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Abstract

This paper introduces a subcalculus for general set functions and uses this framework to study the
core of TU games. After stating a linearity theorem, we establish several theorems that characterize
measure games having finite-dimensional cores. This is a very tractable class of games relevant in
many economic applications.
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1. Introduction

General set functions, not necessarily additive, are widely used in mathematical eco-
nomics. In cooperative game theory, the key notion of transferable utility (TU) game is
modelled as a general set functionν defined on a collectionΣ of admissible coalitions,
with the only requirement onν that it takes on value zero at the empty set. In decision
theory, non-additive set functions have been recently used to model “vague” beliefs, which
in general are not representable by standard additive probabilities (see Schmeidler, 1989).
Though the motivation is very different, the mathematical object is essentially the same in
both cases.

This has motivated a large literature on non-additive set functions in both game and deci-
sion theory, which includes the classic book ofAumann and Shapley (1974). In mathematics
as well, non-additive set functions have been the subject of many investigations, mostly in
the wake of the seminal work ofChoquet (1953), which anticipated most of the themes of
the subsequent literature.
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Rather surprisingly, in these different strands of literature there has been little attempt
to develop a systematic calculus and subcalculus for general set functions, despite of the
potential insights that such basic mathematical tools could provide. Recently,Epstein and
Marinacci (2001)have developed a calculus for TU games, in which the derivative is an
additive set function that suitably approximates the TU game on “small” sets. This derivative
is then used to study the core of TU games. In their analysis, a key role is played by linear
sets (coalitions), namely setsE in Σ such thatν(E) + ν(Ec) = ν(Ω), whereΩ is the
grand coalition. Naturally, the empty set? and the grand coalitionΩ are linear sets. They
show that, under mild assumptions, the core shrinks to a singleton as long as the game is
differentiable at some linear set. Moreover, the core consists of the derivative itself.

A limitation of their analysis is that the core may not be a singleton. This naturally leads
to the question of whether it is possible to extend their approach by using superdifferentials
rather than differentials. This is our purpose in the present work, where a subcalculus for
TU games is introduced and exploited to characterize cores of TU games.

Our starting point was the discovery of a simple characterization of the cores by means
of superdifferentials. As a matter of fact, let∂ν(E) be the natural adaptation for TU games
of the standard superdifferential of functions on Euclidean spaces. For the core of a TU
gameν it holds

core(ν) = ∂ν(E) ∩ ∂ν(Ec),

whereE is any linear set (Theorem 11). Based on this simple characterization we are able
to prove several novel results, as well as to provide simple proofs and a unifying framework
for some important known results. In particular, our “subcalculus” framework is the natural
setting in which some of the powerful methods of Convex Analysis can be used to study
TU games.

More specifically, our paper is organized as follows. InSection 3we discuss the main
properties of the superdifferentials. They turn out to be similar to those of the standard
superdifferentials, though the notions are less close than one might think at a first sight.
Among them, it is especially important the sum rule for convex games, which ensures that
∂(ν1 + ν2)(E) = ∂ν1(E)+ ∂ν2(E) for all setsE in Σ. An immediate consequence of this
rule is that the cores of convex games are stable under summation, that is, core(ν1 + ν2) =
core(ν1)+ core(ν2).

After having established a “subcalculus,”Section 4studies the relations existing among
our superdifferentials, the derivatives studied byEpstein and Marinacci (2001), and the
cores. The main result,Theorem 13, provides conditions ensuring that the core shrinks to a
singleton as long as the differential of the game belongs to its superdifferential. This result
can be viewed as an enrichment of the theory developed byEpstein and Marinacci (2001).

In Section 5we specialize our analysis to measure games. As a matter of fact, TU
games that are relevant for economic applications have often the formν = g(P), where
P = (P1, . . . , PN) : Σ → R

N is a non-atomic vector measure andg : RN → R is a
function such thatν(E) = g(P(E)) for all setsE belonging toΣ. Games of this form
are calledmeasure games, and standard examples include exchange economies with trans-
ferable utilities and models of production technology. While we do not expatiate here on
these known issues, we refer the reader toAumann and Shapley (1974)and Hart and
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Neyman (1988)for detailed discussions of these examples and of the relevance of measure
games in economic applications.

Based on our subcalculus, we provide simple conditions under which the core of a
measure game consists of linear combinations

∑N
i=1 αiPi of the components{Pi}Ni=1 of the

underlying vector measureP . For example, we show that the cores have this form whenever
there exists a linear and radial setE ∈ Σ, that is, a linear setE such thatP(E) belongs to
the relative interior ofR(P), the range{P(E) : E ∈ Σ} ⊆ RN of the vector measureP .
The existence of linear and radial sets is a condition often satisfied by economic games of
the formg(P). In fact, these games typically feature some homogeneity condition of the
functiong, and it will be seen that even very mild homogeneity conditions deliver linear
and radial sets.

Our results of this section generalize well-known results ofBillera and Raanan (1981),
as well as recent results ofEiny et al. (1999). They are based on a novel linearity theorem
for non-atomic vector measures (Theorem 20) that should be of independent interest. This
theorem relies on results from both Measure Theory and Convex Analysis, an interplay
made possible by the Lyapunov Theorem, which guarantees the rangeR(P) to be a convex
set.

Finally, in Section 6we discuss the related works ofBillera and Raanan (1981)and
Einy et al. (1999), as well as the relationships between linear cores and semi-infinite linear
programming.Appendix Agathers some technical lemmas and all proofs.

2. Preliminaries

Throughout the paper,Ω is the set of players andΣ theσ-algebra of admissible coalitions.
Subsets ofΩ are understood to be inΣ even where not stated explicitly.

A set functionν : Σ → R is agameif ν(?) = 0. A gameν is

• positiveif ν(E) ≥ 0 for allE;
• boundedif supE∈Σ|ν(E)| <∞;
• monotoneif ν(E) ≥ ν(E′) wheneverE′ ⊆ E;
• continuous at Eif lim n→∞ν(En) = ν(E) wheneverEn ↑ E orEn ↓ E;
• superadditiveif ν(E ∪ E′) ≥ ν(E)+ ν(E′) for all pairwise disjoint setsE andE′;
• supermodular(or convex) ifν(E ∪ E′) + ν(E ∩ E′) ≥ ν(E) + ν(E′) for all setsE and
E′;

• additive(or a charge) ifν(E ∪ E′) = ν(E) + ν(E′) for all pairwise disjoint setsE and
E′;

• countably additive(or a measure) ifν(
⋃∞
i=1Ei) = ∑∞

i=1 ν(Ei) for all countable collec-
tions of pairwise disjoint sets{Ei}∞i=1.

Unless otherwise stated, charges and measures are understood to be signed. The set of all
charges (measures) that are bounded with respect to the variation norm is denoted by ba(Ω)

(ca(Ω)). Generic elements of ba(Ω) are denoted bym, while its non-negative elements are
denoted byP .

A chargem is non-atomicif for all m(E) �= 0 there existsB ⊆ E such thatm(B) �= 0
andm(E − B) �= 0. It is strongly continuousif, for every ε > 0, there exists a partition
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{E1, . . . , En} ofΩ inΣ such that|m|(Ei) ≤ ε for all i = 1, . . . , n. A strongly continuous
charge is non-atomic, while the two concepts are equivalent for measures (seeBhaskara Rao
and Bhaskara Rao, 1983). Letm = (m1, . . . , mN) : Σ → R

N be a vector charge. If eachmi
is strongly continuous, then by the Lyapunov Theorem the rangeR(m) = {m(E) : E ∈ Σ}
is a convex subset ofRN (seeBhaskara Rao and Bhaskara Rao, 1983).

The gameν : Σ → R is a measure gameif there exists a positive vector chargeP =
(P1, . . . , PN) : Σ → R

N+ , with eachPi : Σ → R+ bounded and strongly continuous, and
a functiong : R(P)→ R such that

ν(E) = g(P(E)) for allE ∈ Σ.
WhenN = 1, ν = g(P) is called ascalar measure game.

The core of a gameν is

core(ν) = {m ∈ ba(Ω) : m(Ω) = ν(Ω)andm(E) ≥ ν(E) for allE ∈ Σ}.
It is easy to see that the core is a weak∗-compact subset of ba(Ω). A gameν is exactif
core(ν) �= ? andν(E) = minm∈core(ν)m(E) for all E ∈ Σ. All positive convex games are
exact (seeSchmeidler, 1972). For cores of convex games this is proved in the next result,
which generalizes to bounded convex games a well-known property of positive convex
games.

Lemma 1. Let ν : Σ → R be a bounded and convex game. Thenν is exact and given any
chain{Ei}i∈I , there ism ∈ core(ν) such thatm(Ei) = ν(Ei) for all i ∈ I.

Given a gameν : Σ → R, a setE is linear if ν(E) + ν(Ec) = ν(Ω). Notice that
bothΩ and? are linear sets. Moreover, when core(ν) �= ?, E is linear if and only if
ν(E)+ ν(Ec) ≥ ν(Ω). The set of linear sets is denoted byA.

