ARTICLE IN PRESS

NH
JOURNAL OF
Mathematical
ECONOMICS
ELSEVIER Journal of Mathematical Economics 1071 (2002) 1-

www.elsevier.com/locate/jmateco

Subcalculus for set functions and cores of TU games

Massimo Marinacdi, Luigi Montrucchio
Dipartimento di Statistica e Matematica Applicata, Universita di Torino and ICER, 10122 Torino, Italy

Received 14 May 2001 ; received in revised form 26 September 2002; accepted 1 October 2002

Abstract

This paper introduces a subcalculus for general set functions and uses this framework to study the
core of TU games. After stating a linearity theorem, we establish several theorems that characterize
measure games having finite-dimensional cores. This is a very tractable class of games relevant in
many economic applications.
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1. Introduction

General set functions, not necessarily additive, are widely used in mathematical eco-
nomics. In cooperative game theory, the key notion of transferable utility (TU) game is
modelled as a general set functiordefined on a collectiorE' of admissible coalitions,
with the only requirement om that it takes on value zero at the empty set. In decision
theory, non-additive set functions have been recently used to model “vague” beliefs, which
in general are not representable by standard additive probabilities (see Schmeidler, 1989).
Though the motivation is very different, the mathematical object is essentially the same in
both cases.

This has motivated a large literature on non-additive set functions in both game and deci-
sion theory, which includes the classic bookaoimann and Shapley (1974h mathematics
as well, non-additive set functions have been the subject of many investigations, mostly in
the wake of the seminal work @hoquet (1953)which anticipated most of the themes of
the subsequent literature.
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Rather surprisingly, in these different strands of literature there has been little attempt
to develop a systematic calculus and subcalculus for general set functions, despite of the
potential insights that such basic mathematical tools could provide. Redepsigin and
Marinacci (2001)have developed a calculus for TU games, in which the derivative is an
additive set function that suitably approximates the TU game on “small” sets. This derivative
is then used to study the core of TU games. In their analysis, a key role is played by linear
sets (coalitions), namely sefs in X such thatv(E) + v(E®) = v(£2), wheres2 is the
grand coalition. Naturally, the empty setand the grand coalitiof? are linear sets. They
show that, under mild assumptions, the core shrinks to a singleton as long as the game is
differentiable at some linear set. Moreover, the core consists of the derivative itself.

A limitation of their analysis is that the core may not be a singleton. This naturally leads
to the question of whether it is possible to extend their approach by using superdifferentials
rather than differentials. This is our purpose in the present work, where a subcalculus for
TU games is introduced and exploited to characterize cores of TU games.

Our starting point was the discovery of a simple characterization of the cores by means
of superdifferentials. As a matter of fact, Bt(F) be the natural adaptation for TU games
of the standard superdifferential of functions on Euclidean spaces. For the core of a TU
gamev it holds

corg(v) = dv(E) N dv(ES),

wherekE is any linear set{heorem 1). Based on this simple characterization we are able
to prove several novel results, as well as to provide simple proofs and a unifying framework
for some important known results. In particular, our “subcalculus” framework is the natural
setting in which some of the powerful methods of Convex Analysis can be used to study
TU games.

More specifically, our paper is organized as followsSkection 3we discuss the main
properties of the superdifferentials. They turn out to be similar to those of the standard
superdifferentials, though the notions are less close than one might think at a first sight.
Among them, it is especially important the sum rule for convex games, which ensures that
d(v1 + v2)(E) = dv1(E) + dvp(E) for all setsE in X. An immediate consequence of this
rule is that the cores of convex games are stable under summation, thats; gere) =
corgvy) + corg(vy).

After having established a “subcalculu§gction 4studies the relations existing among
our superdifferentials, the derivatives studiedHyystein and Marinacci (2001and the
cores. The main resultheorem 13provides conditions ensuring that the core shrinks to a
singleton as long as the differential of the game belongs to its superdifferential. This result
can be viewed as an enrichment of the theory developdeplsiein and Marinacci (2001)

In Section 5we specialize our analysis to measure games. As a matter of fact, TU
games that are relevant for economic applications have often theifeeny(P), where
P = (P1,...,Py) . ¥ — R is a non-atomic vector measure apd RY — Ris a
function such thav(E) = g(P(E)) for all setsE belonging toX. Games of this form
are calledneasure gamesnd standard examples include exchange economies with trans-
ferable utilities and models of production technology. While we do not expatiate here on
these known issues, we refer the readeAtomann and Shapley (1974nd Hart and
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Neyman (1988jor detailed discussions of these examples and of the relevance of measure
games in economic applications.

Based on our subcalculus, we provide simple conditions under which the core of a
measure game consists of linear combinat@fé1 a; P; of the component'g.Pi}l.";l of the
underlying vector measui®. For example, we show that the cores have this form whenever
there exists a linear and radial gete X, that is, a linear sek such thatP(E) belongs to
the relative interior ofR(P), the ranggP(E) : E € X} € R of the vector measure.

The existence of linear and radial sets is a condition often satisfied by economic games of
the formg(P). In fact, these games typically feature some homogeneity condition of the
function g, and it will be seen that even very mild homogeneity conditions deliver linear
and radial sets.

Our results of this section generalize well-known resultBitiEra and Raanan (1981)
as well as recent results Biny et al. (1999) They are based on a novel linearity theorem
for non-atomic vector measureBheorem 2Qthat should be of independent interest. This
theorem relies on results from both Measure Theory and Convex Analysis, an interplay
made possible by the Lyapunov Theorem, which guarantees the Rg#yéo be a convex
set.

Finally, in Section 6we discuss the related works Bfllera and Raanan (1988nd
Einy et al. (1999)as well as the relationships between linear cores and semi-infinite linear
programmingAppendix Agathers some technical lemmas and all proofs.

2. Preliminaries

Throughout the pape®? is the set of players anb theo-algebra of admissible coalitions.
Subsets of2 are understood to be i even where not stated explicitly.
A set functionv : ¥ — R is agameif v(@) = 0. A gamev is

positiveif v(E) > 0 for all E;

boundedf supg. s |V(E)| < o0;

monotonef v(E) > v(E’) wheneverlE’ C E;

continuous at Bf lim ,,_, .cv(E,) = v(E) wheneverE,, 4+ EorE, | E;

superadditivef v(E U E’) > v(E) + v(E’) for all pairwise disjoint set& andE’;

supermodulafor convex) ifv(E U E') + v(EN E") > v(E) + v(E") for all setsE and

E';

e additive(or a charge) ifv(E U E") = v(E) + v(E’) for all pairwise disjoint set& and
E';

e countably additivéor a measure) if(| o, E;) = Y io; v(E;) for all countable collec-

tions of pairwise disjoint setsf;}°;.

Unless otherwise stated, charges and measures are understood to be signed. The set of all
charges (measures) that are bounded with respect to the variation norm is denote@)oy ba
(ca(£2)). Generic elements of §&) are denoted by:, while its non-negative elements are
denoted byP.

A chargem is non-atomidf for all m(E) # 0 there exist®3 C E such thatn(B) # 0
andm(E — B) # 0. It is strongly continuoudf, for every e > 0, there exists a partition
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{E1, ..., E,} of 2in X suchthaim|(E;) <eforalli =1, ..., n. Astrongly continuous
charge is non-atomic, while the two concepts are equivalent for measuré&héseara Rao
and Bhaskara Rao, 1988etm = (m1, ... ,my) : ¥ — RY be avector charge. If eaoh
is strongly continuous, then by the Lyapunov Theorem the rdige = {m(E) : E € X}
is a convex subset @" (seeBhaskara Rao and Bhaskara Rao, 1983

The gamev : ¥ — R is ameasure gam# there exists a positive vector charge=
(P1,...,Py): ¥ — RY, with eachp; : ¥ — R, bounded and strongly continuous, and
a functiong : R(P) — R such that

v(E) = g(P(E)) forallE e X.

WhenN = 1,v = g(P) is called ascalar measure game
The core of a game s

corgv) = {m € ba(2) : m(£2) = v(2) andm(E) > v(E)forall E € X}.

