Introduction to Counterparty Risk

Paola Mosconi

Banca IMI

Bocconi University, 18/04/2016

イロト イヨト イヨト イヨト

The opinion expressed here are solely those of the author and do not represent in any way those of her employers

э

イロト イヨト イヨト イヨト

Outline

- Introduction
 - Counterparty Risk
 - Exposures
- 2 CVA
 - General Framework
 - Unilateral CVA
- OVA Calculation
 - General Framework
 - Wrong Way Risk
 - Monte Carlo Valuation
- 4 Case Studies
 - Case Study 1: Single Interest Rate Swap (IRS)
 - Case Study 2: Portfolio of IRS
- 5 Mitigating Counterparty Exposure
 - Netting
 - Collateral
 - Selected References

∃ ► < ∃ ►</p>

Outline

Introduction

- Counterparty Risk
- Exposures
- 2 CVA
 - General Framework
 - Unilateral CVA
- CVA Calculation
 - General Framework
 - Wrong Way Risk
 - Monte Carlo Valuation
- Case Studies
 - Case Study 1: Single Interest Rate Swap (IRS)
 - Case Study 2: Portfolio of IRS
- 5 Mitigating Counterparty Exposure
 - Netting
 - Collateral
- Selected References

Counterparty Risk: Definition

The **counterparty credit risk** is defined as the risk that the counterparty to a transaction could default before the final settlement of the transaction's cash flows. An economic loss would occur if the transactions or portfolio of transactions with the counterparty has a positive economic value at the time of default.

[Basel II, Annex 4, 2/A]

Counterparty risk is affected by:

- the OTC contract's underlying volatility
- the correlation between the underlying and default of the counterparty
- the counterparty credit spreads volatility

Pao		

(日) (周) (王) (王)

Counterparty Risk: Features

Unlike a firm's exposure to credit risk through a loan, where the exposure to credit risk is unilateral and only the lending bank faces the risk of loss, the counterparty credit risk creates a **bilateral risk of loss**: the market value of the transaction can be positive or negative to either counterparty to the transaction. **[Basel II, Annex 4, 2/A]**

- Loans: exposure at any future date is the outstanding balance, which is certain (without considering prepayments). Credit risk is unilateral
- **Derivatives:** exposure at any future date is determined by the market value at that date and is uncertain. Counterparty risk can be:
 - **unilateral:** one party (the investor) is considered default-free and only the exposure to the counterparty matters
 - **bilateral:** both parties are considered risky and face exposures depending on the value of the positions they hold against each other

イロト イヨト イヨト イヨト

OTC Derivatives

OTC derivatives are efficient and effective tools to **transfer financial risks** between market participants.

As a byproduct of such transfer:

- they create credit risk between the counterparties
- they increase the connectedness of the financial system

The **2008 financial crisis** showed that **counterparty-related losses** (e.g. changes in the credit spreads of the counterparties and changes in the market prices that drive the underlying derivative exposures) have been **much larger than default losses**.

イロト イポト イヨト イヨト

OTC Market – BIS 2015

The volume of outstanding OTC derivatives has grown exponentially over the past 30 years. According to market surveys conducted by ISDA and BIS:

- notional amounts of outstanding interest rate and currency swaps went from \$866 billion in 1987 to \$17.7 trillion in 1995, \$99.8 trillion in 2002 and more than \$500 trillion in 2015
- the gross market value of outstanding derivatives contracts i.e. the cost of replacing all outstanding contracts at market prices prevailing on the reporting date amounted to \$15.5 trillion at the end June 2015.
- the interest rate segment accounts for the majority of OTC derivatives, with a notional amount of outstanding contracts of \$435 trillion (79% of the global OTC markets)
- FX derivatives make up the second largest segment of the global OTC derivatives market with an OTC market share of 13%, amounting to \$75 trillion in terms of notional outstanding
- **central clearing** has become increasingly important in interest rate derivatives markets and credit default swap markets

・ロト ・四ト ・ヨト ・ヨト

OTC Market – Global Chart



Further information on the BIS derivatives statistics is available at www.bis.org/statistics/derstats.htm.

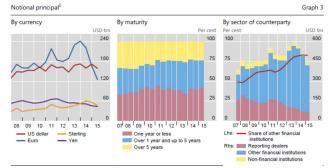
¹ At half-year end (end-June and end-December). Amounts denominated in currencies other than the US dollar are converted to US dollars at the exchange rate prevailing on the reference date.

э

イロン イヨン イヨン イヨン

OTC Market - Interest Rate Derivatives Chart

OTC interest rate derivatives



Further information on the BIS derivatives statistics is available at www.bis.org/statistics/derstats.htm.

¹ At half-year end (end-June and end-December). Amounts denominated in currencies other than the US dollar are converted to US dollars at the exchange rate prevailing on the reference date.

(日) (周) (王) (王)

Counterparty Risk: Risk Management vs Pricing

Two approaches to counterparty risk:

• counterparty risk management:

for internal purposes and for regulatory capital requirements, following Basel II

counterparty risk from a pricing point of view:
 Credit Valuation Adjustment (CVA), when updating the price of instruments to account for possible default of the counterparty

However, **Basel III** has made the distinction less clear-cut.

イロト イポト イヨト イヨト

Counterparty Risk Management

Counterparty risk is the risk that one bank faces in order to be able to lend money or invest towards a counterparty with relevant default risk.

The bank needs to measure that risk and cover for it by setting capital aside.

Credit VaR is calculated through the following steps:

- the basic financial variables underlying the portfolio, including also defaults of the counterparties, are simulated under the historical probability measure P, up to the risk horizon
- at the risk horizon, in every simulated scenario of the basic financial variables, the portfolio is priced, eventually obtaining a number of scenarios for the portfolio value at the risk horizon. "Priced" means that discounted future cash flows of the portfolio after the risk horizon are averaged, conditional on each scenario at the risk horizon but under the (pricing) risk neutral measure Q.

Counterparty Risk: Pricing

Pricing concerns updating the value of a specific instrument or portfolio, traded with a counterparty, by **adjusting the price** in order to take into account the risk of default of the counterparty.

The amount charged to the risky counterparty on the top of the default-free cost of the contract is known as **Credit Valuation Adjustment, or CVA**.

Since it is a price, it is computed entirely under the (pricing) risk neutral measure \mathbb{Q} .

Under Basel II, the risk of counterparty default and credit migration risk were addressed but mark-to-market losses due to credit valuation adjustments (CVA) were not. During the financial crisis, however, roughly **two-thirds of losses** attributed to counterparty credit risk were due to **CVA losses** and only about one-third were due to actual defaults.

[Basel III, Press Release June 2011]

イロト イポト イヨト イヨト

Exposures I

Counterparty exposure at any given future time is the larger between zero and the market value of the portfolio of derivative positions with a counterparty that would be lost if the counterparty were to default with zero recovery at that time.

