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Plan of the Lecture
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 Overview and Introduction: why Econometrics?

 Merton’s credit risk model and the use of correlations as 
inputs

 From multivariate ARCH models to DCC models

 Markov switching models, alone or in ARCH combo

 Stochastic Volatility Models
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Overview and Introduction
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 Two key methods to forecast credit correlations: using 
empirical joint default rates and/or rating migrations; struc-
tural credit risk modelling based on underlying correlations

 The interaction—often captured by correlations, i.e., statistical 
measures of linear association—of different credit risk positions and 
instruments is at heart of all model-based internal rating systems

 Correspondingly, the trading of OTC derivatives that allow market 
participants to directly trade credit risk correlations is growing
o E.g., collateralized debt obligations (CDOs)

 While the prices of such instruments should reflect the assessment of 
credit risk correlations by traders, the pricing of these derivatives 
ought to depend on forecasts of correlations, creating a logical loop

 There are two major approaches to estimating and forecasting credit 
correlations, both subject to problems and limitations

  Estimation from empirical default rates or rating migrations
 Approach difficult because of scarcity of joint default or migrations
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Overview and Introduction
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 Credit rating agencies such as Moody’s and Standard & Poor’s 
maintain databases of corporate defaults through time
o In Moody’s definition corporate default is triggered by one of three 

events: (1) a missed or delayed interest or principal payment, (2) a 
bankruptcy filing, or (3) a distressed exchange where old debt is 
exchanged for new debt that represents a smaller obligation

 The average corporate default rate for speculative grade US firms 
was 2.78% per year during 
the entire 1920–2014 period

 For investment grade firms 
the average was just 0.15% 
per year

 These very cumulative rates
show that in some rating 
clusters, the defaults are rare
o E.g., over a 20-year horizon there is an 8.4% probability of an 

investment grade firm to default
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Overview and Introduction
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 Underlying equity correlations are strongly time varying and 
they can be easily predicted using time series methods

  Extensions of structural credit risk models à la Merton (1974) 
from a univariate to a multivariate framework

 Practitioners frequently use equity correlations as proxies for asset 
correlations, with corrections to reflect the fact that stock returns 
may be affected by factors unrelated to credit risk

 This gives them one key advantage: the methods are flexible enough 
to capture the fact that correlations are strongly time-varying

 This is where econometrics comes in
o Through simple and yet flexible ways: factor models in which regression 

betas capture commonalities that drive credit risk correlations
o Or through latent factors/effects

_ Multivariate GARCH models
_ Dynamic Conditional Correlation Models
_ Markov and Regime Switching Models
_ Dynamic Copula Models
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 Underlying equity correlations are strongly time varying and 
they can be easily predicted using time series methods



Where Do Correlations Enter? Merton’s Model

7

 In Merton’s model, equity is equivalent to a long call option 
on the assets of the firm

 Consider the situation where we are exposed to the risk that a 
particular firm defaults
o This risk could arise from the fact that we own stock in the firm, or it 

could be that we have lent the firm cash
o Or because the firm is a counterparty in a derivative transaction with us

 Assume that the firm is financed with debt and equity and all the 
debt expires at time t+T

 The face value of the debt is D and it is fixed; the future asset value of 
the firm, At+T, is uncertain

 By first principles, at t+T when the company’s debt is due the firm 
will continue to operate if At+T ≥ D but the firm’s debt holders will 
declare the firm bankrupt if At+T < D and the firm will go into default

 Because the shareholders are residual claimants, to stock holders the 
firm is worth                                                   the payoff of a call with strike 
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Where Do Correlations Enter? Merton’s Model
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 In Merton’s model, debt is equivalent to a short put option on 
the assets of the firm

 Note that the asset value of the firm is the risky variable
 Assuming that asset volatility and the risk-free rate are constant, and 

assuming that the log asset value is normally distributed we get that 
by Black-Scholes:

 Because At+T where Dt+T is the mkt. value of 
debt, the debt holders look as if they sold a put option with strike 
equal to the face value of the debt and go long in the risk-free asset:

from Black-Scholes’ standard formula
 For the model to be implemented we need asset volatility A and the 

mkt. value of the asset At to be solved from one identity, Et = StNt
(share price x number of shares of stock)
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Where Do Correlations Enter? Merton’s Model
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 When Merton’s model is used to price corporate debt and 
assess default risk, this occurs “off stock returns properties”

and 2 equations:
 One of the key inputs is then stock returns volatility, 
 A powerful feature of Merton’s model is that we can use it to price 

corporate debt on firms even without observing the asset value as 
long as time series of stock returns are available

 The risk-neutral probability of default is the prob. that the put option 
is exercised:

o This probability of default is constructed from the risk-neutral 
distribution (where assets grow at the risk-free rate) of asset values and 
so it may well be different from the actual physical probability

 Yet the physical default probability can be easily derived by 
modifying the drift of asset returns, for given volatility

 Default risk is also measured 
in terms of distance to default:
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Where Do Correlations Enter? Merton’s Model
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 Estimating and forecasting correlations for different firms/ 
stocks is a key input in Merton’s model ptf applications

 In practice, we need to manage the credit risk of portfolios of debt
 Default is a highly nonlinear event and is correlated across firms and 

so credit risk is likely to impose limits on diversification benefits
 Certain credit derivatives, such as CDOs, depend on the correlation of 

defaults that we need to model
 Consider a multivariate version of Merton’s model in which the asset 

value of each firm i is log normally distributed:

where zi,t+T is a standard normal variable
 Using same steps as before, the probability of default for the ptf is.
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Modeling GARCH Conditional Covariances
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 The simplest idea is to build time-varying estimates of covariances 
using rolling (moving) averages, 

• Not really satisfactory because 
the choice of m is problematic

 We can use simple exponential 
smoother on covariances:

• The restriction that coefficient 
(1 − ) on the cross products and 
 on past covariance sum to one is 
not necessarily desirable

• It implies that there is no mean-
reversion in covariance

• A high covariance will remain
high forever!
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Modeling GARCH Conditional Covariances
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 This follows from the fact that the model can be written in 
GARCH(1,1) form as ij,t+1 = ij + R1,tR2,t + ij,t which is to be 
compared to:

ij,t+1 = (1− )R1,tR2,t+ ij,t   ij = 0,  = 1− ,  = ,  +  = 1
so that, as a result, E[ij,t+1] = ij /(1-  -  ) fails to be defined 

 The next step is then rather obvious: let’s not restrict  = (1 - ) in 
the GARCH(1,1) type model for conditional covariance:

 When | + | < 1, the process is stationary and the unconditional 
covariance will equal ij /(1-  -  )
• Why are we restricting  and  to NOT depend on the specific pair of 

securities/assets examined?
• Setting  and  (and ) not to depend on i and j yields good outcomes

 GARCH models may be fruitfully extended to modelling
covariances, even though restrictions are needed to keep the 
covariance matrix (semi) positive definite
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Modeling GARCH Conditional Covariances
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Imposing SPD restrictions…



Modeling GARCH Conditional Covariances
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 Restricting parameters to not depend on i and j guarantees that the 
resulting covariance matrix that collects GARCH(1,1) variances and 
covariance is (semi) positive definite, i.e., that for all possible 
vectors w,

 Why is that relevant? Well, just recall that
• This SPD condition is ensured by estimating volatilities and 

covariances in an “internally consistent fashion”
• Sufficient condition for internal consistency is the use of the same 

for every volatility and covariance in exponential smoothing
• Similarly, using a GARCH(1,1) model with α and β identical across 

variances and covariances is sufficient
 Not clear that the persistence parameters , α, and β should be the 

same for all variances and covariances: need to develop better models
 Idea: if we could jointly model variances and covariances, then we 

could impose restrictions that are less heroic, at the cost of higher 
mathematical complexity
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Multivariate GARCH Models: VECH(1,1)
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 Multivariate GARCH models are in spirit similar to their univariate 
counterparts, except that they also specify conditional covariance 
functions, i.e., covariances directly move over time

 Several different multivariate GARCH formulations,  e.g., VECH, the 
diagonal VECH and the BEKK models
• Below it is assumed for simplicity that there are n = 2 assets

 A VECH(1,1) model is specified as:

• Ht is a conditional covariance matrix,  t -1 is an innovation 
(disturbance) vector, t-1 represents the information set at time t − 1

• C is a 3 × 1 parameter vector, A and B are 3 × 3 parameter matrices 
and VECH(·) denotes the column-stacking operator applied to the 
upper portion of the symmetric matrix Ht

• The model requires the estimation of 21 parameters, a lot!