It is easy to see that the core is a wealompact subset of &). A gamev is exactif
corg(v) # @ andv(E) = min,ecorqym (E) for all E € X. All positive convex games are
exact (se&schmeidler, 197R For cores of convex games this is proved in the next result,
which generalizes to bounded convex games a well-known property of positive convex
games.

Lemmal. Letv: ¥ — R be a bounded and convex gari@eny is exact and given any
chain{E;};cs, there ism € corgv) such thatn(E;) = v(E;) forall i € I.

Given a gamev : ¥ — R, a setkE is linear if v(E) + v(E®) = v(£2). Notice that
both 2 and @ are linear sets. Moreover, when care # @, E is linear if and only if
v(E) + v(E®) > v(£2). The set of linear sets is denoted dy

Linear sets are delivered kgfficient coalition structureghat is, at most countable par-
titions { E;},c; of 22 such that)_,_; v(E;) = v(£2). In fact, if v is superadditive and either
v is continuous or the partition is finite, the) is linear for each in I (seeEpstein and
Marinacci, 200).1

We close by reporting the notion of derivative for games studideidstein and Marinacci
(2001) For anyE € ¥, Iet{E”};f":1 be a finite partition of2. Denote by{ E/*}; the net of
all finite partitions ofE, wherer’ > X implies that the partition correspondingiorefines
that corresponding ta.

Definition 2. A gamev : ¥ — R is differentiable atE € X if there exists a charge
Sv(+; E) € ba(£2) such that for allF € E®andG C E,

ny
Z [W(E U Fi* — GI*Y — W(E) — Su(F#*; E) + su(GH, E)|—;O.
j=1

This definition is slightly different from that oEpstein and Marinacci (2001yvhich
originates inEpstein (1999)as we do not require the char§«-; E) to be convex-ranged.

1 In afinite setting, efficient coalition structures have been introducehiioyann and Dreze (1974)
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3. Superdifferentials

Definition 3. A gamev : ¥ — R is superdifferentiable af € X if there exists a charge
m € ba(£2) such that

V(A) < v(E) +m(A) —m(E), 1

for eachA € X.

The charges: that satisfyEq. (1)are calledsupergradientsindov(E) is thesuperdiffer-
ential of v, that is, the (possibly empty) set of all supergradients.

Definition 3is the natural adaptation to our setting of the standard notion of superdifferen-
tial of real-valued functions (séeockafellar, 197))? as it becomes evident by considering
measure games(P) : ¥ — R. Recall that, given a subsdt € R" (e.g.A = R(P)), a
functiong : A — R is superdifferentiablet xo € A if there is a vectory € R, called
supergradientsuch thatg(xp) < g(x) + x - (x — xo) for all x € A. Thesuperdifferential
dg(xp) is the set of all supergradients.

Given a seft, the two superdifferential® (E) andag(P(E)) are related by the following
lemma, which we report for later reference (the simple proof is omitted).

Lemmad4. Given a measure game= g(P) : X — R, for each sef € X a charge of the
form yx - P belongs tav(E) if and only if the vectol € RY belongs todg(P(E)).

We now present few elementary properties of the superdifferentid@l). It is easy to
check thatthe sé(E) is convex and weakclosed, and that the following properties hold:

(i) oAv(E) = A0v(E) forall L > 0and allE € X,
(i) ovi(E)+ dva(E) C a(v1+v2)(E) forall E € X and all games; andvy, with equality
if at least one of the two games is in(52).

GivenE € X, consider the con& ¢ defined by
Kg = {m € ba(f2) : m(G) > 0andm(F) < OforeachF € E°andG < E}.

Clearly, Ko = ba(2)™ and—Kg = Kge. The following result shows the importance of
these cones for our analysis.

Proposition 5. Letv : ¥ — R be a game superdifferentiable at E. Than(E) = dv(E) +
K e for eachE € X.

We now consider two key properties of superdifferentials, non-emptiness and the sum
rule. Our first result shows that for the important class of exact games thie(#tis
non-empty for allE € X.

Proposition 6. If the gamev : ¥ — R is exactthenov(E) # o forall E € X. In
particular, v is exact if and only ibv(E) N corg(v) # o forall E € X.

2 Fujishige (1991)ives a similar definition for supermodular functions defined on finite distributive lattices.
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Since bounded convex games are exact, they are superdifferentiable at &ll seXs
by Proposition 6 The following result shows that it is actually possible to characterize
convexity through superdifferentials.

Proposition 7. A bounded game: ¥ — R is convex if and only ifv(E1) N dv(E2) # &
for every pairkE1 C E».

The next result shows that superdifferentials preserve sums.

Theorem 8. Given any two convex and bounded gamesX — R andv; : ¥ — R, we
have

0(v1 + v2)(E) = dv1(E) + dva(E), 2

forall E € X.

Sincediv(E) = Adv(E) for all A > 0 and all sets, we conclude that, bfyheorem 8
superdifferentials of bounded convex games preserve positive linear combinations. This
fundamental property immediately implies the following result, which shows that cores of
bounded convex games are stable under summation.

Corollary 9. Letv; : ¥ — Randv, : ¥ — R be any two convex and bounded games.
Then

corg(v1 + v2) = corg(vy) + corgvy). )

Notice that in general it only holds the superadditive property @ayet corg(vz) C
corglvy + v2). Equality is no longer true whem andv, are exact. In this case, we have
corg(v1 + v2) = corgvy) + corg(vp), where the upper bar denotes theclosure of a set
(seeMarinacci and Montrucchio (2002r details).

We close by considering measure games. In this case, itis enough to study the existence of
the standard superdifferenti@gd(P(E)) since, byLemma 4 dv(E) is non-empty whenever
dg(P(E)) is non-empty.

Proposition 10. Letv = g(P) : ¥ — R be a measure game. Thén(E) # @ for all
E € X provided one of the following conditions holds

(i) g: R(P) — Ris Lipschitz and concaye
(i) v is superadditive ang : R(P) — R is such thatg(«P(E)) = ag(P(E)) for each
a € (0,1) and eachk € X.

Condition (i) is especially important in cooperative game theory, where the TU games
that satisfy condition (ii) are called market games. They play an important role in the study
of exchange economies (seart and Neyman, 1988
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4. Coresand derivatives

The derivative for games introducedrefinition 2was used by¥pstein and Marinacci
(2001)to study the cores of some TU games. In particular, they study a class of important
economic games that have singleton cores and loosely speaking, they show that the singleton
actually consists of the derivative of the game. Since for real-valued functions the derivative
can be viewed as a singleton superdifferential, it is natural to wonder whether the superdif-
ferentials for games that we introduced are related to the derivativesfofition 2 and,
more importantly, whether they can be used to characterize cores that are not necessarily
singleton. In this section we address these natural queries.

Interestingly, as ifepstein and Marinacci (20013lso in this work linear sets play a key
role. Our first result provides a subcalculus characterization of the core based on linear sets.

Theorem 11. Consider the following conditions

(i) E € A;
(i) core(v) = dv(E) N dv(E®);
(i) Ov(E) N v(E®) £ @.

We have thafi) implies(ii), while the three conditions are equivalent whenexae(v)
is non-empty

In other words, core) = dv(E) N dv(E®) whenE is linear, regardless of whether or not
corg(v) is non-empty. However, if cofe) is non-empty, the three conditions are equivalent.

Having established a subcalculus characterization of the core, we now move to study the
relations of supergradients with the derivatives of games introduc@dfinition 2

Proposition 12. Letv : ¥ — R be a game superdifferentiable and differentiable at E.
Then

Sv(-; E) € ov(E) + K.
If, in addition, E is linear andcore(v) # @, then

sv(; E) € dv(ES).

Inthe lastresult, we saw théi(-; E) € dv(E®) whenE islinear and cor@) is non-empty.
This raises the question of whén(-; E) € dv(E), something that in standard subcalculus
happens in many important cases.