Current exposure (CE) is the current value of the exposure to a counterparty.

Exposure at Default (EAD) is defined in terms of the exposure valued at the (random future) default time of the counterparty.

(日) (周) (王) (王)

Exposures II

Potential future exposure (PFE) for a given date is the maximum of exposure at that date with a high degree of statistical confidence. For example, the 95% PFE is the level of potential exposure that is exceeded with only 5% probability. The curve of PFE in time is the potential exposure profile, up to the final maturity of the portfolio of trades with the counterparty.

The **maximum potential future exposure (MPFE)** represents the peak of PFE over the life of the portfolio. PFE and MPFE are used to determine **credit lines**.

Expected exposure (EE) is the average exposure on a future date. The curve of EE in time, as the future date varies, provides the expected exposure profile.

Expected positive exposure (EPE) is the average EE in time up to a given future date.

イロト 不得 トイヨト イヨト

CVA

Outline

- Introduction
 - Counterparty Risk
 - Exposures

2 CVA

- General Framework
- Unilateral CVA
- CVA Calculation
 - General Framework
 - Wrong Way Risk
 - Monte Carlo Valuation
- Case Studies
 - Case Study 1: Single Interest Rate Swap (IRS)
 - Case Study 2: Portfolio of IRS
- 5 Mitigating Counterparty Exposure
 - Netting
 - Collateral
- Selected References

- 4 同 6 4 日 6 4 日 6

Credit Value Adjustment: Introduction

- Credit Value Adjustment (CVA) tries to measure the expected loss due to missing the remaining payments.
- CVA has become an integral part of IAS 39 accounting rules and Basel III regulatory requirements.
- CVA is defined as:
 - the difference between the risk-free value and the risky value of one or more trades or, alternatively,
 - **2** the **expected loss** arising from a future counterparty default.

CVA Definition 1

The Net Present Value of a derivative at time *t* is given by:

 $V(t) = \mathbb{E}_t[\Pi(t,T)]$

CVA

where $\Pi(t, T)$ represents (the sum of) all discounted cash flows between times T and t. In the presence of counterparty risk, the sum of all discounted payoff terms between t and T is denoted by $\Pi^{D}(t, T)$.

CVA is defined, according to Canabarro and Duffie (2004), as the difference between the risk-free value and the risky value:

$$\mathsf{CVA} := \mathbb{E}_t[\mathsf{\Pi}(t, \mathcal{T})] - \mathbb{E}_t[\mathsf{\Pi}^D(t, \mathcal{T})]$$
(1)

- unilateral (asymmetric) CVA, if only the default of the counterparty is considered
- **bilateral (symmetric CVA)**, if also the default of the investor is taken into account.

CVA Definition 1: Unilateral Case

We will show that, starting from definition (1) and accounting for all the cash-flows, unilateral CVA is given by:

CVA

$$\mathsf{CVA} = \mathsf{Lgd} \mathbb{E} \left[\mathbb{1}_{\{\tau \leq T\}} D(0, \tau) \left(\mathbf{V}(\tau) \right)^{+} \right]$$
(2)

where:

- τ is the **default event**, as defined in the **Bilateral ISDA Master Agreement**
- $V(\tau)$ is the (uncertain) close-out amount
- LGD is the expected loss given default, expressed as a percentage of the nominal close-out amount.

イロト 不得 トイヨト イヨト

CVA Definition 1: Bilateral Case

Analogously, In the bilateral case, the risky value of the derivative takes into account both the default of the **counterparty C** and that of the **investor I**:

CVA

$$\mathbb{E}_{t}[\Pi^{D}(t,T)] = \underbrace{V(t)}_{\text{risk-free}} - \underbrace{\mathsf{L}_{\mathsf{GD}_{C}} \mathbb{E}_{t} \left[\mathbb{1}_{\{\tau_{C} \leq T, \tau_{C} \leq \tau_{I}\}} D(t,\tau_{C}) \left(V(\tau_{C})\right)^{+} \right]}_{\mathsf{CVA}} + \underbrace{\mathsf{L}_{\mathsf{GD}_{I}} \mathbb{E}_{t} \left[\mathbb{1}_{\{\tau_{I} \leq T, \tau_{I} \leq \tau_{C}\}} D(t,\tau_{I}) \left(-V(\tau_{I})\right)^{+} \right]}_{\mathsf{DVA}}$$
(3)

The formula is **symmetric**: the investor's DVA is equal to the counterparty's CVA, but an **investor cannot hedge its DVA spread risk** by selling CDS protection on itself.

Paola Mosconi	1	20 / 84
Paola Mosconi	Lecture 8	20 / 84

CVA

CVA Definition 2: Expected Loss

- We consider here the **unilateral case**¹.
- CVA measures the risk of incurring losses on a portfolio of deals, upon default of the counterparty. The loss is material when the value of the portfolio at default, V(τ), is positive and default occurs before the maturity of the portfolio, i.e.:

$$\mathsf{Loss}(\tau) = \mathbb{1}_{\{\tau \leq T\}} \mathsf{Lgd} (V(\tau))^+$$

• Unilateral CVA is defined as the **expected value of this loss**, discounted till evaluation time:

$$\begin{aligned} \mathsf{CVA} &= \mathbb{E}[\,D(0,\tau)\,\mathsf{Loss}(\tau)] \\ &= \mathsf{Lgd}\,\mathbb{E}\left[\mathbbm{1}_{\{\tau \leq T\}}\,D(0,\tau)\,\left(V(\tau)\right)^+\right] \end{aligned}$$

The resulting expression is in agreement with eq. (2).

< ロト < 同ト < ヨト < ヨト

(4)

 $^{^{1}}$ The extension to the bilateral case is straightforward.

2002 ISDA Master Agreement: Events of Default

CVA

Events of Default

- Failure to pay or deliver
- Breach of agreement; repudiation of agreement
- Default under specified transaction
- Bankruptcy ...

Termination Events

- Illegality
- Force majeure event
- Deferral of payments and deliveries during waiting period
- Tax events ...

Events which cause **Early Termination** of the Master Agreement are always **bilateral**.

	•	Þ.	< 🗗 ▶	4	2	Þ.	4	3	•
Lecture 8									

General Framework

Close-out Amount and Netting Set

Close-out Amount

When one of the two counterparties incurs in one of the events that causes the **Early Termination** of the contract, the non-defaulting party determines the amount of the losses or the costs of closing the position and replacing it with a new one with another counterparty (substitution cost).

Netting Set

The ISDA Master Agreement determines the possibility to **net out** all the positions with the defaulted counterparty.

The **netting set P** is formed by p contracts p_i , whose individual value is $V_i(t)$. Each deal has weight $w_i = \pm 1$ if the investor is respectively receiver/payer:

$$V(t) = \sum_{i=1}^{p} w_i V_i(t)$$

・ロト ・四ト ・ヨト ・ヨト

Risk Free vs Substitution Close-out

• Unilateral case:

The close-out amount is the net present value of the residual deal, calculated as a **risk-free** quantity, since the surviving counterparty is assumed to be default-free.