 A Vech GARC(1,1) model is based on the idea of modeling 
covariance matrices as column-stacked vectors
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Multivariate GARCH Models : VECH(1,1)
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• How the  VECH operator works is shown below:

• The elements for the case n = 2 are written out below:

• Conditional variances and conditional covariances depend on the 
lagged values of all of the conditional variances of, and conditional 
covariances between, all of the asset returns in the series, as well as 
the lagged squared errors and the error cross-products

• As n increases, the estimation of the VECH model quickly becomes 
infeasible
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Example of Predicted Stock-Bond Correlations from VECH
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Multivariate GARCH: Diagonal VECH and BEKK
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 VECH conditional covariance matrix may be restricted  so that A 
and B are assumed to be diagonal
• This reduces the number of parameters to be estimated to 9 (A and B 

each have 3 elements) and the model, known as a diagonal VECH, is:

 A disadvantage of the VECH model is that there is no guarantee of a 
positive semi-definite covariance matrix
• It is this property which ensures that, whatever the weight of each 

asset in the portfolio, an estimated value-at-risk is always positive
• The BEKK model addresses the difficulty with VECH of ensuring 

that the H matrix is always positive definite:

• A and B are 2 × 2 matrices of parameters and W is upper triangular

 A Diagonal Vech GARC(1,1) model is a VECH(1,1) in which the 
matrices of parameters are restricted to be diagonal
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Multivariate GARCH: Diagonal VECH and BEKK
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 The positive definiteness of the covariance matrix is ensured owing 
to the quadratic nature of the terms on the equation’s RHS
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Multivariate GARCH: Pros and Cons
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 Multivariate GARCH models present pros and cons:
⊕ Transparent restrictions to impose positivity of predicted varian-

ces, predicted correlations in [-1, +1], and statistical properties
• The key one is stationarity of the resulting process

⊕ Apart from restrictions, the full form of the VEC, Full-Rank Multi, 
and BEKK models allow all second moment to depend on shocks to
all assets/industries/series

⊕ Increasingly easy to apply, 
in spite of the issues listed below



Multivariate GARCH: Pros and Cons
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 Multivariate GARCH models present pros and cons:
⊝ They tend to suffer from a curse of parameter dimensionality, 

unless tight restrictions are imposed, fully general models easily 
carry hundreds of parameters to estimate!
• For instance, BEKK is characterized by

parameters to estimate
• With N = 100 in a simple BEKK(1,1), these are 15,150 parameters
• Even if you have 500 obs. per series, (500 x 100)/15150 = 3.33, less 

than 4 observations per parameter!
• Bad news: BEKK is known to be “relatively” parsimonious

⊝ Because of the many parameters, numerical convergence within 
ML estimation algorithms represents an issue

⊝ When the model is as rich as possible, most of the (thousands of) 
estimated parameters fail to have any interpretation

⊝ Subject to some inconsistencies – only BEKK guarantees that a ptf. 
of BEKK assets follows a BEKK process
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Dynamic Conditional Correlation Models
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• For instance, one interesting (worrisome) phenomenon is that all 
correlations tend to “skyrocket” during market crisis (bear)

• Skyrocket is a way to speak: you do recall that a correlation,

belongs to [-1, 1]
• A first, intuitive but mechanical approach consists in applying GARCH 

models to both variances and covariances in the definition of con-
ditional correlation, e.g.:

 A more fruitful approach still start from the decomposition
but it generalizes it to matrix form:

 The dynamic conditional correlation approach is based on the 
eigenvalue-eigenvector decomposition



The Instability of Correlations: Implications for Market Risk – Prof. Guidolin



Dynamic Conditional Correlation Models
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• Here Dt+1 is a matrix of standard deviations, σi,t+1, on the ith diagonal 
and zero everywhere else