Proposition 13. Letv : ¥ — R be a game differentiable at a linear set Actirev) £ &,
thendv(A) # @ and the following conditions are equivalent

(i) sv(:; A) € dv(A);
(i) core(v) = {8v(-; A)};
(iii) Sv(-; A) € corg(v);
(iv) Sv(A; A) = v(A) andsv(AS; A) = v(AS).
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Moreover if (i) and (iv) hold for some linear set Ahen coreg(v) is non-empty and
coincides with the singletofdv(-; A)}.

Proposition 13an be viewed as a calculus characterization of the core and it sharpens
some results of this kind proved Bpstein and Marinacci (2001 different route is, in
contrast, followed itMarinacci and Montrucchio (2002ayhich provides a characterization
of the cores of convex games based on standard Gateaux derivatives of the Choquet integrals
associated with the games.

5. Measure games

Games relevant for economic applications have often the form of a measurgg@me
Y — R. In this section, we study in more detail the structure of the superdifferentials and
cores of this class of games.

The natural question for cores of measure games is how to relate the underlying vector
chargeP with the charges in the cores. We start by establishing a simple general result of
this type for the important countably additive case.

Proposition 14. Let g(P) : ¥ — R be a measure game and suppose that the vector
measureP is countably additive and that there is a linear sef{e.g. A = @) such that
g is lower semicontinuous a(A) and P(A®). Then for eachm < corgv) there exists a

X-measurable vector functiofi= (f1, ... , fv) : £2 — R" such thatforall E € ¥
N
m(E) = Z/ fidp;. 4
i=17E

Notice thateq. (4)provides two important pieces of information on the charges belonging
to corgv): (i) they are all countably additive; (ii) they are all absolutely continuous w.r.t.
the “average” measurg* = (1/N) Y-~ , P,.

An especially interesting case Froposition 14is when to a givenn in corgv) cor-
responds a constant vector functign: £ — RY, that is, when there exists a vector
(a1, ... ,ay) € RN such thatf(w) = (a1, ... ,ay) forall o € £2. In this casem is a
linear combination of the underlying vector cha®ea most convenient situation. Because
of their interest, we first give a name to the subset of @oreonsisting of such linear
combinations.

Definition 15. The linear core of ameasure game g(P) : ¥ — Risthe subsefcorgv)
of corgv) defined by

Lcorg(v) = corgv) Nsparf Py, ..., Py}.

UsingLemma 4andTheorem 11it is easy to characterize the linear core and to provide
bounds for its dimension. All this makes use of linear sets, thus showing their importance
for Lcorgv).
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Proposition 16. Given a measure game= g(P) . ¥ — R, it holds that
Leore(v) = {x - P x € 3g(P(A)) N dg(P(A%))}, )
for any linear setA. Moreover

dim(Lcore(v)) < dim(R(P)) — dim(sparfP(A) : A € A})) < N — 1. (6)
5.1. Alinearity theorem

We have introduced the linear core, the subset of the core of a measurg@me’ —
R that consists of linear combinations of the underlying vector ch&gehis part of the
core is especially interesting because of its simple form and analytical tractability, and the
games whose core and linear core coincide stand out among games in terms of simplicity
and tractability. This section is devoted to the study of these games, which we call linear.

Definition 17. A measure game = g(P) : X — R s called linear if corév) = Lcorgv),
that is, if cor€v) C spar{Py, ..., Py}

To provide a characterization of linear games, we first state a linearity theorem for vector
measures that should be of independent interest. The following important class of sets will
play a key role.

Definition 18. A setA € X is radial if there is a sek € X such that, for somee (0, 1),

P(A) =tP(E) + (1 — 1) P(E®).

By the Lyapunov Theorem, radial sets form a significant subsit 8f and they include
the sets callediagonalby Epstein and Marinacci (2001that is, the setd € X such that
P(A) = tP(£2) for somer € (0, 1). The next result provides a useful characterization of
radial sets in terms of the relative interior B P). We omit its simple proof, which is based
on the important property of the rang& P) of having the point 21P(£2) as a center of
symmetry, that is, @ 1P(£2)) — x € R(P) for all x € R(P).2

Proposition 19. Let P = (P1,..., Py) : ¥ — RY be a vector charge with each;
strongly continuous. Thea setE € X is radial if and only if P(E) belongs to the relative
interior of R(P).

We can now state and prove the announced linearity theorem.

Theorem 20. LetP = (Py,...,Py) : ¥ — R_’X be a positive vector charge with each
P; strongly continuous and suppoge: X — R is either a sighed measure @&(£2) or a
strongly continuous charge ima(£2). If there exists a radial set A such thédr all E € X,

P(E) = P(A) = m(E) = m(A), 7

3 See, e.gBolker (1969) who studies in detail the geometry B P).
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then

m € spafPy, ..., P,). (8)
If, in addition, it holds that

P(E) = P(A) = m(E) = m(A), 9)
then

m e cond Py, ..., P}

It is important to note the two key features of this result: (i) the existence of just a single
radial setA is required; (i) no assumption, besides either countable additivity or strong
continuity, is made om. Theorem 20s the N-dimensional generalization of a uniqueness
result ofMarinacci (2000) which holds for positive scalar measursandm. In fact, in
the scalar case a satis radial if and only if 0< P(A) < P(£2). Therefore, if there exists
asetA € X with 0 < P(A) < P(£2) and such that

P(E) = P(A) = m(E) = m(A),

wheneverE € X, thenm(E) = (m($2)/P($2)) P(E) by Theorem 20Whenm is positive,
this is the uniqueness resultifrinacci (2000) In that paper, however, uniqueness is also
proved for lambda systems, while here we only considalgebras.

It can be useful to compafiéheorem 2@vith the classic result saying that, given aviy-1

linear functionald., L1,..., Ly defined on a vector space, it hollls= sparfLy, ..., Ly}
whenever
Li(x) =---=Ly(x)=0= L(x) =0, (10)

for all vectorsx (see, e.gAliprantis and Border, 199%. 207). In our setting, the relevant
vector space iB(Y), the space of all boundeH-measurable functions, while the linear
functionals are the ones naturally associated withP1,. .., Py. Even though the classic
result andTheorem 20share the same conclusion, thatsis,e spaf Py, ..., P}, itis
important to notice that our conditiqf@) is much weaker than conditiqi0). As a matter
of fact, (7) only involves sets, that is, indicators if we viel as a subset of the vector
spaceB(X). Not surprisingly, thereforeTheorem 2theeds additional conditions like the
non-atomicity of P and the countable additivity @f, and the proof is altogether different.
On the other hand, while the classic result holds for general vector sfdeesem 2®nly
holds inB(X) as it critically relies on the added structure ensured by this vector space.
As a final remark, observe th&heorem 2Ccould be also interpreted in a social choice
context if we assume that and eachP; are probability measures representing beliefs. For
instance, consider diagonal sets, thatin this setting can be viewed as events over which agents
have unanimous beliefs, s#/(A) = « € (0, 1) foreachi = 1, ..., N. By Theorem 20
linear aggregation occurs whenever the aggregat@reserves the agents’ unanimous
beliefs on some evem, a condition much weaker than the Paretian conditions used in
Bayesian aggregation results (Efshburn, 1984ndMongin, 1995.



ARTICLE IN PRESS

M. Marinacci, L. Montrucchio/Journal of Mathematical Economics 1071 (2002) 1-25 11

5.2. Characterizing linear games

Using Theorem 11and the just establishetheorem 20we can now provide a simple
condition under which a measure game is linear. Recall that a fungtionC R" — R is
said to becalm from belovat a pointxg € A, if there exist a constarit and a radiug > 0,
such that

g(x) = g(xo0) — L|x — xol,

forall x in A and|x — xg| < ¢ (see, e.gRockafellar and Wets, 1997

Theorem 21. Letv = g(P) : ¥ — R be a measure game and suppose one of the following
holds

(i) P is countably additive and there is a linear set (e.g.A. = @) such that g is lower
semicontinuous aP(A,) and P(AS);
(ii) gis calm from below ab and P(£2).