• Bilateral case:

The close-out amount is the net present value of the residual deal, calculated by taking into account the **risk of default** of the survived party. It is called **substitution close-out** and can give rise to **contagion effects**. See Brigo and Morini (2010).

イロト イポト イヨト イヨト

Positive Part of Close-out

The CVA formulae (2) and (3) depend on the **positive part of the close-out amount:** $(\mathbf{V}(\tau))^+$. Indeed, only the positive part of the close-out contributes to **counterparty risk.**

CVA

Consider the point of view of the non-defaulting party. If:

• **V**(τ) < **0**

the close-out amount is a **liability** and the non-defaulting party is due to pay it fully to the defaulted party

V(τ) ≥ 0

the non-defaulting party is exposed to the risk that the defaulted party does not pay the close-out amount.

イロン イロン イヨン イヨン 三日

CVA Features

- CVA is a credit hybrid.
- The positive part of the close-out amount introduces an element of optionality in the payoff: i.e. a call option with zero strike on V(τ).
- Optionality renders the **payoff** under counterparty risk **model dependent**, even when the original payoff is model independent.

Example: Interest Rate Swap (IRS)

Without counterparty risk, the payoff is linear and model independent, requiring no dynamical model for the term structure (no volatility and correlation). In the presence of counterparty risk, the payoff transforms into a stream of swaptions, whose valuation requires an interest rate model.

• Optionality applies to the **whole netting set** with a given counterparty, making CVA valuation **computationally intensive**.

Paol		

Unilateral CVA – Assumptions

We assume that:

- transactions are seen from the point of view of the **safe investor**, namely the company facing counterparty risk
- such investor is **default-free**

We denote by $\Pi^{D}(t, T)$ the sum of all discounted payoff terms between t and T, subject to counterparty default risk and by $\Pi(t, T)$ the analogous quantity when counterparty risk is not considered.

・ロト ・四ト ・ヨト ・ヨト

CVA

Unilateral CVA – Cash flows

Cash flows are given by:

• if default comes after final maturity $\tau > T$, the original payoff:

$$+ \mathbb{1}_{\{\tau > T\}} \Pi(t, T)$$

- **2** if default occurs before maturity $\tau < T$:
 - the payments due before default:

$$+ \mathbbm{1}_{\{\tau \leq T\}} \,\Pi(t,\tau)$$

② the recovery of the residual net present value at default, if positive:

$$+ \mathbb{1}_{\{\tau \leq T\}} \operatorname{Rec} D(t, \tau) (\mathbb{E}_{\tau}[\Pi(\tau, T)])^+$$

In minus the total residual net present value at default, if negative:

$$-\mathbbm{1}_{\{ au\leq au\}} D(t, au) \left(-\mathbb{E}_{ au}[\Pi(au, au)]
ight)^+$$

(日) (周) (日) (日)

Unilateral CVA – Formula

By summing up all terms, the total payoff subject to counterparty default risk becomes:

$$\Pi^{D}(t,T) = \mathbb{1}_{\{\tau > T\}} \Pi(t,T) + \mathbb{1}_{\{\tau \le T\}} \Pi(t,\tau) + \mathbb{1}_{\{\tau \le T\}} D(t,\tau) \left\{ \text{Rec} \left(\mathbb{E}_{\tau} [\Pi(\tau,T)] \right)^{+} + \left(\mathbb{E}_{\tau} [\Pi(\tau,T)] \right)^{-} \right\}$$
(5)

Recalling the definition on slide 18

$$\mathsf{CVA}_t := \mathbb{E}_t \left[\mathsf{\Pi}(t, T) - \mathsf{\Pi}^D(t, T) \right]$$

the CVA at time t turns out to be:

$$CVA_{t} = L_{GD} \mathbb{E}_{t} \left[\mathbb{1}_{\{\tau \leq T\}} D(t, \tau) \left(\mathbb{E}_{\tau} [\Pi(\tau, T)] \right)^{+} \right]$$
$$= L_{GD} \mathbb{E}_{t} \left[\mathbb{1}_{\{\tau \leq T\}} D(t, \tau) \left(V(\tau) \right)^{+} \right]$$

Paola Mosconi

イロト イヨト イヨト イヨト

(6)

Unilateral CVA – Proof I

Starting from the definition of CVA and expression (5) of the risky payoff, we derive formula (6), through the following steps:

we express the sum of all discounted payoff terms between t and τ, i.e. Π(t, τ), as a function of Π(t, T) as follows:

 $\Pi(t,\tau) = \Pi(t,T) - D(t,\tau)\Pi(\tau,T)$

Plugging this result into eq. (5) we get:

$$\begin{aligned} \Pi^{D}(t,T) &= \mathbb{1}_{\{\tau > T\}} \Pi(t,T) + \mathbb{1}_{\{\tau \leq T\}} \Pi(t,T) \\ &+ \mathbb{1}_{\{\tau \leq T\}} D(t,\tau) \left\{ -\Pi(\tau,T) + \mathsf{Rec} \left(\mathbb{E}_{\tau} [\Pi(\tau,T)] \right)^{+} + \left(\mathbb{E}_{\tau} [\Pi(\tau,T)] \right)^{-} \right\} \end{aligned}$$

and, using the fact that $\mathbb{1}_{\{\tau > T\}} \Pi(t, T) + \mathbb{1}_{\{\tau \leq T\}} \Pi(t, T) = \Pi(t, T)$,

$$\begin{aligned} \mathsf{\Pi}^{D}(t, \mathcal{T}) &= \mathsf{\Pi}(t, \mathcal{T}) \\ &+ \mathbbm{1}_{\{\tau \leq \tau\}} D(t, \tau) \left\{ -\mathsf{\Pi}(\tau, \mathcal{T}) + \mathsf{Rec} \left(\mathbb{E}_{\tau} [\mathsf{\Pi}(\tau, \mathcal{T})] \right)^{+} + \left(\mathbb{E}_{\tau} [\mathsf{\Pi}(\tau, \mathcal{T})] \right)^{-} \right\} \end{aligned}$$

Unilateral CVA

Unilateral CVA – Proof II

Solution Recalling that $\text{CVA}_t := \mathbb{E}_t \left[\Pi(t, T) - \Pi^D(t, T) \right]$, we get:

 $\mathsf{CVA}_t = -\mathbb{E}_t \left[\mathbbm{1}_{\{\tau < T\}} D(t,\tau) \left\{ -\Pi(\tau,T) + \mathsf{Rec} \left(\mathbb{E}_\tau [\Pi(\tau,T)] \right)^+ + \left(\mathbb{E}_\tau [\Pi(\tau,T)] \right)^- \right\} \right]$

