Lecture 4: Mean-Variance Portfolio Choice in Excel

Manuela Pedio

Portfolio Management

Spring 2017

Overview

- Fundamentals: dealing with matrices in Excel
- Problem one: the efficient frontier with two risky assets (and no risk free asset)
- Problem two: asset allocation with many assets
- Problem two: tangency portfolio

Fundamentals: the use of matrices in Excel $(1 / 4)$

Matrix notation is essential to deal with multi-asset allocation problems in a compact and efficient way

We now review the most common and helpful functions that Excel provides to you to deal with matrices:

- Let's suppose that \mathbf{A} is 2-by-2 matrix and that you want to perform the transpose (\mathbf{A}^{\prime})
- TRANSPOSE (C5:D6)

4	A	B	C	D	E	F	G	H
1								
2								
3								
4								
5		A=	5	8		$\mathbf{A}^{\prime}=$	5	8
6		A=	7	3		$\mathrm{A}^{\mathbf{\prime}}=$	7	3
7								
8								

REMEMBER, WHEN YOU DEAL WITH MATRICES YOU ALWAYS HAVE TO PRESS CTRL + SHIFT + ENTER

Fundamentals: the use of matrices in Excel $(2 / 4)$

- Let's suppose that A and B are two 2-by-2 matrix and that you want to perform their multiplication
- MMULT (C5:D6,C9:D10)

4	A	B	C	D	E	F	G	H	I	
1										
2										
3										
4										
5		A=	5	8			AB $=$	181	57	
6		7	3			114	47			
7										
8										
9		B=	9	5						
10			17	4						
11										

- You need to select the result area G5:H6 (matrix is 2×2 so the result will be 2×2 too) and press CTRL + SHIFT + ENTER

Fundamentals: the use of matrices in Excel (3/4)

- Let's suppose that \mathbf{A} is a 3-by-3 matrix and that you want to invert it
- INVERSE (C5:E7)

- You need to select the result area H5:J7 (matrix is 3×3 so the result will be 3×3 too) and press CTRL + SHIFT + ENTER

Fundamentals: the use of matrices in Excel (4/4)

- In addition, remember that the formula SUMPRODUCT allows you to multiply two vectors
- SUMPRODUCT (I11:I13, K11:K13)

Lecture 4 - Mean Variance Portfolio Choice in Excel - Manuela Pedio

Problem one: the stock-bond asset allocation

- Let's suppose you can only invest in two assets:
- a (US) stock index (here represented by the value-weighted CRSP index)
- a (US) long-term (Treasury) bond index (here represented by the Ibbotson 10-year government bond index)
- You have available the monthly log-returns of the two indices
- First of all, you need to compute the statistics of the two series: the mean and the standard deviation of each series and the pair-wise correlation between them

If you recall log-returns properties (i.e. return over two periods is just the sum of the returns of each period) you can compute the annual mean return: it is simply equal to the monthly mean return multiplied by 12

	A	B			C
1				Variance	Weights
2		Mean			
3	Equity		9.06%		
4	Tbond		6.01%		
5					

B3 contains the formula => MEAN(Equity)*12 (where Equity is the name we gave to C2:C253, i.e. the monthly equity log-returns)

B4 contains the formula=> MEAN(Tbond)*12 (where Tbond are monthly bond log-returns)

Problem one: the stock-bond asset allocation

Similarly, the annual standard deviation of log-returns is obtained by multiplying by $\sqrt{ } 12$

C3 contains the formula => STDEV(Equity)*SQRT(12)

C4 contains the formula => STDEV(Tbond)*SQRT(12)

Finally, we compute the correlation between the two series with the function "CORREL"=> CORREL(Equity, Tbond)

Problem one: the stock-bond asset allocation

Finally, we construct the variance-
covariance matrix (let's call it V); as you
know this is a symmetric matrix contains
the variances of each asset in the main
diagonal and the pair-wise covariances
out of the main diagonal
Recall that the formula for co- variance
is: \quad Cov $(i, j)=\varrho \sigma_{i} \sigma_{j}$
Cell B13 contains the formula:
B8*VLOOKUP(\$A13, \$A\$2:\$C\$4, 3,
FALSE)*VLOOKUP(B\$12, \$A\$2:\$C\$4,3,
FALSE)