Linear sets are delivered byefficient coalition structures, that is, at most countable par-
titions {Ei}i∈I of Ω such that

∑
i∈I ν(Ei) = ν(Ω). In fact, if ν is superadditive and either

ν is continuous or the partition is finite, thenEi is linear for eachi in I (seeEpstein and
Marinacci, 2001).1

We close by reporting the notion of derivative for games studied byEpstein and Marinacci
(2001). For anyE ∈ Σ, let {Ej,λ}nλj=1 be a finite partition ofE. Denote by{Ej,λ}λ the net of
all finite partitions ofE, whereλ′ > λ implies that the partition corresponding toλ′ refines
that corresponding toλ.

Definition 2. A gameν : Σ → R is differentiable atE ∈ Σ if there exists a charge
δν(·;E) ∈ ba(Ω) such that for allF ⊆ Ec andG ⊆ E,

nλ∑
j=1

|ν(E ∪ Fj,λ −Gj,λ)− ν(E)− δν(Fj,λ;E)+ δν(Gj,λ;E)|→
λ

0.

This definition is slightly different from that ofEpstein and Marinacci (2001), which
originates inEpstein (1999), as we do not require the chargeδν(·;E) to be convex-ranged.

1 In a finite setting, efficient coalition structures have been introduced byAumann and Dreze (1974).
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3. Superdifferentials

Definition 3. A gameν : Σ → R is superdifferentiable atE ∈ Σ if there exists a charge
m ∈ ba(Ω) such that

ν(A) ≤ ν(E)+m(A)−m(E), (1)

for eachA ∈ Σ.

The chargesm that satisfyEq. (1)are calledsupergradientsand∂ν(E) is thesuperdiffer-
entialof ν, that is, the (possibly empty) set of all supergradients.

Definition 3is the natural adaptation to our setting of the standard notion of superdifferen-
tial of real-valued functions (seeRockafellar, 1970),2 as it becomes evident by considering
measure gamesg(P) : Σ → R. Recall that, given a subsetA ⊆ RN (e.g.A = R(P)), a
functiong : A → R is superdifferentiableat x0 ∈ A if there is a vectorχ ∈ RN , called
supergradient, such thatg(x0) ≤ g(x) + χ · (x − x0) for all x ∈ A. Thesuperdifferential
∂g(x0) is the set of all supergradients.

Given a setE, the two superdifferentials∂ν(E) and∂g(P(E)) are related by the following
lemma, which we report for later reference (the simple proof is omitted).

Lemma 4. Given a measure gameν = g(P) : Σ → R, for each setE ∈ Σ a charge of the
formχ · P belongs to∂ν(E) if and only if the vectorχ ∈ RN belongs to∂g(P(E)).

We now present few elementary properties of the superdifferential∂ν(E). It is easy to
check that the set∂ν(E) is convex and weak∗-closed, and that the following properties hold:

(i) ∂λν(E) = λ∂ν(E) for all λ > 0 and allE ∈ Σ;
(ii) ∂ν1(E)+ ∂ν2(E) ⊆ ∂(ν1 +ν2)(E) for allE ∈ Σ and all gamesν1 andν2, with equality

if at least one of the two games is in ba(Ω).

GivenE ∈ Σ, consider the coneKE defined by

KE = {m ∈ ba(Ω) : m(G) ≥ 0 andm(F) ≤ 0 for eachF ⊆ Ec andG ⊆ E}.
Clearly,KΩ = ba(Ω)+ and−KE = KEc. The following result shows the importance of
these cones for our analysis.

Proposition 5. Letν : Σ → R be a game superdifferentiable at E. Then, ∂ν(E) = ∂ν(E)+
KEc for eachE ∈ Σ.

We now consider two key properties of superdifferentials, non-emptiness and the sum
rule. Our first result shows that for the important class of exact games the set∂ν(E) is
non-empty for allE ∈ Σ.

Proposition 6. If the gameν : Σ → R is exact, then ∂ν(E) �= ? for all E ∈ Σ. In
particular, ν is exact if and only if∂ν(E) ∩ core(ν) �= ? for all E ∈ Σ.

2 Fujishige (1991)gives a similar definition for supermodular functions defined on finite distributive lattices.
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Since bounded convex games are exact, they are superdifferentiable at all setsE ∈ Σ
by Proposition 6. The following result shows that it is actually possible to characterize
convexity through superdifferentials.

Proposition 7. A bounded gameν : Σ → R is convex if and only if∂ν(E1)∩ ∂ν(E2) �= ?

for every pairE1 ⊆ E2.

The next result shows that superdifferentials preserve sums.

Theorem 8. Given any two convex and bounded gamesν1 : Σ → R andν2 : Σ → R, we
have

∂(ν1 + ν2)(E) = ∂ν1(E)+ ∂ν2(E), (2)

for all E ∈ Σ.

Since∂λν(E) = λ∂ν(E) for all λ > 0 and all setsE, we conclude that, byTheorem 8,
superdifferentials of bounded convex games preserve positive linear combinations. This
fundamental property immediately implies the following result, which shows that cores of
bounded convex games are stable under summation.

Corollary 9. Let ν1 : Σ → R andν2 : Σ → R be any two convex and bounded games.
Then,

core(ν1 + ν2) = core(ν1)+ core(ν2). (3)

Notice that in general it only holds the superadditive property core(ν1) + core(ν2) ⊆
core(ν1 + ν2). Equality is no longer true whenν1 andν2 are exact. In this case, we have
core(ν1 + ν2) = core(ν1)+ core(ν2), where the upper bar denotes them-closure of a set
(seeMarinacci and Montrucchio (2002b)for details).

We close by considering measure games. In this case, it is enough to study the existence of
the standard superdifferential∂g(P(E)) since, byLemma 4, ∂ν(E) is non-empty whenever
∂g(P(E)) is non-empty.

Proposition 10. Let ν = g(P) : Σ → R be a measure game. Then∂ν(E) �= ? for all
E ∈ Σ provided one of the following conditions holds:

(i) g : R(P)→ R is Lipschitz and concave;
(ii) ν is superadditive andg : R(P) → R is such thatg(αP(E)) = αg(P(E)) for each

α ∈ (0,1) and eachE ∈ Σ.

Condition (ii) is especially important in cooperative game theory, where the TU games
that satisfy condition (ii) are called market games. They play an important role in the study
of exchange economies (seeHart and Neyman, 1988).
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4. Cores and derivatives

The derivative for games introduced inDefinition 2was used byEpstein and Marinacci
(2001)to study the cores of some TU games. In particular, they study a class of important
economic games that have singleton cores and loosely speaking, they show that the singleton
actually consists of the derivative of the game. Since for real-valued functions the derivative
can be viewed as a singleton superdifferential, it is natural to wonder whether the superdif-
ferentials for games that we introduced are related to the derivatives ofDefinition 2and,
more importantly, whether they can be used to characterize cores that are not necessarily
singleton. In this section we address these natural queries.

Interestingly, as inEpstein and Marinacci (2001), also in this work linear sets play a key
role. Our first result provides a subcalculus characterization of the core based on linear sets.

Theorem 11. Consider the following conditions:

(i) E ∈ A;
(ii) core(ν) = ∂ν(E) ∩ ∂ν(Ec);

(iii) ∂ν(E) ∩ ∂ν(Ec) �= ?.

We have that(i) implies(ii), while the three conditions are equivalent whenevercore(ν)
is non-empty.

In other words, core(ν) = ∂ν(E)∩ ∂ν(Ec) whenE is linear, regardless of whether or not
core(ν) is non-empty. However, if core(ν) is non-empty, the three conditions are equivalent.

Having established a subcalculus characterization of the core, we now move to study the
relations of supergradients with the derivatives of games introduced inDefinition 2.

Proposition 12. Let ν : Σ → R be a game superdifferentiable and differentiable at E.
Then

δν(·;E) ∈ ∂ν(E)+KE.
If, in addition, E is linear andcore(ν) �= ?, then,

δν(·;E) ∈ ∂ν(Ec).

In the last result, we saw thatδν(·;E) ∈ ∂ν(Ec)whenE is linear and core(ν) is non-empty.
This raises the question of whenδν(·;E) ∈ ∂ν(E), something that in standard subcalculus
happens in many important cases.

Proposition 13. Letν : Σ → R be a game differentiable at a linear set A. Ifcore(ν) �= ?,
then∂ν(A) �= ? and the following conditions are equivalent:

(i) δν(·;A) ∈ ∂ν(A);
(ii) core(ν) = {δν(·;A)};

(iii) δν(·;A) ∈ core(ν);
(iv) δν(A;A) = ν(A) andδν(Ac;A) = ν(Ac).
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Moreover, if (i) and (iv) hold for some linear set A, then core(ν) is non-empty and
coincides with the singleton{δν(·;A)}.

Proposition 13can be viewed as a calculus characterization of the core and it sharpens
some results of this kind proved byEpstein and Marinacci (2001). A different route is, in
contrast, followed inMarinacci and Montrucchio (2002a), which provides a characterization
of the cores of convex games based on standard Gateaux derivatives of the Choquet integrals
associated with the games.

5. Measure games

Games relevant for economic applications have often the form of a measure gameg(P) :
Σ → R. In this section, we study in more detail the structure of the superdifferentials and
cores of this class of games.

The natural question for cores of measure games is how to relate the underlying vector
chargeP with the charges in the cores. We start by establishing a simple general result of
this type for the important countably additive case.