• We consider the first term in the sum $\mathbb{E}_t \left[-\mathbb{1}_{\{\tau < T\}} D(t,\tau) \Pi(\tau,T) \right]$. Using the tower rule of expectations, i.e. $\mathbb{E}_t[\cdot] = \mathbb{E}_t[\mathbb{E}_\tau[\cdot]]$, with $\tau \ge t$ we have:

$$\begin{split} \mathbb{E}_t \left[-\mathbbm{1}_{\{\tau \leq T\}} D(t,\tau) \, \Pi(\tau,T) \right] &= \mathbb{E}_t \left[-\mathbb{E}_\tau \left[\mathbbm{1}_{\{\tau \leq T\}} D(t,\tau) \, \Pi(\tau,T) \right] \right] \\ &= \mathbb{E}_t \left[-\mathbbm{1}_{\{\tau \leq T\}} D(t,\tau) \, \mathbb{E}_\tau \left[\Pi(\tau,T) \right] \right] \end{split}$$

Plugging this result in CVA_t, recalling the definition of close-out amount at default time, i.e. $V(\tau) := \mathbb{E}_{\tau}[\Pi(\tau, T)]$, and using the fact that $X = X^+ + X^-$, we obtain the final result, eq. (6):

$$\begin{aligned} \mathsf{CVA}_t &= -\mathbb{E}_t \left[\mathbbm{1}_{\{\tau \le T\}} D(t,\tau) \left\{ -(V(\tau))^+ - (V(\tau))^- + \mathsf{Rec} (V(\tau))^+ + (V(\tau))^- \right\} \right] \\ &= -\mathbb{E}_t \left[\mathbbm{1}_{\{\tau \le T\}} D(t,\tau) \left\{ -(V(\tau))^+ + \mathsf{Rec} (V(\tau))^+ \right\} \right] \\ &= \mathsf{LGD} \, \mathbb{E}_t \left[\mathbbm{1}_{\{\tau \le T\}} D(t,\tau) (V(\tau))^+ \right] \end{aligned}$$

◆□> ◆圖> ◆注> ◆注> □ 注

Outline

- - Counterparty Risk
 - Exposures
- - General Framework
 - Unilateral CVA

CVA Calculation

- General Framework
- Wrong Way Risk
- Monte Carlo Valuation
- - Case Study 1: Single Interest Rate Swap (IRS)
 - Case Study 2: Portfolio of IRS
- - Netting
 - Collateral

- 4 同 6 4 日 6 4 日 6

General Framework

We consider for simplicity the case of unilateral CVA. The goal is to calculate CVA expressed as in formula (4), i.e.

$$\mathsf{CVA} = \mathbb{E}[\,D(0, au)\,\mathsf{Loss}(au)] = \mathsf{Lgd}\,\mathbb{E}\left[\mathbbm{1}_{\{ au\leq au\}}\,D(0, au)\,(\,\mathsf{V}(au))^+\,
ight]$$

Closed-form formulae are only available:

- for certain single deals, i.e. in the absence of a netting set
- under the assumption of **independence** between counterparty risk, embedded in $\mathbb{1}_{\{\tau \leq T\}}$ and the risks associated to the underlying exposure, embedded in $V(\tau)$

ヘロト 人間ト 人間ト 人間トー

Wrong Way Risk (WWR)

In some cases, the assumption of independence leads to underestimate a significant source of potential loss. This is due to **Wrong Way Risk** or **Right Way Risk**.

ISDA definition of WWR

WWR is defined as the risk that occurs when "exposure to a counterparty is **adversely correlated** with the credit quality of that counterparty".

It arises when default risk and credit exposure increase together.

- **Specific WWR** arises due to counterparty specific factors: a rating downgrade, poor earnings or litigation.
- **General WWR** occurs when the trade position is affected by macroeconomic factors: interest rates, inflation, political tension in a particular region, etc...

イロト イヨト イヨト イヨト

WWR Examples

Monoline insurers (e.g. Ambac and MBIA)

During the sub-prime crisis, the monolines specialized in guaranteeing mortgagebacked securities, when the mortgage market collapsed, saw their creditworthiness deteriorate and found themselves unable to pay all of the insurance claims. Almost all exposure mitigation from monoline insurance fell short due to the guarantors' increased probability of default under exactly the *same* conditions when insurance was most needed.

Collateralized loan

Bank A enters into a collateralized loan with Bank B (the counterparty). The collateral that Bank B provides to A can be of different nature:

- bonds issued by Bank B (specific WWR)
- bonds issued by a different issuer belonging to a similar industry, or the same country or geographical region (general WWR). This kind of risk is both difficult to detect in the trading book, hard to measure and complex to resolve.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Right Way Risk (RWR)

Right way risk is the opposite of wrong way risk. It is the effect observed when the **exposure decreases as the default probability increases**, i.e. when there is a negative dependency between the two. The size of credit risk decreases as the counterparty approaches a potential default. RWR occurs when a company enters into transactions to **partially hedge an existing exposure**.

Examples:

- An airline usually protects itself against a rise in fuel prices by entering into long oil derivative contracts.
- A company would normally issue calls and not puts on its stock.

WWR and RWR are together referred to as **DWR** (directional way risk).

イロト 不得 トイヨト イヨト

Overview of Modeling Approaches

Goal: to correlate counterparty exposure with counterparty creditworthiness

- Intensity (reduced form) models
- Structural models
- Sespedes et al (2010)
- Hull and White (2012)
- Basel II

Modeling Approaches

Intensity (reduced form) models

- Default is described in terms of the default time, i.e. the first jump time of a Poisson/Cox process with (default) intensity λ(t).
- The stochastic process for $\lambda(t)$ is **correlated** to the stochastic process for the exposure.
- Intensity models work well with exposures in the asset class of **interest** rates, FX, credit, commodity.
- In the case of **equity**, **not enough correlation**. Structural models are more appropriate.

Structural models

The stochastic process affecting the dynamics of the counterparty firm value is directly correlated to the stochastic process ruling the underlying of the contract. See Lecture 5 for a list o structural models and their calibration to the market.

・ロト ・四ト ・ヨト ・ヨト

Other Modeling Approaches

Solution Cespedes et al (2010)

Cespedes *et al* (2010) propose an **ordered scenario copula model**. Default events and exposures are driven by factor models, while a Gaussian copula is used to correlate exposure and credit events. The approach builds on existing exposure scenarios by a non-parametric sampling of exposure via the factor model.

Hull and White (2012)

Hull and White (2012) model the hazard rate as a deterministic monotonic function of the value of the contract. Wrong-way (right-way) risk is obtained by making the hazard rate to be an increasing (decreasing) function of the contract's value.

イロト 不得 トイヨト イヨト

Basel II

Basel II deals with wrong-way risk using the so-called **"alpha" multiplier** to increase the exposure, in the version of the model in which exposure and counterparty creditworthiness are assumed to be independent.

The effect is to increase CVA by the alpha multiplier.