• Γt+1 is a matrix of correlations, ρij,t+1 with ones on the diagonal
• E.g., for n = 2:

 At this point we proceed in two steps:
① Volatilities of each asset are estimated through GARCH or one of 
the other methods considered in first part of the course
② Model conditional covariances of standardized returns derived 
from the first step

 The DCC approach is based on two steps: modelling the 
volatility of each individual asset; modelling the covariances 
of standardized residuals from the first step
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Dynamic Conditional Correlation Models
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• Luckily, the conditional covariance of the zi,t+1 variables equals the 
conditional correlation of the raw returns:

• You need to use an auxiliary variable qij,t+1 to be updated to be able to 
compute conditional correlations:

• Why a need for the qij,t+1 auxiliary variable? Because being able to use 
the ratio above ensures ij,t+1 falls in the interval [-1,1]

• At this point write a dynamic model for the conditional value for qij,t+1, 
like:
in this case of exponential smoothing with parameter 

 The DCC approach is based on applying GARCH/RiskMetrics-
type models to auxiliary variables that ensure ρij,t+1 ∈ [-1,1]
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Dynamic Conditional Correlation Models
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• An obvious alternative is a GARCH-type dynamic model:

• Notice that the correlation persistence parameters  and  are 
common across i and j: the persistence of the correlation between 
any two assets in the portfolio is the same.

• It does not, however, imply that the level of the correlations at any 
time is the same across pairs of assets

• Why the restriction? Usual reason: to guarantee ij,t+1 ∈ [-1,1]
 DCC models are enjoying a massive popularity because they are 

easy to implement in 3 steps:
• First, all the individual variances are estimated one by one
• Second, the returns are standardized and the unconditional 

correlation matrix is estimated
• Third, the correlation persistence parameters  and  (or ) are 

estimated
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Predicted Stock-Bond Correlations from DCC RiskMetrics
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Regime Switching Models
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 Many financial and economic time series undergo episodes in 
which the behavior of the series changes dramatically
• The behavior of a series could change over time in terms of its mean 

value, its volatility, or its persistence
 The behavior may change once and for all, usually known as a 

structural break
 Or it may change for a period of 

time before reverting back to its 
original behavior or switching to
yet another style of behavior; this
is a regime shift or regime switch
• Substantial changes in the 

properties of a series are attributed
to large-scale events, such as wars, financial panics, changes in 
government policy (e.g., the introduction of an inflation target), etc.

 Financial time series are typically subject to structural 
instability, in the form of either breaks or regimes
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Threshold, Markov, and Dummy Switching Models
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 Three classes of models
① Deterministic dummy multiple regression/VARMA models
② Threshold VAR models
③ Markov switching VAR models

 In the first case, switches are deterministic and pre-determined and 
therefore not useful to forecast

 In the other two cases, regime switches are stochastic and 
endogenously determined from the data

 Markov switching models (MSMs) are the most popular class of 
non-linear models that can be found in finance

 Under a MSM there are k regimes: yt switches regime according to 
some (possibly unobserved) variable, St , that takes integer values
• If St = 1, the process is in regime 1 at time t, and if St = 2, in regime 2
• In credit risk management applications, yt is likely to be a vector of 

asset returns
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Markov Switching Models
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 Model also appealing to capture time-varying covariances and 
correlations, either in combo with GARCH or alone

 Typical output consists of time-varying parameters plus a 
classification, either in real time (filtered) or full sample 
(smoothed) of the states the different observations came from

 In a MS model, the process followed by yt switches over time 
according to one of k values taken by a discrete variable St
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Markov Switching Models
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 Movements of state btw. regimes are governed by a Markov process 
such that:

• The probability distribution of the state at t depends only on the state 
at t −1 and not on the states that were passed through at t −2, t −3, . . . 