Proposition 14. Let g(P) : Σ → R be a measure game and suppose that the vector
measureP is countably additive and that there is a linear setA (e.g.A = ?) such that
g is lower semicontinuous atP(A) andP(Ac). Then, for eachm ∈ core(ν) there exists a
Σ-measurable vector functionf = (f1, . . . , fN) : Ω → R

N such that, for all E ∈ Σ

m(E) =
N∑
i=1

∫
E

fi dPi. (4)

Notice thatEq. (4)provides two important pieces of information on the charges belonging
to core(ν): (i) they are all countably additive; (ii) they are all absolutely continuous w.r.t.
the “average” measureP∗ = (1/N)∑N

i=1Pi.
An especially interesting case inProposition 14is when to a givenm in core(ν) cor-

responds a constant vector functionf : Ω → R
N , that is, when there exists a vector

(α1, . . . , αN) ∈ RN such thatf(ω) = (α1, . . . , αN) for all ω ∈ Ω. In this case,m is a
linear combination of the underlying vector chargeP , a most convenient situation. Because
of their interest, we first give a name to the subset of core(ν) consisting of such linear
combinations.

Definition 15. The linear core of a measure gameν = g(P) : Σ → R is the subsetLcore(ν)
of core(ν) defined by

Lcore(ν) = core(ν) ∩ span{P1, . . . , PN}.

UsingLemma 4andTheorem 11, it is easy to characterize the linear core and to provide
bounds for its dimension. All this makes use of linear sets, thus showing their importance
for Lcore(ν).
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Proposition 16. Given a measure gameν = g(P) : Σ → R, it holds that

Lcore(ν) = {χ · P : χ ∈ ∂g(P(A)) ∩ ∂g(P(Ac))}, (5)

for any linear setA. Moreover,

dim(Lcore(ν)) ≤ dim(R(P))− dim(span{P(A) : A ∈ A}) ≤ N − 1. (6)

5.1. A linearity theorem

We have introduced the linear core, the subset of the core of a measure gameg(P) : Σ →
R that consists of linear combinations of the underlying vector chargeP . This part of the
core is especially interesting because of its simple form and analytical tractability, and the
games whose core and linear core coincide stand out among games in terms of simplicity
and tractability. This section is devoted to the study of these games, which we call linear.

Definition 17. A measure gameν = g(P) : Σ → R is called linear if core(ν) = Lcore(ν),
that is, if core(ν) ⊆ span{P1, . . . , PN}.

To provide a characterization of linear games, we first state a linearity theorem for vector
measures that should be of independent interest. The following important class of sets will
play a key role.

Definition 18. A setA ∈ Σ is radial if there is a setE ∈ Σ such that, for somet ∈ (0,1),
P(A) = tP(E)+ (1 − t)P(Ec).

By the Lyapunov Theorem, radial sets form a significant subset ofR(P) and they include
the sets calleddiagonalby Epstein and Marinacci (2001), that is, the setsA ∈ Σ such that
P(A) = tP(Ω) for somet ∈ (0,1). The next result provides a useful characterization of
radial sets in terms of the relative interior ofR(P). We omit its simple proof, which is based
on the important property of the rangeR(P) of having the point 2−1P(Ω) as a center of
symmetry, that is, 2(2−1P(Ω))− x ∈ R(P) for all x ∈ R(P).3

Proposition 19. Let P = (P1, . . . , PN) : Σ → R
N be a vector charge with eachPi

strongly continuous. Then, a setE ∈ Σ is radial if and only ifP(E) belongs to the relative
interior ofR(P).

We can now state and prove the announced linearity theorem.

Theorem 20. Let P = (P1, . . . , PN) : Σ → R
N+ be a positive vector charge with each

Pi strongly continuous and supposem : Σ → R is either a signed measure inca(Ω) or a
strongly continuous charge inba(Ω). If there exists a radial set A such that, for all E ∈ Σ,

P(E) = P(A)⇒ m(E) = m(A), (7)

3 See, e.g.Bolker (1969), who studies in detail the geometry ofR(P).
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then

m ∈ span{P1, . . . , Pn}. (8)

If, in addition, it holds that

P(E) ≥ P(A)⇒ m(E) ≥ m(A), (9)

then

m ∈ cone{P1, . . . , Pn}.

It is important to note the two key features of this result: (i) the existence of just a single
radial setA is required; (ii) no assumption, besides either countable additivity or strong
continuity, is made onm. Theorem 20is theN-dimensional generalization of a uniqueness
result ofMarinacci (2000), which holds for positive scalar measuresP andm. In fact, in
the scalar case a setA is radial if and only if 0< P(A) < P(Ω). Therefore, if there exists
a setA ∈ Σ with 0< P(A) < P(Ω) and such that

P(E) = P(A)⇒ m(E) = m(A),
wheneverE ∈ Σ, thenm(E) = (m(Ω)/P(Ω))P(E) by Theorem 20. Whenm is positive,
this is the uniqueness result ofMarinacci (2000). In that paper, however, uniqueness is also
proved for lambda systems, while here we only considerσ-algebras.

It can be useful to compareTheorem 20with the classic result saying that, given anyN+1
linear functionalsL,L1,. . . ,LN defined on a vector space, it holdsL ∈ span{L1, . . . , LN}
whenever

L1(x) = · · · = LN(x) = 0 ⇒ L(x) = 0, (10)

for all vectorsx (see, e.g.Aliprantis and Border, 1999, p. 207). In our setting, the relevant
vector space isB(Σ), the space of all boundedΣ-measurable functions, while the linear
functionals are the ones naturally associated withm, P1,. . . , PN . Even though the classic
result andTheorem 20share the same conclusion, that is,m ∈ span{P1, . . . , Pn}, it is
important to notice that our condition(7) is much weaker than condition(10). As a matter
of fact, (7) only involves sets, that is, indicators if we viewΣ as a subset of the vector
spaceB(Σ). Not surprisingly, therefore,Theorem 20needs additional conditions like the
non-atomicity ofP and the countable additivity ofm, and the proof is altogether different.
On the other hand, while the classic result holds for general vector spaces,Theorem 20only
holds inB(Σ) as it critically relies on the added structure ensured by this vector space.

As a final remark, observe thatTheorem 20could be also interpreted in a social choice
context if we assume thatm and eachPi are probability measures representing beliefs. For
instance, consider diagonal sets, that in this setting can be viewed as events over which agents
have unanimous beliefs, sayPi(A) = α ∈ (0,1) for eachi = 1, . . . , N. By Theorem 20,
linear aggregation occurs whenever the aggregatorm preserves the agents’ unanimous
beliefs on some eventA, a condition much weaker than the Paretian conditions used in
Bayesian aggregation results (cf.Fishburn, 1984andMongin, 1995).
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5.2. Characterizing linear games

UsingTheorem 11and the just establishedTheorem 20, we can now provide a simple
condition under which a measure game is linear. Recall that a functiong : A ⊆ Rn → R is
said to becalm from belowat a pointx0 ∈ A, if there exist a constantL and a radiusε > 0,
such that

g(x) ≥ g(x0)− L|x− x0|,
for all x in A and|x− x0| ≤ ε (see, e.g.Rockafellar and Wets, 1997).

Theorem 21. Letν = g(P) : Σ → R be a measure game and suppose one of the following
holds:

(i) P is countably additive and there is a linear setA∗ (e.g.A∗ = ?) such that g is lower
semicontinuous atP(A∗) andP(Ac∗);

(ii) g is calm from below at0 andP(Ω).

Then, if there exists a linear and radial set, the gameν is linear and

core(ν) = {χ · P : χ ∈ ∂g(P(A)) ∩ ∂g(P(Ac))}, (11)

for each linear setsA ∈ Σ. If g is monotone onR(P), thenχ can be assumed to be
non-negative, i.e.χi ≥ 0 for all 1 ≤ i ≤ N. Finally, if ν is exact the converse holds, that is,
a linear and exact measure game has linear and radial sets.

Remarks.

(i) The core can be empty, that is, inEq. (11)it may well happen that

core(ν) = {χ · P : χ ∈ ∂g(P(A)) ∩ ∂g(P(Ac))} = ?.

(ii) The converse does not hold ifν is not exact. In fact, consider the following scalar
measure game:

ν(E) =
{
P(E) if P(E) < 1

2,

P(E)2 if P(E) ≥ 1
2,

(12)

with P(Ω) = 1. It is easy to check that core(ν) = {P}. However, there are no radial sets
that are linear, i.e. there are no setsA such thatP(A) ∈ (0,1) andν(A)+ ν(Ac) = 1.

Conditions (i) and (ii) ofTheorem 21are both very mild requirements. In particular,
condition (i) is more demanding onP , which is required to be countable additivity rather
than just finite additive, but less ong, which is only required to be lower semicontinuous
rather than calm from below.

As to the existence of linear and radial sets, measure gamesg(P) that are relevant for
economic applications typically feature some homogeneity conditions of the functiong :
R(P)→ R, and these conditions guarantee the existence of many linear and radial sets for
the measure gameg(P).
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For instance, say that the measure gameν = g(P) : Σ → R is radially concaveatE if,
for all t ∈ (0,1),

g(tP(E)+ (1 − t)P(Ec)) ≥ tg(P(E))+ (1 − t)g(P(Ec)). (13)

Obviously,ν is radially concave atE if and only if it is radially concave atEc, andν is
radially concave at all setsE in Σ wheng is concave.