The Basel II rules set alpha equal to **1.4** or allows banks to use their own models, with a floor for alpha of **1.2**, i.e.

- if a bank uses its own model, at minimum, the CVA has to be 20% higher than that given by the model where default and exposure are independent
- if a bank does not have its own model for wrong way risk it has to be 40% higher

Estimates of alpha reported by banks range from 1.07 to 1.10.

Paola Mosconi

(日) (周) (王) (王)

Monte Carlo Valuation I

- In the presence of a netting set, CVA can be calculated only through multiasset Monte Carlo simulation, where financial instruments must be simulated until maturity. Calibration of the framework and Monte Carlo simulation with a sufficiently large number of scenarios is very time consuming.
- Monte Carlo method allows to estimate the expected value of a variable as the average of all its realizations across different simulated scenarios ω_k. In the case of unilateral CVA, starting from eq. (4), we get:

$$CVA \approx \frac{1}{N_{MC}} \sum_{k=1}^{N_{MC}} D(0,\tau;\omega_k) \operatorname{Loss}(\tau, X(\tau,\omega_k))$$
(7)

(日) (同) (三) (三)

where $\tau \equiv \tau(\omega_k)$ and we have made explicit the dependence of the loss variable Loss on the **risk drivers** affecting the cash flows, denoted compactly by $X(\tau, \omega_k)$.

Monte Carlo Valuation II

In order to simplify the calculation of:

$$\mathsf{CVA} \approx rac{1}{N_{MC}} \sum_{k=1}^{N_{MC}} D(0, \tau; \omega_k) \mathsf{Loss}(\tau, X(\tau, \omega_k))$$

two approximations are commonly introduced:

- Approximation 1: Default bucketing
- Approximation 2: Default bucketing + independence This is equivalent to ignoring wrong/right way risk

(日) (周) (王) (王)

Approximation 1: Default Bucketing

Assuming that default can be observed at discrete times T_1, T_2, \ldots, T_b , formula (7) can be simplified as:

$$\mathsf{CVA} \approx \frac{1}{N_{MC}} \sum_{k=1}^{N_{MC}} \sum_{j=1}^{b} D(0, T_j; \omega_k) \mathsf{Loss}(T_j, X(T_j, \omega_k))$$

(8)

where **defaults have been bucketed** but, a **joint model** for:

- the default of the counterparty $\mathbb{1}_{\{\tau(\omega_k)\in(T_{j-1},T_j]\}}$ and
- the value of counterparty exposure $V(T_j) = \mathbb{E}_{T_j}[\Pi(T_j, T)]$

is still needed.

イロン イロン イヨン イヨン 三日

Approximation 1: Models I

- In order to simulate all the variables that affect the calculation of CVA, we need to define their **dynamics**. We follow two criteria:
 - **simplicity** of the models
 - straightforward calibration of the models to liquid market instruments
- Let Z(t) = {X(t), λ_C, λ_I} be the set of all processes underlying the calculation of CVA, where X denotes the risk drivers, λ_C and λ_I respectively the default of the counterparty and the default of the investor².
 Each process, under the risk neutral measure Q, follows a dynamics

$$dZ_i(t) = (\ldots)dt + (\ldots)dW_i$$

and is correlated to the others through $dW_i(t) dW_j(t) = \rho_{ij} dt$.

²In the following, we will consider the investor default free $\lambda_I = 0$, such that only the default of the counterparty matters $\lambda_C \equiv \lambda$.

Approximation 1: Models II

In the following, we will show as an illustrative example of underlying models only the case of an **exposure to interest rate risk**.

Analogously, models for other asset classes can be introduced and correlated to the model for the creditworthiness of the counterparty.

(日) (周) (王) (王)

Approximation 1: Credit Model

- We consider an intensity model³ for the credit spread
- If default of the counterparty were independent of the others sources of risk X, a **deterministic model** would be enough to bootstrap the probabilities of default of the counterparty
- When λ and X are dependent, a common choice is the **CIR model with jumps**:

$$d\lambda(t) = \kappa(\mu - \lambda(t))dt + \nu\sqrt{\lambda(t)}dW_{\lambda}(t) + dJ^{\beta,F}(t)$$
(9)

where $dJ^{\beta,F}(t)$ represents the jump component and the model:

$$J^{\beta,F}(t) = \sum_{i=1}^{N(t)} Y_i \qquad N(t) \sim \text{Poisson}(\beta t) \qquad Y_i \text{ i.i.d.} \sim F$$
$$F(x) = 1 - e^{-\gamma x} \qquad x > 0$$

• The model is exactly calibrated to CDS quotes, assuming deterministic interest rates

Approximation 1: Interest Rates Model

• A common choice is the **one-factor Hull and White** model, which can be equivalently⁴ described by a **shifted short rate model**

$$r^{\phi}(t) = r(t) + \phi(t) \tag{10}$$

where $\phi(t)$ is a **deterministic shift extension** and the factor r(t) evolves as a Vasicek:

$$dr(t) = k(\theta - r(t))dt + \sigma dW_r(t)$$

• The value of the zero coupon bond is given by:

$$P(t, T) = \Phi(t, T) \mathbb{E} \left[\left. e^{-\int_t^T r(s) ds} \right| \mathcal{F}_t \right] \quad \text{where} \quad \Phi(t, T) = e^{-\int_t^T \phi(s) ds}$$

• The model is exactly calibrated to swaption prices and the discount curve. In the multi-curve setting, the deterministic shift captures the differences between the curves of discounting (OIS) and forwarding (underlying instrument tenor)

⁴See Brigo and Mercurio, Chapter 3.3 and 3.8

47 / 84

Approximation 1: Correlation Default/Exposure

Finally, we introduce correlation between credit (9) and interest rates (10), as follows:

$$\operatorname{corr}(d\lambda(t), dr^{\phi}(t)) = \operatorname{corr}(d\lambda(t), dr(t)) =
ho_{\lambda r} dt$$

æ

Approximation 2: Default Bucketing and Independence

Assuming that default of the counterparty is independent of its exposure (**absence of wrong-way risk**) eq. (8) can be further simplified according to:

$$CVA = LGD \sum_{j=1}^{b} \mathbb{Q}(\tau \in (T_{j-1}, T_j]) \mathbb{E} [D(0, T_j) (V(T_j))^+]$$

= $LGD \sum_{j=1}^{b} {\mathbb{Q}(\tau > (T_{j-1})) - \mathbb{Q}(\tau > T_j)} \mathbb{E} [D(0, T_j) (V(T_j))^+]$
 $\approx \frac{LGD}{N_{MC}} \sum_{j=1}^{b} {\mathbb{Q}(\tau > (T_{j-1})) - \mathbb{Q}(\tau > T_j)} \sum_{k=1}^{N_{MC}} D(0, T_j; \omega_k) [V(T_j, X(T_j, \omega_k))]^+$
(11)

Defaults are bucketed and only survival probabilities are needed (no default model). An option model for counterparty exposure V(t) is still needed.