Then if there exists a linear and radial se¢he gamev is linear and
core(v) = {x - P: x € 9g(P(A)) N dg(P(A%))}, (11)

for each linear setsA € X. If g is monotone omR(P), then x can be assumed to be
non-negativei.e. x; > Oforall 1 <i < N.Finally, if v is exact the converse holdbat is
a linear and exact measure game has linear and radial. sets

Remarks.

(i) The core can be empty, that is, ig. (11)it may well happen that
corev) = {x- P: x € 3g(P(A)) N dg(P(A%)} = @.

(ii) The converse does not hold ifis not exact. In fact, consider the following scalar
measure game:

P(E) if P(E) < 3,
v(E) = (12)

P(E)? if P(E) > 3,

with P(£2) = 1. Itis easy to check that can® = { P}. However, there are no radial sets
that are linear, i.e. there are no satsuch thatP(A) € (0, 1) andv(A) + v(A®) = 1.

Conditions (i) and (ii) ofTheorem 2lare both very mild requirements. In particular,
condition (i) is more demanding oR, which is required to be countable additivity rather
than just finite additive, but less an which is only required to be lower semicontinuous
rather than calm from below.

As to the existence of linear and radial sets, measure ggtRghat are relevant for
economic applications typically feature some homogeneity conditions of the function
R(P) — R, and these conditions guarantee the existence of many linear and radial sets for
the measure gamg P).



ARTICLE IN PRESS

12 M. Marinacci, L. Montrucchio/Journal of Mathematical Economics 1071 (2002) 1-25

For instance, say that the measure gameg(P) : ¥ — R isradially concaveat E if,
forallz € (0, 1),

g(UP(E) + (1 — 0 P(E®)) = tg(P(E)) + (1 — Dg(P(E)). 13)

Obviously, v is radially concave aE if and only if it is radially concave at®, andv is
radially concave at all set8 in X wheng is concave.

Definition 22. A measure game = g(P) : ¥ — R is called radially concave if there is
some linear set such that is radially concave ad.

For example, sinc& is a linear sety is radially concave if, for alt € (0, 1),
g(tP(£2)) > tg(P(£2)),

a very mild homogeneity requirement. Another simple case in whistradially concave
is when the se#t such thatP(A) = 2-1P(£2) is linear. In this caseEq. (13)is trivially
satisfied.

Radial concavity is a weak condition satisfied by many economic TU games. For instance,
measure games whose functigns R(P) — R are concave or homogeneous of degree
one are radially concave, as well as the measure games that have a fyncitoR) — R
homogeneous of degrée< 1, providedg(P(£2)) > 0. In particular, market games are
radially concave, as their functigris homogeneous of degree one.

Radially concave games that have non-empty cores admit many radial and linear sets,
and consequently, byheorem 21they are linear. This is stated in the next Corollary.

Corollary 23. Letv = g(P) : ¥ — R be a radially concave measure game and suppose
one of conditiongi) and (ii) of Theorem 2Tholds. Thenthe gamev is linear and for each
linear set A

core(v) = {x - P : x € 3g(P(A)) N dg(P(A%))}.
Moreovert corgv) = {x - P : x € 9g(2"1P(£2))} providedcoregv) is non-empty

Remark. Interestingly, here core) is determined by the superdifferentialgdit 21 P(2),
the center of symmetry ak(P).

Example. Letg : RY — R be a concave and positive homogeneous function and assume
P(2) € RY, . Consider the following two broad classes of functions:

g1(x) = g(x) + h1(x),
g2(x) = g(x)ha(x),

forall x Rﬁ. If h1(tP(£2)) = 0 andh2(tP(£2)) = 1 for all ¢+ > 0, then the gameg, (P)

and g2 (P) are radially concave. In view dEorollary 23 it is easy to provide conditions
under which the cores of these measure games are non-empty. For instance, for the first
class it suffices thath1(2-1P(£2)) # @, while for the other class it is enough to require
thatha(x) € [0, 1] for all x € RY.
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In Theorem 2%and inCorollary 23 we only assumed that the real-valued funcigomas
defined on the rang®(P). In applications, however, it is often the case that the function
g defining the measure game is defined on an open convex Stls®itainingR(P), for
exampleR? itself. In this case, we have two superdifferentials, the ong iafstricted to
R(P),i.e.09gr(p (x), and the one that has relative to the open convex subSet.e. dg(x).
Naturally,dg|z(p) (x) is the superdifferential relevant fdheorem 2landCorollary 23 On
the other hand, the superdifferentiglx) may be easier to compute, especially wigdan
defined orR™.

The next result can therefore be useful, as it shows that it is possible to use directly
dg(P(A)) wheng is concave andi radial.

Proposition 24. LetP = (P4, ..., Py) : ¥ — R be a strongly continuous vector charge
and letg : G — R be a concave functigmnvhere G is an open convex set containkigP).
For the measure game= g(P) : ¥ — R, it holds that

corev) = {x - P: x € 9g(P(A)) N dg(P(A%))},

for each linear and radial set, andcore(v) = {x- P : x € 9g(2-1P(£2))} providedcorgv)
is non-empty

Remark. InreadingProposition 24recall that a bounded concave functnR(P) — R
can be extended to a concave function on the whole sRécéand only if g is Lipschitz
on R(P).

Example (Generalized linear production games). Let us apply the last Proposition to an
important class of linear games. leet T — RY be a continuous map, whefds a compact
metric space, and define a functign RY — R by g(x) = min,eza(r) - x for all x € RY.
Consider the measure game- g(P), which we call ageneralized linear production game
WhenT is a finite set and(r) = ¢’ € RY, we have the linear production games@fen
(1975)andBillera and Raanan (19813ince the functiog is concave ofR”", by a standard
result in Convex Analysis (see, eldiriart-Urruty and Lemarechal, 1993wve have

dg(x) = co(a(?) : t € I(x)),

wherel(x) = {t : a(f) - x = g(x)}. Consider a diagonal sdtwith P(A) = «a P($2) for some
a € (0, 1). Simple algebra shows that

I(P(A)) = I(P($2)) = {t 1 a(r) - P(£2) = g(P(£2))}.
Since each diagonal set is linear, Byoposition 24
corgv) ={x- P: x € co(a(®) : a(t) - P(2) = v(£2))}.

This includes Corollary 2.7 dBillera and Raanan (1981yvhich therefore follows from
Proposition 24using standard Convex Analysis.
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5.3. Differentiability

Proposition 16characterized the linear core of a measure game g(P) : ¥ — R
through the superdifferentials of the functign R(P) — R, andTheorem 2Iprovided a
simple condition under which the entire core can be characterized in this way. In view of
standard subcalculus and in viewfoposition 13it is natural to wonder what happens
when some differentiability is assumed gnin particular, whether the core shrinks to a
singleton.

Proposition 25. Letv = g(P) : ¥ — R be a measure game and suppose one of conditions
(i) and(ii) of Theorem 2holds Ifthere is alinear and radial set A such that g is differentiable
at P(A), then

corgqv) =& or corgv) = {Vg(P(A)) - P(-)}.

If, in addition g is differentiable and superdifferentiable at bofiA) and P(A°), then
core(v) # & if and only if Vg(P(A)) = Vg(P(A®)).

Differentiability has therefore a remarkably strong impact on the core: even justassuming
thatg is differentiable atP(A) forces the core to be at most a singleton.

Example. Letv = g(P) : ¥ — R be a market game, that is,is superadditive angd is
homogeneous of degree oneg i differentiable atP(£2), then corév) = {Vg(P(£2)) - P}.

In fact, by Proposition 10dg(P(E)) # @ for all E € X. Moreover, all diagonal sets are
linear andg is differentiable at all them because it is differentiablePa®). In particu-

lar, Vg(P(A)) = Vg(P($2)) for all diagonal sets. Hence, tBroposition 25corgv) =
{Vg(P(£2)) - P} = {Vg(P(£2)) - P}. This result is essentially due faumann and Shapley
(1974)and plays a key role in their analysis of exchange economies. Interestingly, in our
approach this result follows easily froRToposition 25

Unlike Proposition 25the next result does not requireto be radial, at the cost of a
stronger assumption on the functign

Corollary 26. Letv = g(P) : ¥ — R be a measure game and suppose one of conditions
(i) and(ii) of Theorem 21holds If there is a linear set A such thatis radially concave at
A and g is differentiable on some neighborhood WPoh), then

corgv) =@ or corgv) = {Vg(P(A)) - P(-)}.