Definition 22. A measure gameν = g(P) : Σ → R is called radially concave if there is
some linear setA such thatν is radially concave atA.

For example, sinceΩ is a linear set,ν is radially concave if, for allt ∈ (0,1),
g(tP(Ω)) ≥ tg(P(Ω)),

a very mild homogeneity requirement. Another simple case in whichν is radially concave
is when the setA such thatP(A) = 2−1P(Ω) is linear. In this case,Eq. (13)is trivially
satisfied.

Radial concavity is a weak condition satisfied by many economic TU games. For instance,
measure games whose functionsg : R(P) → R are concave or homogeneous of degree
one are radially concave, as well as the measure games that have a functiong : R(P)→ R

homogeneous of degreek < 1, providedg(P(Ω)) ≥ 0. In particular, market games are
radially concave, as their functiong is homogeneous of degree one.

Radially concave games that have non-empty cores admit many radial and linear sets,
and consequently, byTheorem 21, they are linear. This is stated in the next Corollary.

Corollary 23. Let ν = g(P) : Σ → R be a radially concave measure game and suppose
one of conditions(i) and(ii) of Theorem 21holds. Then, the gameν is linear and for each
linear set A,

core(ν) = {χ · P : χ ∈ ∂g(P(A)) ∩ ∂g(P(Ac))}.
Moreover, core(ν) = {χ · P : χ ∈ ∂g(2−1P(Ω))} providedcore(ν) is non-empty.

Remark. Interestingly, here core(ν) is determined by the superdifferential ofg at 2−1P(Ω),
the center of symmetry ofR(P).

Example. Let g : RN+ → R be a concave and positive homogeneous function and assume
P(Ω) ∈ RN++. Consider the following two broad classes of functions:

g1(x) = g(x)+ h1(x),

g2(x) = g(x)h2(x),

for all x ∈ RN+ . If h1(tP(Ω)) = 0 andh2(tP(Ω)) = 1 for all t ≥ 0, then the gamesg1(P)

andg2(P) are radially concave. In view ofCorollary 23, it is easy to provide conditions
under which the cores of these measure games are non-empty. For instance, for the first
class it suffices that∂h1(2−1P(Ω)) �= ?, while for the other class it is enough to require
thath2(x) ∈ [0,1] for all x ∈ RN+ .
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In Theorem 21and inCorollary 23, we only assumed that the real-valued functiong was
defined on the rangeR(P). In applications, however, it is often the case that the function
g defining the measure game is defined on an open convex subsetG containingR(P), for
exampleRN itself. In this case, we have two superdifferentials, the one ofg restricted to
R(P), i.e.∂g|R(P)(x), and the one thatg has relative to the open convex subsetG, i.e.∂g(x).
Naturally,∂g|R(P)(x) is the superdifferential relevant forTheorem 21andCorollary 23. On
the other hand, the superdifferential∂g(x) may be easier to compute, especially wheng is
defined onRN .

The next result can therefore be useful, as it shows that it is possible to use directly
∂g(P(A)) wheng is concave andA radial.

Proposition 24. LetP = (P1, . . . , PN) : Σ → R be a strongly continuous vector charge
and letg : G→ R be a concave function, where G is an open convex set containingR(P).
For the measure gameν = g(P) : Σ → R, it holds that

core(ν) = {χ · P : χ ∈ ∂g(P(A)) ∩ ∂g(P(Ac))},

for each linear and radial setA, andcore(ν) = {χ·P : χ ∈ ∂g(2−1P(Ω))} providedcore(ν)
is non-empty.

Remark. In readingProposition 24, recall that a bounded concave functiong : R(P)→ R

can be extended to a concave function on the whole spaceR
N if and only if g is Lipschitz

onR(P).

Example (Generalized linear production games). Let us apply the last Proposition to an
important class of linear games. Leta : T → R

N be a continuous map, whereT is a compact
metric space, and define a functiong : RN → R by g(x) = mint∈T a(t) · x for all x ∈ RN .
Consider the measure gameν = g(P), which we call ageneralized linear production game.
WhenT is a finite set anda(t) ≡ at ∈ RN+ , we have the linear production games ofOwen
(1975)andBillera and Raanan (1981). Since the functiong is concave onRN , by a standard
result in Convex Analysis (see, e.g.Hiriart-Urruty and Lemarechal, 1993), we have

∂g(x) = co(a(t) : t ∈ I(x)),

whereI(x) = {t : a(t) ·x = g(x)}. Consider a diagonal setAwith P(A) = αP(Ω) for some
α ∈ (0,1). Simple algebra shows that

I(P(A)) = I(P(Ω)) = {t : a(t) · P(Ω) = g(P(Ω))}.

Since each diagonal set is linear, byProposition 24,

core(ν) = {χ · P : χ ∈ co(a(t) : a(t) · P(Ω) = ν(Ω))}.

This includes Corollary 2.7 ofBillera and Raanan (1981), which therefore follows from
Proposition 24using standard Convex Analysis.
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5.3. Differentiability

Proposition 16characterized the linear core of a measure gameν = g(P) : Σ → R

through the superdifferentials of the functiong : R(P) → R, andTheorem 21provided a
simple condition under which the entire core can be characterized in this way. In view of
standard subcalculus and in view ofProposition 13, it is natural to wonder what happens
when some differentiability is assumed ong, in particular, whether the core shrinks to a
singleton.

Proposition 25. Letν = g(P) : Σ → R be a measure game and suppose one of conditions
(i) and(ii) ofTheorem 21holds. If there is a linear and radial set A such that g is differentiable
at P(A), then

core(ν) = ? or core(ν) = {∇g(P(A)) · P(·)}.

If, in addition, g is differentiable and superdifferentiable at bothP(A) andP(Ac), then
core(ν) �= ? if and only if∇g(P(A)) = ∇g(P(Ac)).

Differentiability has therefore a remarkably strong impact on the core: even just assuming
thatg is differentiable atP(A) forces the core to be at most a singleton.

Example. Let ν = g(P) : Σ → R be a market game, that is,ν is superadditive andg is
homogeneous of degree one. Ifg is differentiable atP(Ω), then core(ν) = {∇g(P(Ω)) ·P}.
In fact, byProposition 10, ∂g(P(E)) �= ? for all E ∈ Σ. Moreover, all diagonal sets are
linear andg is differentiable at all them because it is differentiable atP(Ω). In particu-
lar, ∇g(P(A)) = ∇g(P(Ω)) for all diagonal sets. Hence, byProposition 25, core(ν) =
{∇g(P(Ω)) · P} = {∇g(P(Ω)) · P}. This result is essentially due toAumann and Shapley
(1974)and plays a key role in their analysis of exchange economies. Interestingly, in our
approach this result follows easily fromProposition 25.

Unlike Proposition 25, the next result does not requireA to be radial, at the cost of a
stronger assumption on the functiong.

Corollary 26. Let ν = g(P) : Σ → R be a measure game and suppose one of conditions
(i) and(ii) of Theorem 21holds. If there is a linear set A such thatν is radially concave at
A and g is differentiable on some neighborhood U ofP(A), then

core(ν) = ? or core(ν) = {∇g(P(A)) · P(·)}.

Remark. If g : R(P)→ R is concave and differentiable atP(A), then the corollary holds.4

4 Recall thatg can be differentiable atP(A) only if g is defined (or can be extended) on a suitable open subset
of P(A).
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6. Concluding remarks

1. Theorem 21generalizes in several ways a well-known result ofBillera and Raanan (1981),
which establishes that cores of some measure games consist of linear combinations of
measures (Corollary 2.6, p. 422).

First, their result requires the existence of a linear setA such that bothP(A) = 2−1P(Ω)

andν(A) = 2−1ν(Ω). We only requireA to be a linear and radial set.
Second, they require thatν ∈ pNA′, the supnorm closure of polynomial functions of

several non-atomic measures defined on a space isomorphic to [0,1] with its Borel sets
(Aumann and Shapley, 1974, p. 152). This topological structure is crucial for their results,
andg(P) ∈ pNA′ if and only if g is continuous onR(P). In contrast, we do not make any
topological assumption, and our result holds for any measure gameν.

Third, their Corollary 2.7 establishes the positivity of the coefficients of the linear
combinations for non-atomic linear production games, a special class of measure games
whose functionsg are monotone. OurTheorem 21, instead, holds for any measure game
having a monotone functiong.

Finally, Theorem 21follows from a subcalculus approach to the core and from a gen-
eral linearity result for vector measures that put this result in a broader perspective. In
particular,Proposition 25andCorollary 26are a dividend of this more general approach.

Notice that Corollary 2.6 ofBillera and Raanan (1981)is stated forν that are not
necessarily measure games, while our theory has been developed for measure games.
However, it is easy to formulate a similar version ofTheorem 21, as follows.