Paol

		ц ,		1 = 1	-	
ola Mosconi	Lecture 8					49 / 84

Case Studies

Outline

- Introduction
 - Counterparty Risk
 - Exposures
- 2 CVA
 - General Framework
 - Unilateral CVA
- CVA Calculation
 - General Framework
 - Wrong Way Risk
 - Monte Carlo Valuation

4 Case Studies

- Case Study 1: Single Interest Rate Swap (IRS)
- Case Study 2: Portfolio of IRS
- Mitigating Counterparty Exposure
 - Netting
 - Collateral
- Selected References

- 4 同 6 4 日 6 4 日 6

Case Study 1: Single Interest Rate Swap (IRS)

A (Payer) Interest Rate Swap is a contract that exchanges payments between two legs, starting from a future time instant.

The fixed leg pays out the amount $N \alpha_i^F K$, with a fixed interest rate K, a nominal value N and a year fraction α_i^F between T_{i-1}^F and T_i^F , while the floating leg pays out the amount $N \alpha_i^f L(T_{i-1}, T_i)$, where

$$L(T_{i-1}, T_i) = rac{1}{lpha_i^f} \left[rac{1}{P^{fwd}(T_{i-1}, T_i)} - 1
ight]$$

is the forward rate resetting at T_{i-1}^{f} and paying at T_{i-1}^{f} .

Schematically:

Fixed
$$\rightarrow$$
 fixed rate $N \alpha_i^F K$ at $T_{a+1}^F, \ldots, T_b^F \rightarrow$ Floating
Leg \leftarrow floating rate $N \alpha_i^F L(T_{i-1}, T_i)$ at $T_{a+1}^f, \ldots, T_b^F \leftarrow$ Leg

Pao	la	Mos	sconi

Case Study 1: Risk Drivers

We consider a EUR denominated IRS, where the fixed leg pays annually and the floating leg semi-annually.

Risk drivers for a EUR denominated IRS

- EUR discounting curve (OIS Overnight Indexed Swap)
- EUR forwarding curve (6 months Euribor)
- Second Se
- CDS spread of counterparty C

・ロン ・四 と ・ ヨ と ・ ヨ と

Case Study 1: IRS under Independece

$$IRS^{D}(t, K) = IRS(t, K)$$
$$- LGD \sum_{j=a+1}^{b-1} \mathbb{Q}(\tau \in (T_{j-1}, T_{j}]) SWAPTION_{j,b}(t; K, S_{j,b}(t), \sigma_{j,b})$$
(12)

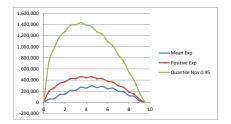
Counterparty model for credit spread

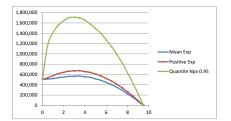
Survival probabilities are bootstrapped from CDS quotes, under the assumption of deterministic interest rates.

Counterparty exposure model

One-factor Hull and White (short rate) model for r(t), calibrated to swaption quotes and zero curve data.

Case Study 1: Exposures Results



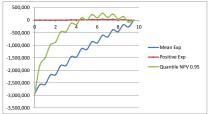


10 year payer swap Notional N = 10 Million

From left to right:

• ITM: *K* = 0.1%

• OTM:
$$K = 3.5\%$$



イロト イヨト イヨト イヨト

э

Case Study 2: Portfolio of IRS

- 5 counterparties
- 30 IRS (payer, receiver), not all deals belonging to given netting sets

Deal ID	Cpty ID	Netting ID	Principal
1	5	5	813450
2	5	NaN	441321
3	1	NaN	629468
9	5	5	918177

- IRS maturities: from 1 to 7 years
- CDS market quotes in bps for each counterparty, for different maturities

Maturity	Cpty 1	Cpty 2	Cpty 3	Cpty 4	Cpty 5
1y	140	85	115	170	140
2у	185	120	150	205	175
Зy	215	170	195	245	210
4y	275	215	240	285	265
5y	340	255	290	320	310

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Case Study 2: Mark to Market Swap Prices

MtM swap prices are computed at each future simulation date and for each scenario

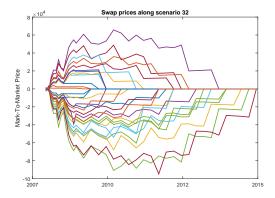
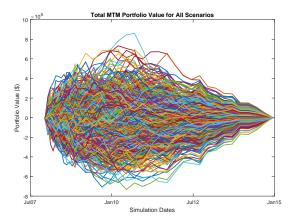


Figure: MtM of all IRS in the portfolio, for scenario 32.

	osconi

Case Study 2: Simulated Portfolio Values

The total portfolio value is computed at each simulation date, for each scenario. As the swaps get closer to maturity, their values begin to approach zero since the aggregate value of all remaining cash flows decreases after each cash flow date.



∃ ► < ∃ ►</p>

Case Study 2: Counterparty Exposures I

• The **exposure** of a particular contract *i* at time *t* is given by:

$$E_i(t) = \max\{V_i(t), 0\} = (V_i(t))^+$$

• The exposure to a counterparty is the sum of the individual contract exposures:

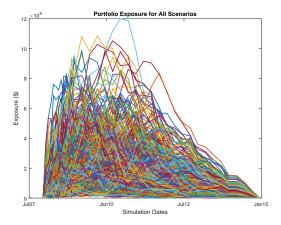
$$E_{cpty}(t) = \sum E_i(t) = \sum \max\{V_i(t), 0\} = \sum (V_i(t))^+$$

In the presence of netting agreements, contracts are aggregated together and can
offset each other. The total exposure of all contracts in a netting agreement is:

$$E_{netting}(t) = \max\left\{\sum V_i(t), 0
ight\} = \left(\sum V_i(t)
ight)^+$$

Case Study 2: Counterparty Exposures II

Exposure of the entire portfolio, at each simulation date and for each scenario.



Case Study 2: Exposure Profiles I

(Non-discounted) exposure profiles:

• PFE – Potential Future Exposure

A high percentile (95%) of the distribution of exposures at any given future date

• MPFE – Maximum Potential Future Exposure

The maximum PFE across all dates

• EE – Expected Exposure

The mean (average) of the distribution of exposures at each date

• EPE – Expected Positive Exposure

Weighted average over time of the expected exposure

• EffEE – Effective Expected Exposure

The maximum expected exposure up to time t

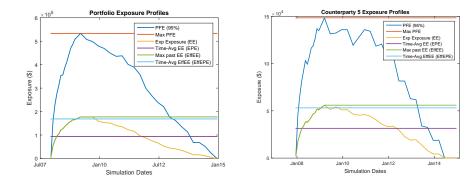
• EffEPE – Effective Expected Positive Exposure

Weighted average over time of the effective expected exposure

	/losconi

イロト 不得 トイヨト イヨト

Case Study 2: Exposure Profiles II

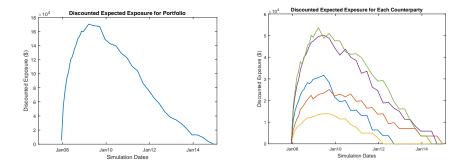


2

・ロン ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

Case Study 2: Discounted Exposures

Discounted expected exposures are computed by using the discount factors obtained from a Hull and White simulation.