• Markov processes are not path-dependent
• The model’s strength lies in its flexibility, being capable of capturing 

changes in the variance btw.  states, as well as changes in the mean
 In the most typical implementation, the unobserved state variable, 
zt,  follows a  first-order Markov 
process with transition probs.:

 pij = probability of being in regime 
j, give that the system was in regime
i during the previous period

 In MSMs, the state variable follows a qth order Markov 
process and is often assumed to be unobservable
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Multivariate Markov Switching Models

31

 The methods described above can be easily extended when Rt is a 
vector that collects returns on N assets/firms/sub-portfolios

 The general MSVAR(m, p) model becomes:
Rt+1 = St+1 + 1,St+1Rt + 2,St+1Rt-1 + …+ p,St+1Rt-p + t+1,

t+1  N(0, St+1),   St+1 = 1, 2, …, ,    
 In principle, the vector of intercepts , the p VAR matrices A1, A2, …, 
Ap and the covariance matrix  all become regime-dependent

 The portion Rt+1 = St+1 + … “re-bases” the process when regime 
shifts occur; the portion Rt+1 = … + 1,St+1Rt + 2,St+1Rt-1 + …+ 
p,St+1Rt-p capture shifts in cross- and own-serial correlations of 
returns

 Of course, in our case we care chiefly but not only for modelling and 
predicting regime shifts in the covariance matrix, 
• These models are particularly useful when extended to capture the 

dynamics not of Rt only, but of some variable yt+1 ≡ [Rt+1 zt+1]’ where 
zt+1 is a vector that collects predictors of subsequent returns
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MSVAR Models and Contagion Dynamics
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• Guidolin and Ono (2006) model US stock and bond returns as 
predicted by past inflation, interest rates, industrial production, etc.

• This is a natural conduit to perform stress tests reflecting aggregate 
macroeconomic conditions

 MSVAR models are particularly suitable to model and study 
contagion dynamics
• It answers the question of whether it is possible to use performance in 

any market/ asset to forecast what will happen in other markets
• E.g., do performance today in the European financial sector drive the 

performance of industrial firm the week after?
 In MSVARH(m, p) models, 3 types of contagion effects:

① Simultaneous, through the off-diagonal elements of t+1 that 
capture the dynamics across regimes of correlations
② Dynamic and linear, through the VAR components
③ Dynamic and nonlinear, through the fact that the regime 
variable that drives the process of all variables in yt+1 is common 
to all variables
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MSVAR Models and Contagion Dynamics
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 Let’s examine this issue with a N = 2 example in which Rt ≡ [Rt
US

Rt
Italy ]’: how can Italian traders be affected by US ones?

 We can clearly see the 3 channels:
 Italian returns are affected by contemporaneous US shocks with 

coefficient US,IT
St+1 (this is a regime switching correlation)

 Italian returns are linearly affected by past US returns with 
coefficient aIT,SU

St+1
 Italian returns switch (also IT

St+1, aIT,IT
St+1, and  ) 

according to a state variable St which is the same that drives 
switches in US returns, which may cause nonlinear contagion
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Markov Switching ARCH
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 One last form of contagion has been explored: suppose that in our 
example RUS

t is driven by the Markov state St
US and Rt

Italy by St
Italy

 A form of interesting and testable contagion is when St
Italy = St-1

US

i.e., the market state in Italy today is driven by the market state in 
the US as of last period

 Previous examples stress an implied capability of MS models: to 
capture and forecast time-varying variances and correlations, 
similarly to ARCH and DCC models

 Although at some (relatively low) frequencies, MS directly 
competes with GARCH, at high (daily, weekly) frequencies MS, 
ARCH, DCC, and t-student variants are compatible

 For instance, a MS VECH GARCH model is:
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Markov Switching ARCH
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Markov Switching ARCH Models: Pros and Cons
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⊕ The full flexibility of non-linear models, degenerating in 
semiparametric fitting power when m → 

⊕ Strong economic intuition in terms of business cycles, equity and 
bond market “phases” (bull and bear), and stress scenarios
• A stress scenario may be simply represented as an abrupt transition 

to a “bad regime”
• One can “load up” on the scenario by simply making it very persistent

⊕ Possible to connect regimes and their duration to exogenous 
economic factors

⊕ Nests as special cases standard VAR (linear) and ARCH models
⊝ They imply a large number of parameters: even in the parsimo-

nious DCC GARCH case, these will be at least m(N+N2p+3N+3)
• E.g., with 100 assets, 3 regimes, p = 0, a GARCH(1,1), these are 1,209! 