Proposition 27. Let A be a linear set of a gameν continuous at? and atΩ. Assume
there exists a positive non-atomic vector measureP = (P1, . . . , PN) such that:

(i) A is radial inR(P),
(ii) for all E, P(E) = P(A)⇒ ν(E) = ν(A) andν(Ec) = ν(Ac).

Then, core(ν) ⊆ span{P1, . . . , PN}.

2. Corollary 23extends some recent interesting results ofEiny et al. (1999). Using different
techniques, they prove (Theorem C) a special case ofCorollary 23for measure games
whose functiong : R(P)→ R is concave and continuous atP(Ω), rather than for general
radially concave measure games, as we can do on the basis of our generalization ofBillera
and Raanan (1981).

3. Linear cores are very tractable objects. In fact, it is easy to check that to compute the linear
core of a measure gameg(P) is enough to solve the following optimization problem in
R
N :

min
(α1,... ,αN)∈RN

N∑
i=1

αiPi(Ω),

s.t.
N∑
i=1

αixi ≥ g(x1, . . . , xN) for all (x1, . . . , xN) ∈ R(P).
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This problem is linear and involves finitely many variables—the coefficients(α1, . . . ,

αN)—that appear in infinitely many constraint—the inequalities
∑N
i=1 αixi ≥ g(x1, . . . ,

xN) with (x1, . . . , xN) ∈ R(P). Problems of this type are called semi-infinite linear
problems and there is a large literature dealing with their theoretical and computa-
tional features (see, e.g.Goberna and Lopez, 1998). Since they involve only finitely
many variables, computationally they are in general more tractable than standard
infinite programs and it is often possible to study them via their finite linear
subprograms.

4. In proving the results on measure games ofSection 5we made use of the following result,
which might be of independent interest.

Proposition 28. Letν = g(P) : Σ → R be a measure game. Then, all elements incore(ν)
are non-atomic. Moreover, they are strongly continuous provided one of the following
conditions holds:

(i) f is calm from below at0 andP(Ω);
(ii) f is lower semicontinuous at0 andP(Ω), andP is countably additive.

Appendix A. Proofs

Lemma 1. Given anyΣ-measurable simple functionf : Ω → R, the Choquet integral∫
f dν is still well defined. Now, letf, g : Ω → R be any twoΣ-measurable simple

functions. LetΣf,g be the smallest algebra that makesf andg measurable. AsΣf,g is
finite, there is a (possibly zero) measurem onΣf,g such thatν(E) ≥ m(E) for all E ∈
Σf,g. Hence,ν − m is a positive convex game onΣf,g, and so, by a classic result of
Choquet (1953),

∫
(f +g)d(ν−m) ≥ ∫

f d(ν−m)+ ∫
g d(ν−m). In turn, this obviously

implies
∫
(f + g)dν ≥ ∫

f dν+ ∫
g dν. We conclude that the Choquet integral

∫
f dν is a

superadditive functional on the vector spaceB0(Σ) of Σ-measurable simple functions.
SetC = {m : m is finitely additive,m ≥ ν andm(Ω) = ν(Ω)}. Sinceν is bounded,

C ⊆ ba(Ω), and soC = core(ν). Now, letΣ∗ be a subalgebra ofΣ on which there is a
chargem∗ : Σ∗ → R such thatm∗ ∈ core(ν|Σ∗). Since

∫
f dν is a superadditive functional

onB0(Σ), by the Hahn–Banach Theorem there is a finitely additive extensionm : Σ → R

of m∗ such thatm ∈ C. Thenm ∈ core(ν).
Consider now the chain{Ei}i∈I . LetΣJ be the algebra generated by a finite subchain

{Ei}i∈J . LetmJ : ΣJ → R be the, possibly zero, charge onΣJ such thatν(E) ≥ mJ(E)

for all E ∈ ΣJ . By well-known results (see, e.g.?), there existsm′ ∈ core(ν − mJ) such
thatm′(Ei) = (ν − mJ)(Ei) for all i ∈ J . Hence, there ism∗ ∈ core(ν|ΣJ ) such that
m∗(Ei) = ν(Ei) for all i ∈ J . In turn, this implies the existence of an extensionm : Σ → R

of m∗ such thatm ∈ C, and som ∈ core(ν).
LetΛJ = {m ∈ core(ν) : m(Ej) = ν(Ej)for allj ∈ J}. Since core(ν) is weak∗-compact,

the setΛJ is weak∗-compact. Moreover, by what we just proved,ΛJ �= ?. The collection
{ΛJ }{J :J⊆I and|J |<∞} has the finite intersection property, and so its overall intersection is
non-empty. Letm be an element of such intersection. We havem ∈ core(ν) andm(Ei) =
ν(Ei) for all i ∈ I, as desired.
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Proof of Proposition 5. The inclusion∂ν(E) ⊆ ∂ν(E)+KEc is obvious. As to the opposite
inclusion, letm ∈ ∂ν(E) + KEc. Then, for suitablem1 ∈ ∂ν(E) andm2 ∈ KEc, we have,
for all A ∈ Σ,

ν(E)+m(A)−m(E) = ν(E)+m1(A)+m2(A)−m1(E)−m2(E)

≥ ν(A)+m2(A)−m2(E)

= ν(A)+m2(E
c ∩ A)−m2(E ∩ Ac) ≥ ν(A), �

and som ∈ ∂ν(E).

Proof of Proposition 6. Let ν be exact and letE ∈ Σ. By definition, there existsm ∈
core(ν) such thatm(E) = ν(E). Sincem(A) ≥ ν(A) for all A ∈ Σ, it follows that
m ∈ ∂ν(E), and so∂ν(E) ∩ core(ν) �= ?. Conversely, suppose that∂ν(E) ∩ core(ν) �= ?

for eachE ∈ Σ. It is easy to check thatm ∈ ∂ν(E)∩ core(ν) impliesm(E) = ν(E), and so
ν is exact. �

Proof of Proposition 7. By Lemma 1, there existsm ∈ core(ν) such thatm(E1) = ν(E1)

andm(E2) = ν(E2). This immediately implies thatm ∈ ∂ν(E1)∩ ∂ν(E2), and so∂ν(E1)∩
∂ν(E2) �= ?. As to the converse, suppose that∂ν(E1) ∩ ∂ν(E2) �= ? for everyE1 ⊆ E2.
Let E andE′ be any two sets ofΣ. Let m ∈ ∂ν(E ∩ E′) ∩ ∂ν(E ∪ E′). Then,ν(E) ≤
ν(E ∪E′)−m(E ∪E′)+m(E) andν(E′) ≤ ν(E ∩E′)−m(E ∩E′)+m(E′). By adding
up we getν(E) + ν(E′) ≤ ν(E ∪ E′) + ν(E ∩ E′), as desired. Hence,ν is convex if and
only if ∂ν(E1) ∩ ∂ν(E2) �= ?. �

Proof of Theorem 8. Let B+
1 (Σ) = {f ∈ B(Σ) : 0 ≤ f ≤ 1}, which are the ideal sets in

the terminology ofAumann and Shapley (1974). Given a bounded convex gameν, consider
the functionalν∗ : B(Σ)→ R defined by

ν∗(f) =
{ ∫ +∞

0 ν(f ≥ t)dt f ∈ B+
1 (Σ),

−∞ f /∈ B+
1 (Σ).

The integral
∫ +∞

0 ν(f ≥ t)dt is the Choquet integral off w.r.t. ν. It is easy to check that,

by Lemma 1,
∫ +∞

0 ν(f ≥ t)dt is a well defined Riemann integral. Again byLemma 1, it
is easy to check thatν∗ is a proper concave function onB(Σ). Moreover,ν∗(1E) = ν(E)

for all E ∈ Σ.
Givenm ∈ ba(Ω), letLm : B(Σ) → R be defined byLm(f) = ∫

f dm. Let ∂ν∗(f) be
the standard superdifferential ofν∗ : B(Σ) → R at f . We show that∂ν∗(1E) = {Lm :
m ∈ ∂ν(E)} for all E ∈ Σ. Clearly,∂ν∗(1E) ⊆ {Lm : m ∈ ∂ν(E)} for all E ∈ Σ. As to
the converse inclusion, letm ∈ ∂ν(E). By definition,ν(A)−m(A) ≤ ν(E)−m(E) for all
A ∈ Σ. Hence, for allf ∈ B+

1 (Σ),

ν∗(f)− Lm(f) =
∫ 1

0
(ν −m)(f ≥ t)dt ≤ [ν(E)−m(E)]

∫ 1

0
dt,

and soLm ∈ ∂ν∗(1E). This proves the converse inclusion, so that∂ν∗(1E) = {Lm : m ∈
∂ν(E)} for all E ∈ Σ. With a slight abuse of notation, we write∂ν∗(1E) = ∂ν(E).
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There isf ∈ B+
1 (Σ) in a neighborhood of which (w.r.t. the norm topology) bothν∗1 and

ν∗2 are bounded (e.g.f = α1Ω for someα ∈ (0,1)). Then, by Theorem 20 ofRockafellar
(1974), for all E ∈ Σ we have:

∂(ν1 + ν2)(E) = ∂(ν1 + ν2)
∗(E) = ∂(ν∗1 + ν∗2)(E)

= ∂ν∗1(E)+ ∂ν∗2(E) = ∂ν1(E)+ ∂ν2(E).

