into n 

subintervals, say of equal length h = (1/n), and expressing the 
density function of the data as 
 
 
 

– The density function f(Yt+1|Yt) can be interpreted as an 
expectation of f(Yt+1|Yt+1−h), treated as a function of Yt+1−h, and 
integrated against the conditional density f(Yt+1−h|Yt) 

– Therefore, if the density f(Yt+1|Yt+1−h) can be accurately appro-
ximated, and (given Yt) Yt+1−h can be simulated, then (*) can be 
computed by Monte Carlo integration 
• Pedersen (1995, SJS) proposes replacing the density f(Yt+1|Yt+1−h) in 
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SIMULATED MAXIMUM LIKELIHOOD 
 (*) with fN(Yt+1|Y,n

t+1−h), the density fnct. of a normal distribution 
with mean (1/n)μ(Y,n

t+1−h; ) and variance σ2(Y,n
t+1−h; )/n 

– This approach relies on Euler approximations multiple times to 
simulate Y,n

t+1−h given Yt; therefore, in establishing the large-
sample properties, the nature of the approximation errors have 
to be examined with limiting distributions of sample moments 

– Pedersen shows, for the special case of a Gaussian diffusion, that 
there is a rate at which n can grow with T such that consistency 
and asymptotic normality are ensured 
• The approximation errors approach zero at a sufficiently fast rate 

relative to T that these errors can be ignored in the computation of 
the asymptotic distribution of the ML estimator for 0 

– Brandt and Santa-Clara (2002, JFE) show that, if T   ∞, n   ∞, and 
T   ∞, with T1/2/n  1 and T/T1/4  0, then their simulated ML 
estimator is asymptotically normal 
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SIMULATED MAXIMUM LIKELIHOOD 
– The literature on SMLE is constantly growing, especially in the 

direction of exploiting the specific structure of affine models, 
e.g., jump diffusion model 

– For instance, Duffie, Pedersen and Singleton (2003, JF) stress that 
many affine models contain autonomous components, e.g., 
 

 
 that can be exploited, like in the case 
 
– The structure of the model is such that f (Y1t|Y1,t−h) is known 

exactly to be a noncentral chi-square distribution; no 
approximation for its conditional density function is necessary, so 
that Pedersen’s Euler approximations are unnecessary 
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APPROXIMATE MLE 
– The approach uses much more information than the one 

developed by Pedersen (obviously, this is true with regard to Y1, 
since the noncentral chi-square is known exactly) 

• An alternative approach to ML estimation, based on 
polynomial approx., was proposed by Ait-Sahala (2002, JoE) 
– For instance, suppose that Y follows a univariate diffusion with 

drift μY(Yt; ) and instantaneous volatility σY(Yt ; ) 
– Ait-Sahalia’s approximation begins by transforming Y to have 

unit volatility by means of the transformation 
 

 
– The basic idea then is to approximate the logarithm of the 

conditional density of X using Hermite polynomials, and then to 
use a change of-variable to obtain the log-density of Y: 
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APPROXIMATE MLE 
– Specifically, letting   denote the time interval between discrete 

observations and assuming an expansion out to order K in 
powers of  gives: 
 

 
 where the CX

(k) are constructed recursively from integrals of μX 
and its derivatives 

– The expansion of the conditional density of Y is obtained by a 
change of variable (                                       ): 

 
– Taking logarithms gives the approximate log-likelihood function: 
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CHARACTERISTIC FUNCTION-BASED ESTIMATION 
 
 
• Given that the CCF and/or CMGF of an affine process is 

known (at least up to the solution of ODEs), estimation can 
be based on these representations of the conditional 
distribution even when functional form is unknown 
– Since the functional form of the CCF of an affine process is 

known, the conditional density function of Yt+1 is also known up 
to an inverse Fourier transform of the CCFt: 
 
 

 which gives the implicitly defined log-likelihood function: 
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CHARACTERISTIC FUNCTIONS 
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CHARACTERISTIC FUNCTIONS 
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CHARACTERISTIC FUNCTION-BASED ESTIMATORS 
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ML ESTIMATION BY FOURIER INVERSION 
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ML-CCF ESTIMATOR, CIR EXAMPLE (SINGLETON, 2001) 
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PARTIAL ML-CCF ESTIMATOR 
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PARTIAL ML-CCF ESTIMATOR 
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FREQUENCY-DOMAIN ESTIMATOR 
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FREQUENCY-DOMAIN ESTIMATOR 
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GMM-CFF ESTIMATOR 
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NON-AFFINE MODELS: HINTS 
• The distributions of asset returns are “fat tailed” and 

“skewed”; this can be due to “stochastic volatility” 
(including ARCH) and “jumps” (including regimes) 

• The (unconditional) skewness of a random variable r, defi-
ned as                                                 is measure of asymmetry 

• Kurtosis is measure of tail-fatness,  
– The kurtosis of a normal random variable is 3 
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NON-AFFINE MODELS: HINTS 
– Holding period returns exhibit excess kurtosis or fat tails: 

whatever the econometric model of returns adopted, it should 
imply nonnormal, fat-tailed marginal return distributions 
• The nonnormality of the marginal distributions of returns need 

not imply the nonnormality of the conditional distributions 
– One simple “probability model” that characterizes dependence 

of conditional moments on market conditions says that 
conditional moments of returns are approximated by computing 
rolling historical sample moments over a fixed window of data, 
possibly with declining weighting of past observations 