⊝ Even in the age of EM-MLE and fast computing, estimation may be 
slow and initial conditions will matter

⊝ Actual forecasting performance remain under scrutiny



Markov Switching ARCH Models: Pros and Cons
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⊝ The regime remains latent and 
as such at best one can infer 
(filter or smooth) probabilities 
concerning its nature, with all 
the uncertainty of the case

⊝ Their availability in “software packaged form” is not uniform 
and especially the multivariate case will need further 
development



Multi-Factor Heteroskedasticity and Stochastic Volatility
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 The key feature of (G)ARCH is that it explicitly models the condi-
tional variance only as a function of past returns
• The one-step-ahead prediction approach to volatility modeling is 

convenient as it immediately delivers the likelihood function as the 
product of one-step-ahead predictive densities

 However, in many applications the model is not flexible enough
 Moreover, GARCH does not (always) have a straigthtforward 

continuous time limit, which is often required in derivative pricing
 Under SV approach, volatility (and covariance) is a random variable 

characterized by shocks that do not simply reflect past returns
 Therefore the model is a multi- (at least, two-) factor one

• The predictive distribution of returns is specified indirectly, via the 
structure of the model, rather than directly

• Often, the predictive distribution can only be evaluated numerically

Under stochastic volatility (SV) volatility is random with its own 
shocks, not necessarily related to functions of past asset returns 
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Multi-Factor Heteroskedasticity and Stochastic Volatility
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 The distinguishing feature of SV specifications is that volatility, 
being inherently unobservable and subject to its own random 
shocks, is not measurable with respect to observable information

 An estimate of current volatility state must be filtered from a noisy 
environment

 SV models provide the basis for realistic, state-of the-art modeling 
of option process
• Hull and White (1987) assumed that volatility risk was unrewarded 

and showed that SV models could produce smiles and skews in option 
prices, which are frequently observed in market data

• Of course people who have studied derivative pricing before 1987 
may not know that!

• See http://janroman.dhis.org/finance/Statistics/Stochastic%20Implied%20Trees.pdf, 
it’s a GS research note and from 1997

 How does one take care of the unobservable nature of volatility in 
SV models? Using the Kalman filter or its extensions
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The Kalman Filter
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 Consider the simple univariate model:
 ht is unobservable and we can at simu-

late it from its stochastic process
 () is the measurement or observation 

equation whereas () is the state or transition equation
 ()+ () = state-space representation of the model

• Assume that the initial values of h0 and w0 are given and fixed
 The Kalman filter exploits normality of the shocks and is organized 

around 3 steps: filtering, forecasting, updating, and estimation
 In the forecasting step, we predict ht|t-1

and wt|t-1; under normality of the shocks 
these are optimal forecasts in a MSE sense:

 The second step is updating: at time t, we have a new observation 
on the variable, Rt; we can compute the prediction error ut

Kalman filter is a recursively updated algorithm to filter, forecast 
and estimate the process of latent variables in dynamic models
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 The variance of ut (prediction error var), ψt , is:
 The update of ht and its variance wt as follows:

• These equations are conditionally unbiased and efficient estimators of 
the latent variables and can be used for subsequent forecasting step

 To estimate the parameters γ1, γ2, γ3, γ4, v1, and v2, we use the 
maximum likelihood method: the (partial, conditioning on given 
initial values h0 and w0) log-likelihood function is:

 The log-likelihood can be recursively evaluated by iterating the 
forecasting and updating steps between t = 1 and T, also yielding 
(filtered) time series of latent variables, chiefly ℎ௧
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 These methods can be extended to linear state-space representa-
tions of the dynamics of the Nx1 vector yt: 
• It is often assumed that such a VAR is 

first-order, stationary, and ergodic by 
imposing standard conditions

• However, the Kalman filter is general 
enough to deal with the case of a nonstationary VAR model for the 
hidden state, for instance, when 

• The disturbances are serially independent, with contemporaneous 
covariance structure 𝜴௧

 Asset pricing theory contends that asset prices reflect the 
discounted value of future expected cash flows  all news relevant 
for either discount rates or cash flows should shift prices