4	A	B	C	D
1				
2		Mean	Standard Deviation	Weights
3	Equity	9.06\%	15.57\%	
4	Tbond	6.01\%	7.047\%	
5				
6	CORRELATION MATRIX			
7		Equity	Tbond	
8	Equity	1	-0.18	
9	Tbond	-0.18	1	
10				
11	VARCOV			
12		Equity	Tbond	
13	Equity	0.024235338	-0.001921698	
14	Tbond	-0.001921698	0.004966527	
15				
16				
$\frac{17}{18}$				
19				
20				
21				
ค				

Why would you bother to do such a formula when you know that cell B13 is just the variance of equity returns (i.e. the square of cell C3)?

Excel makes your life easier when you deal with a LARGE amount of data (e.g. 5 assets imply a 5-by-5 V matrix!)
Now you can just drag and drop!

Problem one: the stock-bond asset allocation

- Now, let's suppose for a minute that we have an equally weighted portfolio and compute portfolio mean and variance (the two asset case is very simple and you do not necessarily need to use matrices... however we want to create a general set up that will be valid also when we add other assets)

PORTFOLIO MEAN
\(E\left(r_{p}\right)=w^{T} e^{\substack{REEANNS
RETVNS}}\)
PORTFOLIO WEIGHTS
MEAN
SUMPRODUCT(B3:B4, D3:D4)

Problem one: the stock-bond asset allocation

- Now, we can compute also the Global Minimum Variance Portfolio, i.e., the portfolio with the minimum possible variance.
- This is an optimization problem that can be solved by using the solver
- To find the GMVP we ask to the solver to find the combination of weights that minimize the variance
- The only constraint is that the sum of weights should be equal to 100\%

Problem one: the stock-bond asset allocation

- Notably, we can see from the picture that, as the "equity only" portfolio is below the GMVP, holding only equity is NOT EFFICIENT
Δ Equity \quad TBond \quad Equally weighted portfolio \quad GMVP

Lecture 4 - Mean Variance Portfolio Choice in Excel - Manuela Pedio

Problem one: the stock-bond asset allocation

- We can compute any point of the efficient frontier, using the solver
- Compared to what we did to find the GMVP, we ask to the solver to find the combination of weights that minimize the variance given a certain target return
- The only constraint is that the sum of weights should be equal to 100\%
- If we want, we can also restrict the weights to be only positive (i.e., no-short selling allowed)

Lecture 4 - Mean Variance Portfolio Choice in Excel - Manuela Pedio

Problem one: the stock-bond asset allocation

- We can generate enough points on the efficient frontier such that we can draw (approximate by interpolation) with the excel scattered plot
- We start from the minimum-variance portfolio (as you know, it is non-sense to invest in anything that gives lower returns than the minimum-variance portfolio)
- We then generate other points on the frontier by setting higher target returns (than the return of the minimum variance portfolio)

Problem one: the stock-bond asset allocation

- There is also an analytical solution to identify points on the efficient frontier
- We can easy replicate it into excel: as discussed at the beginning of the lecture excel can invert the matrices for you (with the formula MINVERSE)
- STEP 1: we create the vector u (vector of ones); vector \mathbf{e} is the vector of asset means that we already computed before
- STEP 2: we create the inverse of the variance-covariance matrix
- STEP 3: we compute the four quantities A, B, C and D

$$
A=\mathbf{u}^{\mathbf{T}} \mathbf{V}^{-1} \mathbf{e} \quad B=\mathbf{e}^{\mathbf{T}} \mathbf{V}^{-1} \mathbf{e} \quad C=\mathbf{u}^{\mathbf{T}} \mathbf{V}^{-1} \mathbf{u} \quad D=B C-A^{2}
$$