– Standardizing returns does not change the picture of strongly 
time-varying volatility and higher order moments 

• We focus on a small number of (especially, discrete) time 
series models that capture some of the key features of the 
most commonly used ones 
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NON-AFFINE MODELS: HINTS 
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NON-AFFINE MODELS: GARCH 
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– A widely studied formulation of stochastic volatility is the 
discrete -time GARCH(p,q): 
 

 

 where μt−1 is the mean of rt conditioned on the history of 
returns at date t − 1, {t} is a sequence of i.i.d. N (0, 1) shocks, 
and ω, (αj : j = 1, . . . , p), and (i : i = 1, . . . , q) are nonnegative 

– One measure of persistence is the degree of autocorrelation of 
σ2

t : within the GARCH(1,1) model, the coefficient on σ2
t−1 in the 

projection E[σ2
t|It−1] is α+β 

• The condition (α+β)<1 ensures covariance stationarity 
– An alternative measure of persistence is the median lag of past 

(rt−j −μt−j−1)2 in the conditional variance expression itself 

Based on time t-1 
information 



NON-AFFINE MODELS: GARCH 
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– Writing the conditional variance in a GARCH model as 
 
 

 define median lag as ν that satisfies 
– For the GARCH(1,1) model ν = −log 2/log β, which depends only 

on β as it is this parameter that governs the rate of geometric 
decay of the effect of past squared return shocks on σ2

t  
– The dependence of σ2

t on 2
t in all of these GARCH-style models 

implies that return shocks have a symmetric effect on volatility 
• A large positive or negative return shock of equal magnitude in 

absolute value has the same effect on volatility 
– For many markets, and in particular many equity markets, it has 

long been recognized that positive and negative shocks have 
asymmetric effects (with leverage) on volatility 



NON-AFFINE MODELS: EGARCH & GJR TARCH 
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• Large negative shocks have a larger effect than correspondingly 
large positive shocks 

– Motivated by the evidence of asymmetry, several researchers 
have proposed “asymmetric” GARCH-like models, such as 
Nelson’s (1991) logarithmic specification (EGARCH): 

 
• Unlike GARCH, with β  0, the effect of t on σ2

t is asymmetric: if −1 
< β < 0, then t < 0 has a larger (positive) effect on volatility than a 
positive return surprise of the same absolute magnitude 

– Modifications to allow for asymmetry have been also proposed 
by Glosten et al. (1993) and Heston and Nandi (2000) 
 

–  With  < 0, positive return shocks increase volatility less than 
negative shocks inducing asymmetry 



NON-AFFINE MODELS: NAGARCH & SV 
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– Alternatively, the NAGARCH model posits 
 
 
 
• Hence, with  > 0, a large negative return shock raises σ2 more 

than a large positive shock 
– Though volatility is time varying in GARCH, there is no source of 

randomness to volatility over and above past return shocks 
• One can allow for “true” stochastic volatility in discrete-time 

models by introducing a random volatility shock 
– E.g., following Taylor (1986) assume  
– Alternatively, we could assume that σ2

t follows an auto-
regressive gamma AG(a, bσ2

t−1, c) process: 
 



NON-AFFINE MODELS: MARGINAL DENSITIES 
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 where νt  (0, 1), independent of return shocks 
– As we have seen, a common assumption in SV volatility models 

for returns is that  is Gaussian 
• The conditional distribution of returns is a normal 

– However, for many financial markets, the distributions of 
standardized returns (rt − μt−1)/σt−1 exhibit substantial excess 
kurtosis and non-zero skewness 

– To match the higher-order moments of returns, we can extend 
the model by introducing fat-tailed shocks to returns in 3 ways: 

(A)  drawn from a fatter-tailed distribution than a normal; 
(B) allow the conditional distribution of r to possibly change over 

time, with switching governed by a regime process;  
(C) Jumps 

– As for (A), Bollerslev (1987, JoE) assumes a t distribution and 
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 Baille  & Bollerslev (1989, JBES) use power exponential dstr. 
– As for the mixture distribution case, assume that  follows: 

 
 

– The resulting kurtosis of t is 
 
 

– A third means of introducing fat tails into return distributions is 
to add a jump process to the data-generating process 

– This can be accomplished by adding a Bernoulli random “jump” 
Zt , taking on the values {0, 1} and satisfying Pr{Zt = 1} =  , with 
independent random amplitude , e.g.,   N (mJ , 2

J). 
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• Bernoulli jump model has rt jumping at most once btw. t − 1 and t 
– Given a parametric assumption about the distribution of t 

conditional on the past history of returns, and assuming that a 
mixture or jump process is independent of t , then all of these 
discrete-time volatility models can be estimated by MLE 

– Excluding jumps, because                                            , the 
likelihood function of the data is 
 
 
 
 
 

– Alternatively, in the MixGARCH model, we have 
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– Though easy to write down, the likelihood function of the 
Mixture GARCH model is globally unbounded, a well-known 
problem of mixture-of-normal models 
• Just set μ0 = r1 and let σ1 approach zero: the log-lik at t = 1 

approaches infinity and, hence, so does the likelihood function 
• This is typically not a problem in practice, because numerical 

search routines find local optima, and one can search across local 
optima with bounded likelihood function values 

– Kiefer (1978, ECMA) shows that there exists a consistent, 
asymptotically normal local optimum with usual MLE properties 
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