 Since news appear almost continuously, if the process is stationary 
sense, it will yield a relationship between news arrivals, market 
activity, and return volatility that in limit, from CLT, becomes:
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• St is a positive intensity process reflecting the rate of news arrivals
 This is a normal mixture model, where the St process governs or 

“mixes” the scale of the distribution across periods
• Clark (1973) used trading volume as a proxy for the intensity variable, 

motivated by high correlation between return volatility and volume
• If St is constant, the mixture model degenerates to a simple Gaussian 

IID process for returns which is at odds with the empirical evidence
 Therefore, St is typically assumed to follow a separate 

(subordinated) stochastic process with random innovations
• In each period returns are subject to two separate shocks, namely the 

idiosyncratic error associated with the (normal) return distribution, 
and also a shock to the variance process, St

 This endows the return process with genuine SV, reflecting the 
random intensity of news arrivals

The continuous time limit of a normal mixture model in which the 
positive intensity follows a subordinated process is a SV model
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• Typically assumed that only returns, transactions, and quotes are 
observable, but not the actual value of St itself  the variance/ 
diffusion process σ2 in                                     cannot be identified

• Because it cannot be identified, it is typical to set σ2 = 1
 The structural randomness and unobserved nature of the news 

arrival process makes the true mean and variance series latent
 The variation in the information flow induces a fat-tailed uncondi-

tional distribution for returns: days with many news display more 
rapid fluctuations and trading than days with a low news count

 If the St process is positively serially correlated, then shocks to the 
conditional mean and variance for returns will be persistent

 For concreteness, we follow Harvey and Shephard (1996) and 
consider a simple SDE for the log of the price (P(t)) of an asset:

 A simple discretization delivers:
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 The process followed by the log-conditional variance is AR(1):

for (0 <) |γ2|< 1  , long-run log-variance γ1/(1 - γ2)
• Andersen et al. (2003) have shown that empirically the log-variance 

process can be well approximated by a normal distribution
 Clear why we may refer to this SVM as a two-factor model: there are 

two shocks, two random drivers of asset returns: 
① dz1,t which enters directly in the model, in a conditionally linear 

fashion
② dz2,t which enters instead through the (transformed, nonlinear) 

process for the multiplicative factor σt
 Taylor (2008) proves that if |γ2|< 1, the log-run, unconditional 

variance of continuously compounded returns is given by:

A log-normal, two-factor SVM implies zero skewness, arbitrarily 
large excess kurtosis, and non-Gaussian (mixture) asset returns
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 While the model is symmetric and returns display zero skewness, 
the unconditional kurtosis is:
• E.g., in the normal case,

 Although returns are uncorrelated, they are far from independent 
because the dynamics of the series appear in the squared returns:

• Even though the expression shows that this is not correct, γ2 is 
considered the driver of persistence of the autocorrelations of squares

 Differently from GARCH, even when the shocks are assumed to be 
Gaussian, the distribution of time t returns conditional on past 
observations up to time t+1 is not normal

 The SVM for log-variance provides a mixture of normal distribu-
tions, i.e., a weighted sum of normal densities, with random weights

 Linearizing the first SDE around μ = 0 ( an empirically plausible 
assumption for high-frequency data), we have
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 This implies:
 The distribution of (lndz1,t)2 is therefore a logarithmic χ2 with 1 

degree of freedom and therefore with an expectation of -1.27 and

• γ0 is a small sample correction that can be dropped for large 
estimation samples, and υt is a zero mean χ2 shock with 1 degree of 
freedom such that 

 The equations that we want to estimate is then the following:

 Assume that υt and dz2,t are uncorrelated, that is, shocks to the 
variance of returns carry no information on shocks to the level

 The two equations are now in appropriate form for the Kalman
filter to be applied, subject to an approximation
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 Comparison btw. the SVM and a standard GARCH(1,1) based on US 
value-weighted CRSP stock returns over a 1963-2016 daily sample
• The initial state, here represented by log-variance, is solved to be -

1.92, simply exploiting the AR(1) nature of the state equation when υt
IID χ2 is replaced by a υt IID N(0, 4.935) approximation

• QML estimation in EViews yields (p-values are computed using the 
estimated Hessian matrix and are in parenthesis):