�

Proof of Proposition 10. Considering condition (i), the functiong admits a concave ex-
tension on the entire spaceRN . Hence, we can think ofg as defined onRN . Letx0 ∈ R(P).
Sinceg is concave onRN , by a standard result in Convex Analysis (see Theorem 23.4 of
Rockafellar (1970)) there is a vectorχ ∈ RN such thatg(x) ≤ g(x0)+ χ · (x− x0) for all
x ∈ RN . Hence,χ · P ∈ ∂ν(E) if P(E) = x0.

Now considering condition (ii), letK andW be, respectively, the cone and subspace
generated by the convex setR(P). Since 0∈ R(P), W = K − K (see Theorem 2.7 of
Rockafellar (1970)). Define the functiong′ : K → R by g′(λx) = λg(x) with x ∈ R(P)
andλ > 0. The functiong′ is well-defined and it is superadditive and homogeneous of degree
one onK. Defineg′′ : W → R by g′′(w) = sup{g′(x)+ g′(y) : x, y ∈ K andx− y = w}.
The functiong′′ as well is superadditive and homogeneous of degree one onW . Given any
x0 ∈ R(P), letW0 be the subspace ofW generated byx0, i.e.W0 = {αx0 : α ∈ R}. Define
the linear functionL0 : W0 → R by L0(αx0) = αg(x0) for all α ∈ R. If α ≥ 0, clearly
L0(αx0) = g′′(αx0) for all w ∈ W0. If α < 0, we have:

L(αx0) = αg(x0) = (−α)(−g(x0)) ≥ (−α)g′′(−x0) = g′′(αx0).

By the Hahn–Banach Theorem, there exists a linear functionalL : W → R that extends
L0 onW and such thatL(w) ≥ g′′(w) for all w ∈ W . SinceW is a subspace ofRN , there
exists a linear functionalL∗ : RN → R that extendsL on RN . Let χ∗ ∈ RN such that
L∗(x) = χ∗ · x for all x ∈ RN . Then,χ∗ · w ≥ g′′(w) for all w ∈ W andχ∗ · x0 = g(x0).
Hence, given anyx ∈ R(P), we haveg(x) − g(x0) ≤ χ∗ · x − χ∗ · x0, which implies
χ∗ ∈ ∂g(x0). We conclude that∂g(x0) �= ?, as desired. �

Proof of Theorem 11. We first prove that (i) implies (ii). LetE ∈ A. It is easy to see that
core(ν) ⊆ ∂ν(E)∩∂ν(Ec). In fact, for eachm ∈ core(ν) it holds thatm ≥ ν,m(E) = ν(E),
andm(Ec) = ν(Ec). We now prove the converse inclusion, that is,∂ν(E) ∩ ∂ν(Ec) ⊆
core(ν). Letm ∈ ∂ν(E) ∩ ∂ν(Ec). Since

0 = ν(?) ≤ ν(E)−m(E),
we havem(E) ≤ ν(E). Moreover, since

ν(Ω) = ν(E ∪ Ec) ≤ ν(E)+m(Ec),

we havem(Ec) ≥ ν(Ec). By takingEc in place ofE, a similar argument shows thatm(E) ≥
ν(E) andm(Ec) ≤ ν(Ec), and we conclude thatm(E) = ν(E) andm(Ec) = ν(Ec). Finally,
each setB ∈ Σ can be written asB = E ∪ F −G, with F ∩ E = ? andG ⊆ E. Hence,

ν(B) = ν(E ∪ F −G) ≤ ν(E)+m(F)−m(G) = m(E)+m(F)−m(G) = m(B),
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and som ∈ core(ν).
Next we prove that (iii) implies (i) when core(ν) �= ?. Letm ∈ ∂ν(E) ∩ ∂ν(Ec). As we

have just seen, this implies thatm(Ec) ≤ ν(Ec) and thatν(Ω) ≤ ν(E) + m(Ec). Since
core(ν) �= ?, we haveν(E)+ ν(Ec) ≤ ν(Ω). Hence,

ν(Ω) ≤ ν(E)+m(Ec) ≤ ν(E)+ ν(Ec) ≤ ν(Ω),
and we conclude thatE ∈ A. To complete the proof, observe that (ii) obviously implies
(iii) when core(ν) �= ?. �

Proof of Proposition 12. Suppose thatE is a maximum set forν, that is,ν(E) ≥ ν(A) for
all A ∈ Σ. Then,δν(·;E) ∈ KE. In fact, we have:

0 = lim
λ

nλ∑
j=1

|ν(E ∪ Fj,λ −Gj,λ)− ν(E)− δν(Fj,λ;E)+ δν(Gj,λ;E)|

≥ lim
λ

nλ∑
j=1

ν(E)− ν(E ∪ Fj,λ −Gj,λ)+ δν(Fj,λ;E)− δν(Gj,λ;E)

≥ lim
λ

nλ∑
j=1

δν(Fj,λ;E)− δν(Gj,λ;E) = δν(F ;E)− δν(G;E),

and soδν(G;E) ≥ δν(F ;E) for eachF ⊆ Ec andG ⊆ E. In particular,δν(G;E) ≥
δν(?;E) ≥ δν(F ;E), and we conclude thatδν(·;E) ∈ KE. Letm ∈ ∂ν(E). By definition,
ν−m is a game with maximum atE. Hence, by what we just proved,δ(ν−m)(·;E) ∈ KE,
which impliesδν(·;E) ∈ m(·)+KE, and soδν(·;E) ∈ ∂ν(E)+KE.

Suppose thatE ∈ A and that core(ν) �= ?. Letm ∈ core(ν). The gameν−m is a game
with maximum atE. Hence,δ(ν−m)(·;E) ∈ KE, which, byTheorem 11andProposition 5,
implies

δν(·;E) ∈ core(ν)+KE = ∂ν(E) ∩ ∂ν(Ec)+KE ⊆ ∂ν(Ec)+KE = ∂ν(Ec),

as desired. �

Proof of Proposition 13. SinceA is linear, byTheorem 11core(ν) ⊆ ∂ν(A) and so
core(ν) �= ? implies ∂ν(A) �= ?. Having established thatν is superdifferentiable atA,
we can prove that (i) implies (iv). Letm ∈ core(ν). By Theorem 11, m ∈ ∂ν(Ac), and so
ν(A) ≤ ν(Ac) + m(A) − m(Ac). Moreover,δν(·;A) ∈ ∂ν(A) implies ν(Ac) ≤ ν(A) +
δν(Ac;A)− δν(A;A). Adding up, we getδν(A;A)−m(A) ≤ δν(Ac;A)−m(Ac). On the
other hand, sinceν−mhas a maximum atA, by what we proved in the proof ofProposition 12
we haveδ(ν −m)(·;A) ∈ KA, and so

δν(A;A)−m(A) ≥ 0 ≥ δν(Ac;A)−m(Ac).

All this implies thatδν(A;A) − m(A) = δν(Ac;A) − m(Ac) = 0. SinceA ∈ A and
m ∈ core(ν), we conclude thatδν(A;A) = ν(A) andδν(Ac;A) = ν(Ac).
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We now show that (iv) implies (ii). Letm ∈ core(ν). Sinceδ(ν−m)(·;A) ∈ KA, then for
eachG ⊆ A it holds thatδν(G;A) ≥ m(G). Along with δν(A;A) = ν(A) = m(A), this
implies thatm(G) = δν(G;A) for eachG ⊆ A. A similar argument shows thatm(F) =
δν(F ;A) for eachF ⊆ Ac, and som = δν(·;A), which proves that core(ν) = {δν(·;A)}.

Since (ii) trivially implies (iii), it remains to prove that (iii) implies (i). Since core(ν) �= ?

andA ∈ A, by Theorem 11δν(·;A) ∈ core(ν) = ∂ν(A) ∩ ∂ν(Ac) ⊆ ∂ν(A).
Suppose that (i) and (iv) hold for someA ∈ A. By (iv), ν(Ω) = δν(Ω;A) and together

(i) and (iv) imply that, for allE ∈ Σ,

ν(E) ≤ δν(E;A)+ ν(A)− δν(A;A) = δν(E;A).
Hence,δν(·;A) ∈ core(ν) and so, by what we proved above, core(ν) = {δν(·;A)}. �

Proof of Proposition 14. We first prove the following Claim.

Claim. Let ν = g(P) : Σ → R be a measure game and supposeP is countably additive.
If there exists a linear setA such thatg is lower semicontinuous atP(A) andP(Ac), then
core(ν) ⊆ ca(Ω).