Remark. If g : R(P) — Ris concave and differentiable AtA), then the corollary holds.

4 Recall thatg can be differentiable aP(A) only if g is defined (or can be extended) on a suitable open subset
of P(A).
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6. Concluding remarks

1. Theorem 2hyeneralizes in several ways a well-known resuBiiera and Raanan (1981)
which establishes that cores of some measure games consist of linear combinations of
measures (Corollary 2.6, p. 422).

First, their result requires the existence of a lineadsaich that botiP(A) = 2~ 1 P(2)
andv(A) = 2~ 1u(£2). We only requireA to be a linear and radial set.

Second, they require thate pNA, the supnorm closure of polynomial functions of
several non-atomic measures defined on a space isomorphiclfoih its Borel sets
(Aumann and Shapley, 1974, p. 152his topological structure is crucial for their results,
andg(P) € pNAif and only if g is continuous orR(P). In contrast, we do not make any
topological assumption, and our result holds for any measure game

Third, their Corollary 2.7 establishes the positivity of the coefficients of the linear
combinations for non-atomic linear production games, a special class of measure games
whose functiong are monotone. Ourheorem 2linstead, holds for any measure game
having a monotone functiop

Finally, Theorem 2%ollows from a subcalculus approach to the core and from a gen-
eral linearity result for vector measures that put this result in a broader perspective. In
particular,Proposition 2&andCorollary 26are a dividend of this more general approach.

Notice that Corollary 2.6 oBillera and Raanan (19813 stated forv that are not
necessarily measure games, while our theory has been developed for measure games.
However, it is easy to formulate a similar versionigfeorem 21as follows.

Proposition 27. Let A be a linear set of a gamecontinuous atz and at£2. Assume
there exists a positive hon-atomic vector measiee (Py, ..., Py) such that

(i) AisradialinR(P),
(i) forallE, P(E) = P(A) = v(E) = v(A) andv(E®) = v(A°).

Then corglv) C spar{P, ..., Py}.

2. Corollary 23extends some recent interesting resultgiofy et al. (1999)Using different
techniques, they prove (Theorem C) a special caseoobllary 23for measure games
whose functiory : R(P) — R is concave and continuous B¢ts2), rather than for general
radially concave measure games, as we can do on the basis of our generalizaiiienzof
and Raanan (1981)

3. Linear cores are very tractable objects. In fact, it is easy to check that to compute the linear
core of a measure gamgP) is enough to solve the following optimization problem in
RV:

min Za,P (),

(01,...,an)eR

St Y aix; > glx1, ..., xy) forall(x1,....xy) € R(P.
i=1
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This problem is linear and involves finitely many variables—the coefficiénts. . . ,
ay)—that appear in infinitely many constraint—the inequali@,@il aix; > glx, ...,
xy) with (x1,...,xy) € R(P). Problems of this type are called semi-infinite linear
problems and there is a large literature dealing with their theoretical and computa-
tional features (see, e.¢oberna and Lopez, 1998Since they involve only finitely
many variables, computationally they are in general more tractable than standard
infinite programs and it is often possible to study them via their finite linear
subprograms.

4. In proving the results on measure gameSeadtion 5ve made use of the following result,
which might be of independent interest.

Proposition 28. Letv = g(P) : ¥ — R be a measure game. Thel elements ircorgv)
are non-atomic. Moreovetthey are strongly continuous provided one of the following
conditions holds

(i) fis calm from below a® and P(£2);
(i) fis lower semicontinuous &and P(£2), and P is countably additive

Appendix A. Proofs

Lemma 1. Given anyX-measurable simple functiofi : 2 — R, the Choquet integral
[ fdvis still well defined. Now, letf, ¢ : £2 — R be any twoX-measurable simple
functions. LetX ;. be the smallest algebra that makgsand g measurable. A s, is
finite, there is a (possibly zero) measuweon X s, such thatv(E) > m(E) for all E €
Yq. Hence,v — m is a positive convex game oB's,, and so, by a classic result of
Choquet (1953)((f +g)d(v—m) > [ fd(v—m)+ [ gd(v—m). Inturn, this obviously
implies [(f 4+ g)dv > [ fdv+ [ gdv. We conclude that the Choquet integfaf dv is a
superadditive functional on the vector spakgY) of X-measurable simple functions.

SetC = {m : misfinitely additive m > vandm(£2) = v(£2)}. Sincev is bounded,
C C ba(£2), and soC = corgv). Now, let X* be a subalgebra of on which there is a
chargen* : * — R such thain* € core(vjz+). Since/ f dvis a superadditive functional
on Bg(X), by the Hahn—Banach Theorem there is a finitely additive extemsiod — R
of m* such thatn € C. Thenm € corg(v).

Consider now the chaifE;};c;. Let X'; be the algebra generated by a finite subchain
{Ei}ics. Letm; : X¥; — R be the, possibly zero, charge ary such thatv(E) > m(E)
for all E € X;. By well-known results (see, e.§), there existsn’ € corg(v — m ) such
thatm'(E;) = (v —my)(E;) for all i € J. Hence, there isi* € corgv|x,) such that
m*(E;) = v(E;) foralli € J. Inturn, this implies the existence of an extension ¥ — R
of m* such thatn € C, and san € corg(v).

LetA; = {m € corgv) : m(E;) = v(Eforallj € J}. Since corév) is weak-compact,
the setA ; is weak-compact. Moreover, by what we just provetl; # @. The collection
{As}J:7c1and|f|<o0) has the finite intersection property, and so its overall intersection is
non-empty. Lein be an element of such intersection. We hawve corgv) andm(E;) =
v(E;) foralli € I, as desired.
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Proof of Proposition 5. The inclusiordv(E) C dv(E) + K ge is obvious. As to the opposite
inclusion, letm € dv(E) + Kgc. Then, for suitablen; € 9v(E) andmo € K ge, we have,
forall A € X,

V(E) + m(A) —m(E) = v(E) +m1(A) + m2(A) — m1(E) —m2(E)
= v(A) +m2(A) — m2(E)
= v(A) + ma(E°N A) —m2(E N A®) > v(A), 0

and som € dv(E).

Proof of Proposition 6. Let v be exact and leE € X. By definition, there exists: €
corg(v) such thatm(E) = v(E). Sincem(A) > v(A) for all A € X, it follows that
m € dv(E), and sodv(E) N corg(v) # &. Conversely, suppose that(E) N corgv) # &
foreachE € X. Itis easy to check that € dv(E) N core(v) impliesm(E) = v(E), and so
v is exact. a

Proof of Proposition 7. By Lemma 1 there exists: € corg(v) such thatn(E1) = v(E1)
andm(E2) = v(E2). This immediately implies that € dv(E1) Nav(E2), and sOv(E1) N
dv(E2) # @. As to the converse, suppose thatE1) N dv(E2) # & for everyE1 C Es.
Let E and E’ be any two sets of. Letm € dv(E N E’) N dv(E U E'). Then,v(E) <
WEUE')—m(EUE")4+m(E)andv(E’) < wWENE") —m(ENE') +m(E'). By adding
up we getv(E) + v(E') < v(EU E’) + v(E N E'), as desired. Hence,is convex if and
only if dv(E1) N ov(E2) # &. O

Proof of Theorem 8. Let Bf(z‘) ={f € B(X) : 0 < f < 1}, which are the ideal sets in
the terminology oAumann and Shapley (19743iven a bounded convex gamgconsider
the functionab* : B(X) — R defined by

win | uf=0d feBf (D),
V= { Ceo fé B (D).

The integralfc;roo v(f > 1) dt is the Choquet integral of w.r.t. v. It is easy to check that,
by Lemma 1 f0+°° v(f > 1) dris a well defined Riemann integral. Again hgmma 1 it
is easy to check that* is a proper concave function a®(X). Moreover,v*(1g) = v(E)
forall E € X.