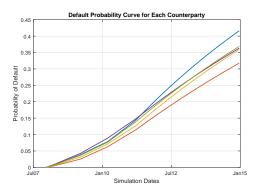


3

・ロン ・四 と ・ ヨン ・ ヨン

Case Study 2: Probabilities of Default

The default probability of a given counterparty is implied from the current market spreads of the counterparty's CDS (see Table in slide 55) at each simulation date, through a bootstrap procedure.



- The second sec

Case Study 2: CVA Computation

CVA is calculated through formula (11), which we write here in a simplified form:

$$\mathsf{CVA} pprox (1 - \mathsf{Rec}) \sum_{j=1}^{b} \left[\mathsf{PD}(t_j) - \mathsf{PD}(t_{j-1})\right] \mathsf{discEE}(t_j)$$

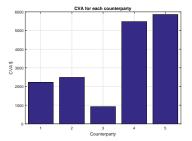
where:

- exposures are assumed to be independent of default (no wrong-way risk) and have been obtained using risk-neutral probabilities
- discEE(t) is the discounted expected exposure at time t
- $PD(t) = 1 Q(\tau > t)$ is the default probability
- $\bullet~\mbox{Rec}=1-\mbox{LGD}$ is the recovery, and for this example it has been assumed equal to 40%

イロン イロン イヨン イヨン 三日

Case Study 2: CVA Results

Counterparty	CVA (\$)
1	2228.36
2	2487.60
3	920.39
4	5478.50
5	5859.30



・ロン ・四 と ・ ヨン ・ ヨン

2

Outline

- Introduction
 - Counterparty Risk
 - Exposures
- 2 CVA
 - General Framework
 - Unilateral CVA
- CVA Calculation
 - General Framework
 - Wrong Way Risk
 - Monte Carlo Valuation
- Case Studies
 - Case Study 1: Single Interest Rate Swap (IRS)
 - Case Study 2: Portfolio of IRS
- 5 Mitigating Counterparty Exposure
 - Netting
 - Collateral
 - Selected References

Mitigating Counterparty Exposure

Mitigation of counterparty exposure can be achieved through⁵:

- netting agreements
- collateralization

⁵See for example Ballotta *et al.*

Netting

In presence of **multiple trades** with a counterparty, **netting agreements** allow, in the event of default of one of the counterparties, to aggregate the transactions before settling claims.

• In the absence of netting, the exposure is:

$$E(\tau) = \sum_{i=1}^{n} w_i E_i(\tau) = \sum_{i=1}^{n} w_i (V_i(\tau))^+$$

where n is the number of contracts, w_i are the asset quantities, and E_i the corresponding exposures.

• A netting agreement is a **legally binding contract** between two counterparties based on which, in the event of default, the exposure results in:

$$E_{netting}(\tau) = \left(\sum_{i=1}^{n} w_i V_i(\tau)\right)^+$$

Example 1

Assumptions

Two counterparties, a bank B and a counterparty C, such that:

- C holds a currency option written by B with a market value of 50
- B has an IRS with C, having a marked to market value in favor of B of 80

Exposures

- The exposure of the bank B to the counterparty C is 80
- The exposure of the counterparty C to the bank B is 50
- The exposure of the bank B to the counterparty C, with netting, is 30

Example 2

The following table shows, at different times, the values of five trades as well as the future exposures to the counterparty, **with and without netting**.

	Time (Months)				
Trade ID	1	2	3	4	5
1	10	-7	8	-6	-2
2	9	0	4	-2	2
3	7	7	5	10	-8
4	-7	-6	3	-6	-6
5	-5	-5	3	6	-6
	Exposures (\$)				
No Netting	26	7	23	16	2
Netting	14	0	23	2	0

Table: Source Ballotta et al (forthcoming).

Example 3

Consider a portfolio of 10 homogeneous assets (long forward contracts) with IVol = 38%, marginal default probability 0.025%, risk free rate r = 3%, dividend yield q = 1% and the same cross-correlation levels.

The simulated CVA of such portfolio shows that **the larger the cross correlation** among assets, **the smaller the benefit** of the netting clause.

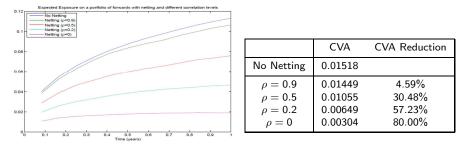


Figure and Table: Source Ballotta et al (forthcoming).

Pao		

・ロン ・四 と ・ ヨ と ・ ヨ と

Collateral Definition

Collateralization is one of the most important techniques of mitigation of counterparty risk.

A **collateral account** is a contractual clause aimed at reducing potential losses incurred by investors in case of the default of the counterparty, while **the contract is still alive**.

Collateral ... in Theory

Consider the bank/investor B and the counterparty C. Let C(t) be the (cash) collateral amount posted by C to B, at time t.

B has no exposure to the contract up to the collateral amount, while its losses are reduced by the collateral amount whenever the exposure exceeds it. The collateralized exposure E_C(t) is defined as:

$$E_C(t) = (E(t) - C(t))^+$$

• Equivalently:

$$E_{C}(t) = E(t) - [C(t) - (C(t) - E(t))^{+}]$$

• The posting of collateral allows a mitigation of the exposure in favor of the part receiving it. This **mitigation** is positive and equal to the amount:

$$C(t) - \left(C(t) - E(t)\right)^+$$

Collateral ... in Practice I

The actual amount of the collateral available at time t depends on the contractual agreement between the parties, specified in terms of:

O Posting threshold H > 0

i.e. the threshold which triggers the posting of collateral: below the threshold no collateral is posted.

The underlying commercial reason for a threshold is that often parties are willing to take a certain amount of credit risk (equal to the threshold) before requiring collateral to cover any additional risk

O Margin period δ

i.e. the interval at which margin is monitored and called for:

$$C(t) = [E(t - \delta) - H]^+$$

In case of default at time τ , the last call occurs at $(\tau - \delta)$.