- To make life easier we firstly compute:

$$
\mathbf{I}=\mathbf{V}^{-1} \mathbf{e} \quad \mathbf{m}=\mathbf{V}^{-1} \mathbf{u}
$$

Problem one: the stock-bond asset allocation

4	A	B	C	D	E	F	G
1							
2		Mean (e)	Standard Deviation	U			
3	Equity	9.06\%	15.57\%	1.00			
4	Tbond	6.01\%	7.047\%	1.00			
5							
6	CORRELATION MATRIX				INVERSE OF THE VAR	RCOV MATRIX	
7		Equity	Tbond				
8	Equity	1	-0.18		1.03165203	0.180703849	
9	Tbond	-0.18	1		0.180703849	1.03165203	
10							
11	VARCOV						
12		Equity	Tbond		m	1	
13	Equity	0.024235338	-0.001921698		1.21235588	0.104298403	
14	Tbond	-0.001921698	0.004966527		1.21235588	0.078418638	
15							

- Now we can simply compute the four quantities as:

$$
A=\mathbf{u}^{\mathrm{T}} \mathbf{l} \quad B=\mathbf{e}^{\mathrm{T}} \mathbf{l} \quad C=\mathbf{u}^{\mathrm{T}} \mathbf{m} \quad D=B C-A^{2}
$$

- Note that A, B, C, D are scalar, so you do not need to select the area when you use MMULT this time

Problem one: the stock-bond asset allocation

- Following HL we compute \mathbf{g} and \mathbf{h}, the portfolios with 0% return (and minimum variance) and 100% return (and minimum variance), from which you can generate the rest of the frontier

$$
\mathbf{g}=[B \mathbf{m}-A \mathbf{l}] / D \quad \mathbf{h}=[C \mathbf{l}-A \mathbf{m}] / D
$$

- When you input the formula in excel, remember that you are dealing with arrays! You have to select the area where you are computing vectors \mathbf{g} and \mathbf{h} (in our case 2×1 vectors) and press CTRL + SHIFT + ENTER
- Now, if you want to retrieve the efficient portfolio with target return 7.5% you just have to compute $\mathbf{g + h} \mathbf{~} \mathbf{7 . 5 \%}$

Problem one: the stock-bond asset allocation

- Do you remember these weights?
- They are the same weights we have found using the solver
- Yet, HL can ONLY be used when there are NO CONSTRAINS
- Solver can always be used

Lecture 4 - Mean Variance Portfolio Choice in Excel - Manuela Pedio

Problem two: asset allocation with many assets

- We now consider a more general set up where:
- we have 4 risky assets: equity, Treasury bonds, corporate bonds, and real estate
- the investor can borrow and lend at the risk free rate $\left(R_{f}\right)$
- we can consider lending at the riskless rate as investing in an asset with a safe outcome (e.g., T-bill) and borrowing at the riskless rate as selling such security short
- therefore, we consider R_{f} equal to 2.64% (the average return of the T-bill)
- by definition, the variance of the risk free asset is equal to zero
- the formula for the expected return of a combination of a risky portfolio (A) and a risk-free asset is:

$$
\begin{equation*}
\bar{R}_{C}=R_{F}+\left(\frac{\bar{R}_{A}-R_{F}}{\sigma_{A}}\right) \sigma_{C} \tag{CML}
\end{equation*}
$$

Problem two: the tangency portfolio

- As you already know, in this framework (with unlimited borrowing and lending at the risk free rate) we can split the allocation problem into two parts:
- We now focus on determinating the tangency portfolio (G) => NO NEED TO KNOW INVESTOR'S RISK AVERSION COEFFICIENT
- To solve this problem we need to maximize:

$$
\tan \alpha=\left(R_{A}-R_{f}\right) / \sigma_{A} \text { subject to } \quad \sum w_{i}=1
$$

Problem two: (a) the tangency portfolio

- The tangency portfolio (or market portfolio) is unique, does not depend on the preferences of the investor