Givenm € ba(£2), letL,, : B(X) — R be defined byL,,(f) = | f dm. Letdv*(f) be
the standard superdifferential of : B(X) — R at f. We show thabv*(1g) = {L,, :
m € dv(E)} forall E € X. Clearly,ov*(1g) C {L,, : m € dv(E)} forall E € X. As to
the converse inclusion, let € dv(E). By definition,v(A) — m(A) < v(E) — m(E) for all
A € X. Hence, for allf € B (X),

1 1
V() = Ln(f) = / v—m)(f=0dr < [w(E) - m(E)]/ dr,
0 0

and soL,, € dv*(1g). This proves the converse inclusion, so that(1lg) = {L,, : m €
ov(E)} for all E € X. With a slight abuse of notation, we write* (1g) = 0v(E).
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Thereisf € BI(E) in a neighborhood of which (w.r.t. the norm topology) bethand
v; are bounded (e.gf = alp for somea € (0, 1)). Then, by Theorem 20 dRockafellar
(1974) for all E € X we have:

vy + v2)(E) = vy + v2)*(E) = d(vi + v3)(E)
= 0Vi(E) 4 0V5(E) = dv1(E) + 0va(E).
O

Proof of Proposition 10. Considering condition (i), the functiogadmits a concave ex-
tension on the entire spaB&’. Hence, we can think of as defined oRY . Letxo € R(P).
Sinceg is concave oY, by a standard result in Convex Analysis (see Theorem 23.4 of
Rockafellar (1970)there is a vectoy € RY such thatg(x) < g(xo) + x - (x — xo) for all

x € RN.Hence,x - P € 3v(E) if P(E) = xo.

Now considering condition (ii), leK and W be, respectively, the cone and subspace

generated by the convex sR{P). Since Oe R(P), W = K — K (see Theorem 2.7 of
Rockafellar (1970) Define the functiory’ : K — R by g’(Ax) = Ag(x) with x € R(P)
andx > 0. The functiory’ is well-defined and itis superadditive and homogeneous of degree
one onk. Defineg” : W — R by g’ (w) = supg’(x) + £(y) : x,y € Kandx — y = w}.
The functiong” as well is superadditive and homogeneous of degree ofiié. @iven any
xo0 € R(P), let Wy be the subspace &F generated by, i.e. Wo = {axp : @ € R}. Define
the linear functionLg : Wog — R by Lo(axg) = ag(xg) for all « € R. If @ > 0, clearly
Lo(axg) = g”(axg) for all w € Wo. If o < 0, we have:

L(axo) = ag(xo) = (—a)(—g(x0)) = (—a)g" (—x0) = g"(ax0).

By the Hahn—Banach Theorem, there exists a linear functibnaW — R that extends
Lo on W and such thaL (w) > g”(w) for all w € W. SinceW is a subspace @&", there
exists a linear functional* : RY — R that extendd. onR". Let x* € R such that
L*(x) = x* - xforallx e RN. Then,x* - w > g"(w) forallw € W andx* - xg = g(xo).
Hence, given any € R(P), we haveg(x) — g(xo) < x*-x — x* - xo0, which implies
x* € dg(xo). We conclude thadg(xg) # &, as desired. O

Proof of Theorem 11. We first prove that (i) implies (ii). LeE € A. It is easy to see that
corg(v) C dv(E) NAv(EC). Infact, for eachn € corg(v) it holds thatn > v, m(E) = v(E),
andm(E®) = v(E®). We now prove the converse inclusion, thatds(E) N dv(E®) C
corev). Letm € 9v(E) N dv(EC). Since

0=v(9) < v(E) —m(E),
we havem(E) < v(E). Moreover, since
V(£2) = v(E U E®) < v(E) + m(E°),

we haven(E®€) > v(E®). By taking E€ in place ofE, a similar argument shows that E) >
v(E) andm (E®) < v(E®), and we conclude that(E) = v(E) andm(E®) = v(E®). Finally,
each seB € X can be writtena8 = EU F — G, with FN E = @ andG C E. Hence,

V(B) =v(EUF = G) < v(E) +m(F) —m(G) = m(E) + m(F) — m(G) = m(B),
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and san € corgv).

Next we prove that (iii) implies (i) when cote) # @. Letm € dv(E) N dv(EC). As we
have just seen, this implies that(E¢) < v(E®) and thatv(£2) < v(E) + m(E®). Since
core(v) # &, we havev(E) + v(E®) < v(£2). Hence,

v(£2) < v(E) +m(E®) < v(E) + v(E®) < v(£2),

and we conclude that € A. To complete the proof, observe that (ii) obviously implies
(iii) when corgv) # @. O

Proof of Proposition 12. Suppose thak is a maximum set fo, that is,v(E) > v(A) for
all A € X. Then,év(-; E) € K. In fact, we have:

n),
0= |i£n Z [V(E U F* — G*) — w(E) — 8v(F**; E) + §v(G**; E)|
j=1

nj
> Ii&n Z V(E) — v(E U F* — G'*) + Su(F**; E) — 8u(G?*; E)
j=1

nj
> |i£n Zau(FM; E) — v(G**; E) = 8v(F; E) — 8v(G; E),
j=1

and sodv(G; E) > 8v(F; E) for eachF € E®andG C E. In particular,sv(G; E) >
Sv(; E) > 8v(F; E), and we conclude thav(-; E) € Kg. Letm € dv(E). By definition,
v —m is a game with maximum d&t. Hence, by what we just provedly —m)(-; E) € Kg,
which impliessv(-; E) € m(-) + Kg, and sd®v(-; E) € dv(E) + KE.

Suppose thak € A and that cor@) # @. Letm € corgv). The game — m is a game
with maximum att. Henceg(v—m)(-; E) € Kg, which, byTheorem 1landProposition 5
implies

Sv(-; E) € corev) + Kg = dv(E) N dv(E®) + Kg C I(E®) + Kg = dv(E®),

as desired. O

Proof of Proposition 13. Since A is linear, by Theorem 1lcorgv) € dv(A) and so
corg(v) # & implies dv(A) # @. Having established thatis superdifferentiable a,

we can prove that (i) implies (iv). Let € core(v). By Theorem 11m € dv(A°), and so
v(A) < V(A% + m(A) — m(A®). Moreover,sv(-; A) € dv(A) impliesv(A®) < v(A) +

SV(A%; A) — Sv(A; A). Adding up, we gebv(A; A) —m(A) < Sv(A%; A) —m(A®). On the
other hand, since—m has a maximum &, by what we proved in the proof &roposition 12
we haves(v —m)(-; A) € K4, and so

Sv(A; A) —m(A) > 0> 8v(A% A) — m(A®).

All this implies thatsv(A; A) — m(A) = Sv(A%; A) — m(A®) = 0. Sinced € A and
m € corgv), we conclude thatv(A; A) = v(A) andsv(AS; A) = v(AC).
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We now show that (iv) implies (ii). Lek € corgv). SinceS(v—m)(-; A) € K 4, then for
eachG C A it holds thatsv(G; A) > m(G). Along with Sv(A; A) = v(A) = m(A), this
implies thatm (G) = §v(G; A) for eachG C A. A similar argument shows that(F) =
Sv(F; A) for eachF C A€, and san = $v(-; A), which proves that cole) = {v(-; A)}.

Since (ii) trivially implies (iii), it remains to prove that (iii) implies (i). Since covg # @
andA € A, by Theorem 11v(-; A) € corg(v) = dv(A) N dv(A®) C dv(A).

Suppose that (i) and (iv) hold for somee A. By (iv), v(£2) = §v(£2; A) and together
(i) and (iv) imply that, for allE € X,

V(E) < Sv(E; A) +v(A) — Sv(A; A) = Sv(E; A).

Hencedv(-; A) € corg(v) and so, by what we proved above, agpe= {§v(-; A)}. |
Proof of Proposition 14. We first prove the following Claim.