Proof of Claim. If core(ν) = ?, the claim is trivial. Hence, we assume core(ν) �= ?. The
proof follows an argument similar toAumann and Shapley (1974)(p. 173). LetEn ↑ Ω
and letm ∈ core(ν). ThenP(En ∩ A) ↑ P(A) andP(En ∩ Ac) ↑ P(Ac). Thanks to the
lower semicontinuity at the pointsP(A) andP(Ac), we can write:

lim inf
n
m(A ∩ En) ≥ lim inf

n
g(P(A ∩ En)) ≥ g(P(A))

= g(P(Ω))− g(P(Ac)) ≥ g(P(Ω))− lim inf
n
g(P(Ac ∩ En)) ≥ m(Ω)

−lim inf
n
m(Ac ∩ En) = lim sup

n
m(A ∩ En),

and so limnm(A∩En) = m(A), asg(P(A)) = m(A). On the other hand, a similar argument
shows that limnm(Ac ∩ En) = m(Ac). Hence, limnm(En) = m(Ω), which implies thatm
is countably additive. This ends the proof of the Claim. �

By the Claim, core(ν) ⊆ ca(Ω). It is also easy to check that eachm ∈ core(ν) is absolutely
continuous w.r.t.P∗. Actually, supposeP∗(E) = 0 for someE ∈ Σ. Then,Pi(E) = 0 for
all i. Hence,m(E) ≥ g(P(E)) = g(0) = 0. On the other hand,

m(Ω)−m(E) = m(Ec) ≥ g(P(Ec)) = g(P(Ω)) = m(Ω).
Therefore,m(E) ≤ 0, and we conclude thatm(E) = 0, andm� P∗.

By a variation of the Lebesgue Decomposition Theorem, there exist measures{mi}Ni=1

such thatmi � Pi for eachi = 1, . . . , N, andm(E) = ∑N
i=1mi(E) for all E. Moreover,

the measures{mi}Ni=1 are mutually singular and‖m‖(E) = ∑N
i=1 ‖m‖i(E) for all E (see,

e.g. Proposition 8.5.1 ofBhaskara Rao and Bhaskara Rao (1983)). By the Radon–Nikodym
Theorem, there exists aΣ-measurable vector functionf = (f1, . . . , fN) : Ω → R

N such
that, for allE ∈ Σ,m(E) = ∑N

i=1

∫
E
fi dPi.
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Proof of Proposition 16. By Lemma 4, χ ·P ∈ ∂ν(A) if and only ifχ ∈ ∂g(P(A)). On the
other hand, byTheorem 11, χ · P ∈ core(ν) if and only if χ · P ∈ ∂ν(A) ∩ ∂ν(Ac). Hence,
χ · P ∈ core(ν) if and only if χ ∈ ∂g(P(A)) ∩ ∂g(P(Ac)). This proves(5).

We now prove(6). Assume thatLcore(ν) �= ?. Set dim(R(P)) = n and dim(span{P(A) :
A ∈ A}) = k. Clearly,k ≤ n ≤ N. Let {Ai}ki=1 ⊆ A be such that the vectors{P(Ai)}ki=1
be linearly independent. We shall make use of the canonical isomorphism

R : span{P1, . . . , PN} → spanR(P),

defined byR(χ · P) = π(χ) for all χ ∈ RN , whereπ : RN → spanR(P) is the or-
thogonal projection. It is easy to check (seeMarinacci and Montrucchio, 2002b) thatR
is well-defined and is a linear isomorphism. Moreover, we havem = R(m) · P for all
m ∈ span{P1, . . . , PN}.

Hence, givenm ∈ Lcore(ν), we havem(·) = R(m) ·P(·). Consequently, the set{R(m) :
m ∈ Lcore(ν)} ⊆ RN belongs to the affine spaceM defined by the linear equations
ξ ·P(Ai) = ν(Ai) for i = 1, . . . , k. SinceR is an isomorphism, dim(Lcore(ν)) ≤ dim(M).
The dimension ofM is equal to the dimension of the spaceM0 defined by the homogeneous
linear equationsξ · P(Ai) = 0 for i = 1, . . . , k. AsM0 = span({P(A) : A ∈ A})⊥, we
conclude that dim(Lcore(ν)) ≤ dim(M) = n− k, as desired.

Finally, beingP(Ω) �= 0, dim(span({P(A) : A ∈ A})) ≥ 1, which proves the last
inequality of(6). �

Proof of Theorem 20. Assume thatm ∈ ca(Ω). We first show thatP(E) = 0 implies
m(E) = 0 for allE ∈ Σ. In fact, consider the setsE∩A andE∩Ac. We haveP(E∩A) =
P(E ∩ Ac) = 0, and soP(A − E ∩ A) = P(A) andP(Ac − E ∩ Ac) = P(Ac). By (7),
this impliesm(A− E ∩ A) = m(A) andm(Ac − E ∩ Ac) = m(Ac), so thatm(E ∩ A) =
m(E ∩ Ac) = 0, and we conclude thatm(E) = m(E ∩ A)+m(E ∩ Ac) = 0.

Next we show thatm is non-atomic. Letm(E) �= 0. By what has been just proved,
P(E) �= 0. In particular, setJ = {1 ≤ i ≤ N : Pi(E) > 0} andP̄ = {Pj}j∈J . By Lyapunov
Theorem there exists a partitionE1, B1 of E such thatP̄(E1) = P̄(B1) = 2−1P̄(E). If
bothm(E1) �= 0 andm(B1) �= 0, we are done. Suppose, in contrast, eitherm(E1) = 0 or
m(B1) = 0. W.l.o.g., suppose thatm(E1) = m(E). Again by Lyapunov Theorem, there
exists a partitionE2 andB2 of E1 such thatP̄(E2) = P̄(B2) = (1/2)P̄(E1). If both
m(E2) �= 0 or m(B2) �= 0, we are done. Suppose, in contrast, that eitherm(E2) = 0
or m(B2) = 0. W.l.o.g., assume thatm(E2) = m(E1). Proceeding in this way, either we
find a setB ⊆ E such that bothm(B) �= 0 andm(E − B) �= 0, or we can construct a
chain{En}n≥1 such thatP̄(En) = 2−nP̄(E) andm(En) = m(E) for all n ≥ 1. Hence,
being

⋂
n≥1E

n ∈ Σ, and
⋂
n≥1E

n ⊆ E, we haveP̄(
⋂
n≥1E

n) = 0 andm(
⋂
n≥1E

n) =
m(E) �= 0, a contradiction since we havēP(

⋂
n≥1E

n) = 0 iff P(
⋂
n≥1E

n) = 0. Hence,
there exists some setB ⊆ E such that bothm(B) �= 0 andm(E − B) �= 0, and som is
non-atomic.

Therefore, under both hypotheses onm,m is strongly continuous. Consequently, by the
Lyapunov Theorem, the rangeR(P,m) of (P,m) : Σ → R

N+1 is a convex subset ofRN+1.
SetW = span(R(P,m)) and let

RP(A) = {x ∈ R : (P(A), x) ∈ R(P,m)},
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whereA is the set ofEq. (7). By Eq. (7), RP(A) = {m(A)}. Hence, by Theorem 6.8 of
Rockafellar (1970), (P(A),m(A)) ∈ ri(R(P,m)). In turn, this implies that(0,1) /∈ W . For,
suppose to the contrary that(0,1) ∈ W . Since(P(A),m(A)) ∈ ri(R(P,m)), there ist > 0
small enough so that(P(A),m(A))+ t(0,1) ∈ R(P,m). Since this contradictsEq. (7), we
conclude that(0,1) /∈ W .

By a standard separation theorem (see, e.g. Corollary 11.4.2 ofRockafellar (1970)), there
is π ∈ RN+1 andα ∈ R such that,

π · y < α < π · (0,1),
for all y ∈ W . As 0 ∈ W , α > 0. Hence,π · (0,1) > α > 0 impliesπN+1 > 0. Moreover,
sinceW is a vector space, for eachy ∈ W we haveπ · (λy) < α for all λ ∈ R. Clearly, this
impliesπ · y = 0, for all y ∈ W . Therefore, we haveπN+1m(E)+

∑N
i=1πiPi(E) = 0, for

all (P(E),m(E)) ∈ R(P,m). We conclude thatm ∈ span{P1, . . . , PN}, with coefficients
{−(πi/πN+1)}Ni=1.

Finally, if Eq. (9)holds, then{(x,−1) : x ∈ RN+} ∩W = ?. By now, it is easy to see
that, by applying a standard separation result on these two closed and disjoint convex sets,
we can find a vectorπ ∈ RN+1 with πi/πN+1 ≤ 0 for all i = 1, . . . , N, and such that
πN+1m(E)+

∑N
i=1πiPi(E) = 0. Hence,m ∈ cone{P1, . . . , PN}. �

Proof of Theorem 21. Let A be linear and radial. ByTheorem 11, core(ν) = ∂ν(A) ∩
∂ν(Ac). Suppose core(ν) �= ?. For allm ∈ core(ν) and for allE ∈ Σ we have:

g(P(E)) ≤ g(P(A))+m(E)−m(A),
g(P(Ec)) ≤ g(P(Ac))+m(Ec)−m(Ac).

Hence,P(E) = P(A) impliesm(E) = m(A), and soEq. (7) of Theorem 20holds. To
complete the proof we now prove a Claim.

Claim. Let ν = g(P) : Σ → R be a measure game. Ifg is calm from below at 0 andP(Ω),
there existsγ > 0 such that‖m‖(E) ≤ γP∗(E) for all E ∈ Σ and allm ∈ core(ν).