• The model is covariance stationary: a Wald test of the null hypothesis 
γ2 = 1 is rejected with a p-value of 0.001

• On the same data, MLE of a Gaussian GARCH(1,1) model gives:

• The implied GARCH persistence is almost identical, 0.994

A log-normal, two-factor SV model can be estimated by approxima-
te quasi-ML using the Kalman filter
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 Ruiz (1994) shows that the QMLE is consistent and asymptotically 
normal, but also considerably inefficient
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• The reason is that the approximation may occasionally be poor 
because, when returns are very close to 0, the log-squared 
transformation yields large negative numbers

 Possible to modify the SVM to account for the plausible fact that 
when a large shock to dz1,t generates large positive or negative 
returns (hence a large squared shock υt), it becomes more likely 
that also shocks driving the time-varying variance of dz2,t are large

 We add a new parameter ρ to capture just such leverage effect:

 Estimation on daily S&P 500 returns yields:

• This model yields a maximized log-lik of -30,535.9, which exceeds by 
2.6 the maximized log-lik of -30,538.5 when 𝜌 ൌ 0

SV models may be extended to incorporate leverage effects
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• The Hannan-Quinn information 
criterion (modestly) values the 
additional parameter represen-
ted by ρ, because it is 4.50117 
in the case of the asymmetric, 
5-parameter SVM and 4.50122 
in the case of the symmetric 
4-parameter SVM

• A comparison btw the 1-day-
predicted latent volatility from the SVMs reveals modest differences

 A SV model with allows for non-zero skewness in returns
 One drawback of the Kalman filter approach is that the finite 

sample properties can be poor because the error terms are highly 
non-Gaussian, as shown by Andersen et al. (1999)
• Lo (1988) warns that the common approach of estimating parameters 

of an Ito process by applying ML to a discretization of the SDE yields 
inconsistent estimators

• He characterizes the likelihood function as a solution to a PDE
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 Empirical research in the early 2000s has shown that more 
complicated volatility dynamics compared to the standard SVM 
may be required, such as:

 Or else

 The Brownian motions dW1,t and dW2,t are potentially correlated
 q follows a Poisson jump process uncorrelated with the Brownian 

motion dW1,t and is parameterized by a constant jump intensity λ
• λξ compensates for the price of jump risk
• The scaling factor ξ(t) denotes the normally distributed magnitude of 

the jump in the return process when a jump occurs at time t, so that 
jumps can be both positive and negative

 GARCH and SV models are not orthogonal: a few specific types of 
SVMs may be discretized to become ARCH and the continuous-time 
limit of a few specific GARCH models is a precise type of SVM! 

Empirical fit of SV may be enriched with jumps and mean-reversion
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 Nelson (1990) shows that starting from discrete GARCH(1,1) 
process

if one picks

is the limit as Δ𝑡 → 0 of the log-SV model and it is a EGARCH(1,1)
 This is why EGARCH models are so meaningful
 Alternatively, 

a special GARCH(1,1) converges as Δ𝑡 → 0 (dW1,t ⊥ dW2,t) to 

a mean reverting SV model in levels, called Hull and White’s model

EGARCH(1,1) models are the continuous limit of log-SV models
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 Note that                         so that 
has a continuous-time limit represented by the classical, Black-
Scholes Geometric Brownian motion-with drift model:

 This implies that when in this framework the data want to tell us 
that options ought be priced by Black-Scholes, they will be able to 
tell us, no need for us to impose it!

 Exercises that use SV models with jumps to jointly fit the time 
series of the asset returns and the cross-section of option prices has 
established that SVJ dramatically improves the fit vs. Black-Scholes)
• SV alone has a first-order effect and low-frequency, rare jumps further 

enhance performance by generating fatter tails in the return 
distribution and reducing the pricing error for short-dated options

• If volatility follows a pure diffusion, the implied continuous sample 
path may be incapable of generating a sufficiently distribution over 
short horizons to justify the observed prices of derivatives

GBM and hence BS obtain from a homoskedastic GARCH(0,0) model

The Instability of Correlations: Implications for Market Risk – Prof. Guidolin

From GARCH to Stochastic Volatility Models and Back