Claim. Letv = g(P) : ¥ — R be a measure game and supp@sie countably additive.
If there exists a linear set such thatg is lower semicontinuous at(A) and P(A®), then
corg(v) C ca(£2).

Proof of Claim. If core(v) = &, the claim is trivial. Hence, we assume core# . The

proof follows an argument similar thumann and Shapley (1974). 173). LetE, 1 £2

and letm € corgv). ThenP(E,, N A) 1+ P(A) and P(E,, N A®) 1+ P(A®). Thanks to the
lower semicontinuity at the point8(A) and P(A®), we can write:

liminf m(A N E,) > liminf g(P(A N Ey,)) > g(P(A))
= g(P(£2)) — g(P(A®)) > g(P(£2)) — lim inlf g(P(A° N Ep)) = m(£2)
—liminf m(A°N E,) = limsupm(A N E,),

andsolimm(ANE,) = m(A),asg(P(A)) = m(A).Onthe other hand, a similar argument
shows that limm(A® N E,) = m(A®). Hence, limm(E,) = m(§2), which implies thain
is countably additive. This ends the proof of the Claim. O

By the Claim, corév) C ca(£2). Itisalso easyto checkthateaghe corgv) is absolutely
continuous w.r.tP*. Actually, supposeé*(E) = 0 for someE € X. Then,P;(E) = O for
all i. Hencem(E) > g(P(E)) = g(0) = 0. On the other hand,

m(§2) — m(E) = m(E®) > g(P(E®)) = g(P(£2)) = m(£2).

Thereforem(E) < 0, and we conclude thai(E) = 0, andm < P*.

By a variation of the Lebesgue Decomposition Theorem, there exist meazwﬁéisl
such thatn; < P, foreachi = 1,..., N, andm(E) = Y\, m,(E) for all E. Moreover,
the measure{sn,-}i"’:1 are mutually singular anfim||(E) = Zi"’zl lm];(E) for all E (see,
e.g. Proposition 8.5.1 @haskara Rao and Bhaskara Rao (1983y the Radon—Nikodym
Theorem, there exists B-measurable vector functiof= (f1, ..., fy) : 2 — R such
that, for allE € X, m(E) = Y14 [, fi dP;.
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Proof of Proposition 16. By Lemma4 x - P € dv(A) if and only if x € 9g(P(A)). On the
other hand, byrheorem 11x - P € corg(v) if and only if x - P € dv(A) N dv(A®). Hence,
x - P e corgv) if and only if xy € dg(P(A)) N dg(P(A®)). This proveq5).

We now prove6). Assume thatcorg(v) # @. Setdim(R(P)) = nand dimspar{ P(A) :
A € A}) = k. Clearly,k < n < N.Let{A;}*_; € A be such that the vectof®(A,)}*_,
be linearly independent. We shall make use of the canonical isomorphism

R :spafPy, ..., Py} — spanR(P),

defined byR(x - P) = n(x) for all x € RY, wherexr : RY — sparR(P) is the or-
thogonal projection. It is easy to check (ddarinacci and Montrucchio, 2002Hthat R
is well-defined and is a linear isomorphism. Moreover, we have- R(m) - P for all
m € spaf{P, ..., Py}.

Hence, givem: € Lcorgv), we haven(-) = R(m) - P(-). Consequently, the séR(m) :
m € Lcorgv)} € RY belongs to the affine spade defined by the linear equations
E-P(A) =v(A)fori=1,..., k. SinceRis anisomorphism, diiCcorgv)) < dim(M).
The dimension oM is equal to the dimension of the spadg defined by the homogeneous
linear equationg - P(A;) = Ofori = 1,...,k. As Mg = spar({P(A) : A € A)*, we
conclude that dirdiCcorg(v)) < dim(M) = n — k, as desired.

Finally, being P(£2) # 0, dim(spar{P(A) : A € A})) > 1, which proves the last
inequality of(6). O

Proof of Theorem 20. Assume thain € ca($2). We first show thatP(E) = 0 implies
m(E) = O0forall E € X. Infact, consider the sefsN A andE N A®. We haveP(EN A) =
P(EN A% = 0, and SOP(A — EN A) = P(A) and P(A° — E N A®) = P(A®). By (7),
this impliesm(A — EN A) = m(A) andm(A® — E N A% = m(A°), sothatn(EN A) =
m(E N A% = 0, and we conclude that(E) = m(EN A) + m(E N A®) = 0.

Next we show thatn is non-atomic. Letn(E) # 0. By what has been just proved,
P(E) # 0. In particular,seff = {1<i < N : P;,(E) > 0} andP = {P;}jes. By Lyapunov
Theorem there exists a partitiditt, B! of E such thatP(EY) = P(Bl) = 27 1P(E). If
bothm(EY) # 0 andm(BY) # 0, we are done. Suppose, in contrast, eitheEl) = 0 or
m(BY) = 0. W.l.o.g., suppose thai(E') = m(E). Again by Lyapunov Theorem, there
exists a partition£? and B2 of E' such thatP(E%) = P(B? = (1/2)P(EY). If both
m(E?) # 0 orm(B?) # 0, we are done. Suppose, in contrast, that eith@E?) = 0
or m(B?) = 0. W.l.o.g., assume that(E?) = m(EY). Proceeding in this way, either we
find a setB € E such that bothn(B) # 0 andm(E — B) # 0, or we can construct a
chain{E"},>1 such thatP(E") = 27" P(E) andm(E") = m(E) for all n > 1. Hence,
being(),-, E" € X, and(,., E" € E, we haveP(),-, E") = 0 andm((,-, E") =
m(E) # 0, a contradiction since we hav&(,., E") = 0 iff P(N,-, E") = 0. Hence,
there exists some s# C E such that bothn(B) # 0 andm(E — B) # 0, and son is
non-atomic.

Therefore, under both hypothesesmywn is strongly continuous. Consequently, by the
Lyapunov Theorem, the rang& P, m) of (P, m) : ¥ — R¥*lis a convex subset &tV *1,
SetW = span(R(P, m)) and let

RP(A) = {)C elR: (P(A), x) € R(P, m)}»
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where A is the set ofEq. (7) By Eq. (7) Rpay = {m(A)}. Hence, by Theorem 6.8 of
Rockafellar (197Q)(P(A), m(A)) € ri(R(P, m)). In turn, this implies that0, 1) ¢ W. For,
suppose to the contrary th@, 1) € W. Since(P(A), m(A)) € ri(R(P, m)), there ist > 0
small enough so thatP(A), m(A)) + #(0, 1) € R(P, m). Since this contradictg&q. (7) we
conclude that0, 1) ¢ W.

By a standard separation theorem (see, e.g. Corollary 11.R@adafellar (1970) there
is 7 € RV*1 anda € R such that,

T-y<a<m-(01),

forallye W.AsOe W,« > 0. Henceyr - (0,1) > o > O implieszy4+1 > 0. Moreover,
sinceW is a vector space, for eaghe W we haver - (Ay) < « for all » € R. Clearly, this
impliesw -y =0, forally € W. Therefore, we havey1m(E) + ZiNzl 7; P;(E) = 0, for
all (P(E), m(E)) € R(P,m). We conclude that: € spariPy, ..., Py}, with coefficients
{(=(m/an+ DN

Finally, if Eq. (9)holds, then{(x, —1) : x € Rﬁ} NW = &. By now, it is easy to see
that, by applying a standard separation result on these two closed and disjoint convex sets,
we can find a vectorr € RV*1 with 7; /7y, 1 < Oforalli = 1,..., N, and such that
ay+1m(E) + Zfil m; P;(E) = 0. Hencem € cong Py, ..., Py}. O

Proof of Theorem 21. Let A be linear and radial. Byheorem 11lcorgv) = dv(A) N
9v(A®). Suppose col@) # @. For allm € corgv) and for allE € X we have:

g(P(E)) < g(P(A)) + m(E) —m(A),
g(P(E®)) < g(P(A®)) + m(E®) — m(A°).
Hence,P(E) = P(A) impliesm(E) = m(A), and soEqg. (7) of Theorem 2Cholds. To

complete the proof we now prove a Claim.