Proof of Claim. Let m ∈ core(ν). By Theorem 11, m ∈ ∂ν(Ω) andm ∈ ∂ν(?). Since
m ∈ ∂ν(Ω),

g(P(E))− g(P(Ω)) ≤ −m(Ec), (A.1)

for allE ∈ Σ. Moreover, sinceg is calm from below atP(Ω), there existsγ > 0 andε1 > 0
such that

g(P(Ω))− g(P(E)) ≤ γ1|P(E)− P(Ω)|, (A.2)

for all E ∈ Σ such that|P(E) − P(Ω)| ≤ ε1. Hence,Eqs. (A.1) and (A.2)imply that
m(Ec) ≤ γ1|P(Ec)| for all E ∈ Σ such that|P(Ec)| ≤ ε1. Since this holds for allE ∈ Σ,
this implies thatm+(E) ≤ γ1|P(E)| for all E ∈ Σ such that|P(E)| ≤ ε1. On the other
hand, sincem ∈ ∂ν(?), we haveg(P(E)) ≤ m(E) for all E ∈ Σ, and beingg calm from
below at 0, there existsγ2 > 0 andε2 > 0 such thatg(P(E)) ≥ −γ2|P(E)| for all E ∈ Σ
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such that|P(E)| ≤ ε2. Hence,m−(E) ≤ γ2|P(E)| for all E ∈ Σ such that|P(E)| ≤ ε2.
Settingγ̄ = γ1 ∨ γ2 andε̄ = ε1 ∧ ε2, all this implies that|m|(E) ≤ 2γ̄|P(E)| for all E ∈ Σ
such that|P(E)| ≤ ε̄. SinceP is positive, there also existsγ > 0 such that

|m|(E) ≤ γ̄|P(E)| ≤ γP∗(E). (A.3)

By the strong continuity of the component measuresPi, for eachE ∈ Σ there exists a
partition{Ek}Kk=1 ofE inΣ such thatP∗(Ek) ≤ ε̄ for eachk = 1, . . . , K. Hence, by(A.3),

|m|(E) =
K∑
k=1

|m|(Ek) ≤ γ
K∑
k=1

P∗(Ek) = γP∗(E),

as desired. This ends the proof of the Claim. �

Summing up, if (i) holds, then, by the Claim proved inProposition 14, we have core(ν) ⊆
ca(Ω), while if (ii) holds, then, by the above Claim, all charges in core(ν) are strongly
continuous. Hence, under both (i) and (ii) we can applyTheorem 20, and we conclude that
m ∈ span{P1, . . . , PN} and the game is linear. ByProposition 16,

core(ν) = Lcore(ν) = {χ · P : χ ∈ ∂g(P(A)) ∩ ∂g(P(Ac))},
for any linear setA. This provesEq. (11).

If g is monotone, then for allm ∈ core(ν) and for allE ∈ Σ we have:

m(E)−m(A) ≥ g(P(E))− g(P(A)) ≥ 0,

wheneverP(E) ≥ P(A). Hence,Eq. (9)of Theorem 20holds and therefore, the vectorχ
can be chosen to be non-negative.

The only non-trivial part it remains to prove is that exact linear games have radial and
linear sets. Givent ∈ (0,1), let A be the diagonal set such thatP(A) = tP(Ω). Given
m ∈ core(ν), for a suitableχ ∈ RN we havem(A) = χ · P(A) = tχ · P(Ω) = tν(Ω).
Hence,m(A) = tν(Ω) for all m ∈ core(ν) and so, by exactness,ν(A) = tν(Ω). A similar
argument shows thatν(Ac) = (1 − t)ν(Ω), and we conclude thatA is linear.

Proof of Corollary 23. In view of Theorem 21, it suffices to prove that radially concave
measure games admit radial and linear sets. Letg satisfy(13) for some linear setE, and
core(ν) �= ?. Suppose first thatP(E) �= P(Ec). By the Lyapunov Theorem, for each
α ∈ (0,1) there existsEα ∈ Σ such thatP(Eα) = αP(E)+ (1−α)P(Ec). Therefore, using
(13),

ν(Eα) = g(P(Eα)) = g(αP(E)+ (1 − α)P(Ec)) ≥ αg(P(E))+ (1 − α)g(P(Ec)),

ν(Ec
α) = g(P(Ec

α)) = g((1 − α)P(E)+ αP(Ec)) ≥ (1 − α)g(P(E))+ αg(P(Ec)).

Hence,ν(Eα)+ ν(Ec
α) ≥ ν(E)+ ν(Ec) = ν(Ω) ≥ ν(Eα)+ ν(Ec

α) because core(ν) �= ?,
and so eachEα is linear and radial. IfP(E) = P(Ec), thenP(E) = (1/2)P(Ω) and so it
is the center of symmetry ofR(P) and it belongs to ri(R(P)). Hence,E itself is linear and
radial.
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Finally, it is easy to check thatP(Ω)/2 is linear. In fact,P(E1/2) = 2−1P(Ω). �

Proof of Proposition 24. Sinceg is concave onG, it is Lipschitz over the compact set
R(P) (see, e.g.Rockafellar, 1970, Theorem 10.4), and so condition (ii) ofTheorem 21and
Corollary 23holds. Letδ(x) be the appropriate indicator function ofR(P) for our setting,
defined by

δ(x) ≡ δ(x|R(P)) =
{

0 x ∈ R(P),
−∞ x /∈ R(P).

Set g̃(x) = g(x) + δ(x) for eachx ∈ G. Clearly,∂g̃(x) = ∂g|R(P)(x) for all x ∈ R(P).
Sinceg is concave, by a well-known result (see, e.g.Rockafellar (1970)Theorem 23.8),
∂g̃(x0) = ∂g(x0)+ ∂δ(x0) for all x0 ∈ G. As well-known,∂δ(x0) = {χ ∈ RN : χ·(x0−x) ≤
0 for allx ∈ R(P)}. Let x0 ∈ ri(R(P)) and letw ∈ W , whereW = span(R(P)). There is
ε > 0 such thatx0 + εw ∈ R(P), and soχ · w ≥ 0 for all χ ∈ ∂δ(x0). SinceW is a vector
subspace, this impliesχ ·w = 0 for allχ ∈ ∂δ(x0), which in turn implies that∂δ(x0) ⊆ W⊥.
Since the converse inclusion is obvious, we conclude that∂δ(x0) = W⊥.

Putting everything together, we have∂g|R(P)(x0) = ∂g(x0)+ W⊥ for all x0 ∈ ri(R(P)).
Hence, given anyχ ∈ ∂g|R(P)(x0), there isχ′ ∈ ∂g(x0) such thatχ · P = χ′ · P . Since
∂g(x0) ⊆ ∂g|R(P)(x0), this implies that{χ·P : χ ∈ ∂g|R(P)(P(A))} = {χ·P : χ ∈ ∂g(P(A))}
for all radial setsA. A simple application ofCorollary 23now completes the proof. �

Proof of Proposition 25. Suppose core(ν) �= ?. This implies that∂g(P(A))∩∂g(P(Ac)) �=
? because, byTheorem 21,

core(ν) = {χ · P : χ ∈ ∂g(P(A)) ∩ ∂g(P(Ac))}.
Moreover, sinceP(A) ∈ ri(R(P)), by a well-known result of Convex Analysis,[∇g(P(A))− χ] ·w = 0 for eachχ ∈ ∂g(P(A)) and eachw ∈ W , whereW = span(R(P)).
Hence,∇g(P(A)) ·P = χ ·P for eachχ ∈ ∂g(P(A)), and so, byLemma 4, ∇g(P(A)) ·P ∈
∂ν(A). Since inEpstein and Marinacci (2001)it is proved thatδν(·;A) = ∇g(P(A)) ·P , we
then haveδν(·;A) ∈ ∂ν(A). ByTheorem 13, core(ν) = {δν(·;A)}, as desired. Next, suppose
thatg is differentiable and superdifferentiable at bothP(A) andP(Ac). By proceeding as be-
fore, it can be shown thatδν(·;Ac) ∈ ∂ν(Ac). Hence, byTheorem 13, core(ν) ⊆ {δν(·;Ac)},
and so core(ν) �= ? impliesδν(·;A) = δν(·;Ac), i.e.∇g(P(A)) = ∇g(P(Ac)). As to the
converse, sinceδν(·;A) ∈ ∂ν(A) andδν(·;Ac) ∈ ∂ν(Ac), the equalityδν(·;A) = δν(·;Ac)

implies∂ν(A) ∩ ∂ν(Ac) �= ?. Then, byTheorem 11, core(ν) �= ?. �

Proof of Corollary 26. Sinceν is radially concave atA, it is easy to check that all sets
Aα, with α ∈ (0,1), such thatP(Aα) = αP(A)+ (1− α)P(Ac) are linear (see the proof of
Corollary 23). Forα small enough,P(Aα) ∈ U and sog is differentiable atP(Aα). Since
Aα is a radial set, a simple application ofProposition 25proves the result. �

Proof of Proposition 28. Letm ∈ core(ν) andE be such thatP(E) = 0. It is immediately
seen that this impliesm(E) = 0. The argument used in the first part of the proof ofTheorem
20applies. Therefore,m is non-atomic. Let us prove the second statement. Under condition
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(i), the claim in the proof ofTheorem 21entails thatm is strongly continuous. If (ii) holds,
the claim ofProposition 14establishes that core(ν) ⊆ ca(Ω). Hence, the elements are
strongly continuous as they are non-atomic. �
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