Most collateral agreements require daily calculations; however, in order to reduce operational requirements, weekly or monthly calculations can be agreed on, which result in increased credit risk

・ロト ・個ト ・ヨト ・ヨト

Collateral ... in Practice II

Minimum transfer amount MTA

i.e. the amount below which no margin transfer is made. The collateral is set to zero if less than MTA:

$$C(t) = [E(t - \delta) - H]^+ \mathbbm{1}_{E(t - \delta) - H > MTA}$$

The presence of the MTA avoids the operational costs of small transactions and contributes to reduce the frequency of collateral exchanges

Owngrade triggers

Sometimes, the threshold and the MTA vary during the lifetime of the contract if the parties agree on the inclusion of downgrade triggers, also known as **rating-based collateral calls**. These clauses force a firm to post more collateral to its counterparty, if it is downgraded below a certain level

Collateral

Example 1: Downgrade Triggers

AIG (2008)

Soon after the collapse of Lehman Brothers, on September 16, 2008 AIG's credit rating was downgraded and it was required to post 15\$ billion in collateral with its trading counterparties, leading to a liquidity crisis that essentially bankrupted all of AIG. AIG could not collect the required funds on such a short notice.

Citigroup, MS and RBS (2012)

Similarly, in June 2012 Moody's downgraded three major derivatives dealers (Citigroup, Morgan Stanley and Royal Bank of Scotland) below the crucial single A threshold, which has led to collateral calls from counterparties.

イロト 不得 トイヨト イヨト

Example 2

The following table provides the exposure of a bilateral contract at different dates and under different assumptions on the threshold H and the MTA:

Time (Months)	0	2	4	6	8	10	12
E(t)	0	3	12	19	25	26	0
$C(t) (H = 0, MTA = 0)$ $E_C(t)$	0	0	3	12	19	25	26
	0	3	9	7	6	1	0
C(t) (H = 1, MTA = 0)	0	0	2	11	18	24	25
$E_C(t)$	0	3	10	8	7	2	0
C(t) (H = 1, MTA = 2)	0	0	0	11	18	24	25
$E_C(t)$	0	3	12	8	7	2	0

Table: Source Ballotta et al (forthcoming).

In general, **the larger the threshold**, **the less effective the collateral protection** and the longer the margining period, the higher the risk of upward movements in the value of the contract, and ultimately in the CVA.

Gap Risk I

Collateralization is not able to fully eliminate counterparty risk.

Sudden movements in the market between two margining dates can increase **both** the exposure and the probability of the relevant default event. This originates gap risk.

Gap Risk is the residual (counterparty) risk which remains because:

- the threshold is non-zero
- the margin period of risk is the finite time needed to:
 - initiate margin call
 - allow the counterparty to post additional collateral
 - liquidate the position and rehedge
- the market can jump (crash) within this time

イロト イポト イヨト イヨト

Gap Risk II

In practice, gap risk is the risk that the corporate defaults, the bank survives and the contract moves in the money, given that, at the last margining date, the counterparty was solvent and the exposure out-of-the money.

In the presence of downgrade triggers, the counterparty may have downgrade triggers with many other banks thus its downgrade may lead to simultaneous sell-offs ("crowded market") leading to falling market (gap risk).

・ロト ・個ト ・ヨト ・ヨト

"Unravelling Gap Risk at Deutsche Bank", FT 26/05/2015

- In 2005 Deutsche bought \$100bn of insurance from Canadian pension funds against the possibility of default by some of the safest companies. Since both sides estimated extremely unlikely the simultaneous default of all companies, they agreed that the pension funds put up a small amount of collateral, initially 9% of the \$100bn.
- During the 2008 crisis, the increased risk of the companies going bankrupt made the trades become more valuable to Deutsche, increasing their value from \$2.63bn to \$10.65bn.
- However, the crisis did also increase the chance that pension funds would not be able to live up to their end of the bargain. With such a small percentage of collateral, the pension funds could ultimately decide it was better to walk away from the trades.
- The bank was supposed to account for this risk, known as the gap risk. The bank used five different methods to calculate gap risk, but instead of increasing the risk, each of the methods reduced it. In the end, the bank reduced its gap risk from \$200m to zero, though potentially, according to independent estimates by the SEC, Goldman Sachs and some ex-employees, it would have had to be around to \$12bn.

Deutsche was taking the upside of the trades, but not the downside.

Re-hypothecation

Banks can use collateral not only as a way of reducing credit risk, but also as a way of funding, through re-hypothecation, i.e. the practice of reusing, selling or lending assets which have been received as collateral.

According to a survey on margin published by ISDA in April 2010, 82% of large dealers reported re-hypothecating collateral received in connection with OTC derivatives transactions (Risk Magazine, October 2010).

If collateral is segregated and not available for re-hypothecation, banks have to assume that they need to raise funding to meet the cashflows over the life of the trade using their own internal funding curves (Risk Magazine, September 2010).

・ロン ・四 と ・ ヨ と ・

Collateral and Corporates

Very few corporates post collateral because they do not have enough liquid assets for the purpose. In addition, for a corporate the operational complexity associated with collateralization (negotiating a legal document, monitoring exposures, making cash transfers, etc.) may significantly increase the cost and resource requirements.

As a result, hedging with derivative can become so expensive that corporates will choose to accept higher levels of exposure instead (Risk Magazine, October 2011).

"The airline's Cologne-based [Lufthansa] head of finance, Roland Kern, expects its earnings to become more volatile - not because of unpredictable passenger numbers, interest rates or jet fuel prices, but because it does not post collateral in its derivatives transactions."

(日) (周) (日) (日)

Outline

- Introduction
 - Counterparty Risk
 - Exposures
- 2 CVA
 - General Framework
 - Unilateral CVA
- CVA Calculation
 - General Framework
 - Wrong Way Risk
 - Monte Carlo Valuation
- Case Studies
 - Case Study 1: Single Interest Rate Swap (IRS)
 - Case Study 2: Portfolio of IRS
- Mitigating Counterparty Exposure
 - Netting
 - Collateral

Selected References

Selected References

- Ballotta, L., Fusai, G. and Marena, M. (Forthcoming), Introduction to Default Risk and Counterparty Credit Modelling
- Basel II, Annex 4 (2006). https://www.bis.org/publ/bcbs128d.pdf
- Basel III (2010), http://www.bis.org/bcbs/basel3.htm
- BIS Semiannual Survey of Over-The-Counter (OTC) Derivatives, November 2015
- Brigo, D. and Morini, M. (2010), Dangers of Bilateral Counterparty Risk: the Fundamental Impact of Close-out Conventions.
- Canabarro, E. and Duffie, D. (2004), Measuring and Marking Counterparty Risk, *Asset/Liability Management for Financial Institutions*, edited by Tilman Institutional Investor Books.

http://www.darrellduffie.com/uploads/surveys/duffiecanabarro2004.pdf

- Cespedes, J., de Juan Herrero, J., Rosen, D., and Saunders, D. (2010), Effective modeling of wrong way risk, counterparty credit risk capital, and alpha in Basel II, *The Journal of Risk Model Validation*, 4(1):71-98
- Hull, J. and A. White,(2012), CVA and wrong way risk, *Financial Analysis Journal* 68(5):58-69

< ロ > < 回 > < 回 > < 回 > < 回 > <