Claim. Letv = g(P) : ¥ — R be a measure game dfis calm from below at 0 ané(2),
there existy > 0 such thafm||(E) < yP*(E) for all E € X and allm € corgv).

Proof of Claim. Letm € corgv). By Theorem 11m € dv(£2) andm € dv(&). Since
m € (S2),

§(P(E)) — g(P(£2)) < —m(E®), (A1)

forall E € X. Moreover, since is calm from below aP(£2), there existy > 0 ande1 > 0
such that

g(P(82)) — g(P(E)) = y1|P(E) — P(£2)], (A2)

for all E € X such that| P(E) — P(£2)] < e1. Hence,Egs. (A.1) and (A.2)mply that
m(E®) < y1| P(E®)| for all E € X such that P(E®)| < ;. Since this holds for alE € X,
this implies thatn*(E) < y1|P(E)| for all E € X such that P(E)| < e;. On the other
hand, sincen € dv(2), we haveg(P(E)) < m(E) for all E € X, and beingg calm from
below at 0, there existg > 0 andsy > 0 such thag(P(E)) > —y»|P(E)| forall E € X
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such thatl P(E)| < e2. Hencen™ (E) < y»|P(E)| for all E € X such thal P(E)| < eo.
Settingy = y1 Vv y2 ande = g1 A g2, all this implies thatm|(E) < 2y|P(E)|forall E € X
such that P(E)| < . SinceP is positive, there also exis{s> 0 such that

Im|(E) < yIP(E)| < yP*(E). (A.3)

By the strong continuity of the component measuPesfor eachE € X there exists a
partition{Ek}}f:1 of Ein X such thatP*(Ey) < eforeachk =1, ..., K. Hence, by(A.3),

K K
m|(E) =" Iml(Ex) < vy, P*(Ex) = yP*(E),

k=1 k=1

as desired. This ends the proof of the Claim. O

Summing up, if (i) holds, then, by the Claim proveddroposition 14we have cor@) C
ca(£2), while if (ii) holds, then, by the above Claim, all charges in ¢oyeare strongly
continuous. Hence, under both (i) and (ii) we can appigorem 20and we conclude that
m € spaf{Pi, ..., Py} and the game is linear. Byroposition 16

core(v) = Lcorgv) = {x - P: x € 9g(P(A)) N dg(P(A®))},

for any linear sef. This prove<q. (11)
If ¢ is monotone, then for alh € corgv) and for allE € X we have:

m(E) —m(A) = g(P(E)) — g(P(A)) = 0,

wheneverP(E) > P(A). HenceEq. (9) of Theorem 2tholds and therefore, the vectgr
can be chosen to be non-negative.

The only non-trivial part it remains to prove is that exact linear games have radial and
linear sets. Given € (0, 1), let A be the diagonal set such thBtA) = tP(£2). Given
m € corgv), for a suitabley € RN we havem(A) = x - P(A) = tx - P(2) = tv(£2).
Hencem(A) = r(£2) for all m € corglv) and so, by exactness(A) = rv(£2). A similar
argument shows that A®) = (1 — H)v(£2), and we conclude that is linear.

Proof of Coroallary 23. In view of Theorem 21it suffices to prove that radially concave
measure games admit radial and linear sets glstisfy (13) for some linear sefk, and
corev) # @. Suppose first thaP(E) # P(E®). By the Lyapunov Theorem, for each
a € (0, 1) there exists,, € X suchthatP(E,) = a P(E) + (1—a) P(E®). Therefore, using
(13),

W(Eq) = g(P(Eq)) = g(aP(E) + (1 — a) P(E®)) > ag(P(E)) + (1 — a)g(P(E®)),
V(Eg) = g(P(EY)) = (1 — ) P(E) + aP(E®)) > (1 — a)g(P(E)) + ag(P(E®)).

Hence,w(Ey) + v(ES) > v(E) + v(E®) = v(£2) > v(Ey) + v(ES) because cole) # 2,
and so eaclt, is linear and radial. IfP(E) = P(E®), thenP(E) = (1/2) P(£2) and so it
is the center of symmetry @dt(P) and it belongs to (iR(P)). Hence,E itself is linear and
radial.
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Finally, it is easy to check thak(£2)/2 is linear. In fact,P(Ey/) = 2-1p(2). O

Proof of Proposition 24. Sinceg is concave orG, it is Lipschitz over the compact set
R(P) (see, e.gRockafellar, 1970Theorem 10.4), and so condition (ii) heorem 2Jand
Corollary 23holds. Lets(x) be the appropriate indicator function &f P) for our setting,
defined by

h) S(x|R(P * € R(B),
@ =SCRPY=1 " e,

Setg(x) = g(x) + §(x) for eachx € G. Clearly,0g(x) = dgrp)(x) for all x € R(P).
Sinceg is concave, by a well-known result (see, eRpckafellar (1970)rheorem 23.8),
92(x0) = dg(x0)+ d8(xp) forall xg € G. Aswell-known,38(xg) = {x € RV : x-(xo—x) <
Oforallx € R(P)}. Letxg € ri(R(P)) and letw € W, whereW = span(R(P)). There is
¢ > 0 such thattg + ew € R(P), and soy - w > 0 for all x € 35(xp). SinceW is a vector
subspace, this impligs-w = 0 for all x € 38(xo), which in turn implies thads (xg) € W+.
Since the converse inclusion is obvious, we concludedhat) = W-.

Putting everything together, we hafg r(p)(xo) = dg(x0)+ W for all xg € ri(R(P)).
Hence, given any € dgr(p)(x0), there isy’ € dg(xp) such thaty - P = x' - P. Since
dg(x0) € dg|r(p) (x0), thisimpliesthafy- P : x € dgirp (P(A)} = {x-P : x € 9g(P(A))}
for all radial setsA. A simple application oCorollary 23now completes the proof. O

Proof of Proposition 25. Suppose coi@) # @. Thisimplies thabg(P(A))Ndg(P(A®)) #
@ because, bffheorem 21

core(v) = {x - P: x € 3g(P(A)) N dg(P(A°)}.

Moreover, sinceP(A) € ri(R(P)), by a well-known result of Convex Analysis,
[Vg(P(A)) — x]-w = Oforeachy € dg(P(A)) and eachw € W, whereW = span(R(P)).
HenceVg(P(A))- P = x- P foreachy € d9g(P(A)), and so, byemma4Vg(P(A))- P €
dv(A). Since inEpstein and Marinacci (2001t)is proved thatv(-; A) = Vg(P(A))- P, we
thenhavév(-; A) € dv(A). By Theorem 13corgv) = {Sv(-; A)}, asdesired. Next, suppose
thatg is differentiable and superdifferentiable at bé1) and P(A®). By proceeding as be-
fore, itcan be shown that(-; A®) € 9v(A°). Hence, byfheorem 13corg(v) C {§v(-; A®)},
and so core)) # @ impliessv(-; A) = dv(-; A®), i.e. Vg(P(A)) = Vg(P(A%)). As to the
converse, sincéu(-; A) € dv(A) andsv(-; A€) € dv(A°), the equalitysv(-; A) = Sv(-; A®)
impliesdv(A) N dv(A°®) # @. Then, byTheorem 11corgv) # @. O

Proof of Corollary 26. Sincev is radially concave a#, it is easy to check that all sets
Ag, With o € (0, 1), such thatP(A,) = aP(A) + (1 — o) P(A®) are linear (see the proof of
Corollary 23. Fora small enoughP(A,) € U and sog is differentiable atP(A,). Since
Ay is aradial set, a simple application®foposition 25roves the result. a

Proof of Proposition 28. Letm € corg(v) andE be such thaP(E) = 0. It is immediately
seenthat this implieg (E) = 0. The argument used in the first part of the prooflbéorem
20applies. Thereforex is non-atomic. Let us prove the second statement. Under condition
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(), the claim in the proof ofrheorem 2Z%ntails thatn is strongly continuous. If (ii) holds,
the claim ofProposition 14establishes that cofe) C ca(£2). Hence, the elements are
strongly continuous as they are non-atomic. a
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