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Mock Question 1 (total 16 points, out of 50 from 3 questions)
Time Advised: 22 minutes (for this question)

Question 1.A (13 points)

Write in formal terms an AR(p) model with p > 1, making sure to explain what each term
represents and whether each term is an observable random variable, a latent shock, or a
parameter; also explain the economic intuition for the model, if any. What does it mean, both in
logical and in statistical terms, that an AR(p) time series process is stationary? Assuming
stationarity, make sure to discuss what the relevant population moments of the process are,
also providing a few examples of the corresponding closed-form formulas.

Debriefing:
We expect all sub-questions to be answered but within a well-organized, 12-15 line long reply
that will need to fit in the (generous) space provided.

In class we have expressed some doubts as to a rational, efficient-markets hypothesis related
explanation for the meaning of AR(p) models in finance, and that represents the expected
answer to that part of the question.

2.2 Autoregressive Processes

Autoregressive process: a p-th order autoregressive process, denoted as AR(p), 1s a
process that can be represented by the p-th order stochastic difference equation
U = Op+ DYy + Galle 3 + + Bty p + €

where the process of {g} is an IID white noise with mean zero and constant variance o2
In a compact form:
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in which the series {y,} is a weighted sum of p past variables in the nancial and macroeconomic data, i.e., the fact that the series tends to be influenced
. t . . at most by a finite number of past values of the same series.
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Markovian nature of financial and macroeconomic data, i.e,, the fact
that the series tends to be influenced at most by a finite number of Difference operator (A): it expresses the difference between consecntive realizations of
past values of the same series, which is often also described as the 7 time series, 0.8 S = e = v
series only having a finite memory

We can rewrite the AR model using the lag operator

Definition (Autoregressive process) A p-th order autoregressive process,

(1— L —dal® — . — @ lP)y = by + €

In a compact form

denoted as AR(p), is a process that can be represented by the p-th Sl — o + €
order stochastic difference equation where (L) is the polynamial of arder p, (1 — ¢ [ — 6oL — .. — ¢, L7)
yr _¢u+9ﬁ1yz 1 +¢?_Jyz _’+"'+§6p—yt p"‘;f’
. . (Reverse) Characteristic equation: the equation obtained by replacing in the polyno-
where the process of : £ : is an IID white noise with mean zero and mial @{L) the lag operator L by a variable A and setting it equal to zero, i.e., ¢(A) = 0
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constant variance O:, . More compactly, we can write: Root of the polynomial ¢(L): any value of A which satisfies the polynomial equation
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Propertics:

L Mean: = 2 in case of an AR(1)

1= Tamir; in case of an AR(p)
2 Variance:  Varlu| = 27 in case of an AR(1)

Var|u] mf:g’w in case of an AR(p)

Wold’s decomposition: Every weakly stationary, purely non-deterministic, stochastic
process (y, — ) can be written as an infinite, linear combination of a sequence of white
noise components:

Stability and Stationarity of AR(p) Processes

v iejﬁ i
= [n case of an AR(p), because it is a stochastic difference equation, it
can be rewritten as _ —hfE— ” — .
((A-¢L-pL—.—9 L")y, =¢ +¢,
or, more compactly, as ¢ (L)y, = ¢y + &, where ¢p(L) isa
pu]ynomial of order 20 (1 - ?5114 - ¢2[f e ¢J,Lp) # This result is useful for deriving the autocorrelation function of an antoresressive

process

* Wold’s theorem states that only an autoregressive process of order p with no con-
stant and no other predetermined, fixed terms can be expressed as an infinite order
moving average process, MA(sc).

= Replacing in the polynomial ¢(L) the lag operator by a variable 4
and setting it equal to 0, i.e.,, ¢ (1) = 0, we obtain the characteristic « It can he used to check the stationary condition of the mean and the variance of an
. . " M M AR model.
equation associated with the difference equation ¢(L)y, = ¢y + &

o A value of A which satisfies the polynomial equation is called a root Fxample
1. Mean:

o A polynomial of degree p has p roots, often complex numbers Starting from an AR(1) model
= Ifthe absolute value of all the roots of the characteristic equations o=t Bute s 6
is higher than one the process is said to be stable Tuke the expectation of the model cquation

= A stable process is always weakly stationary Fl S )

Under the stationarity condition, it must be that

«  Even if stability and stationarity are conceptually different, stability

E( E(u1)
conditions are commonly referred to as stationarity conditions S e
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which solved for the unknown unconditional mean gives
P
1—d

and then go = (1 — ¢1)p
For pi to be constant and to exist, it must be that ¢, # 1. Substitute gy above in
the initial model equation and obtain

W= p= 01U —p) T &

It must also be the case that

» P . ‘ —
Wold’s Decomposition Theorem Wos— A= o =) b
and therefore
Result (Wold's decomposition) Every weakly stationary, purely non- = daldilne —p e ) b
By a process of infinite backward substitution, we obtain
deterministic, stochastic process ( . — &) can be written as an in- =
t B et it Gl at = D e
ﬁnlte’ "nearcnmhlndtlon Dra Seguence erhlte noise cnmponentﬁ Following similar algebraic steps, we can derive also the unconditional mean of an
o AR(p) model
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i=0 For g to be constant and to e it must be that
= An autoregressive process of order p with no constant and no other 61462t bl <1
predetermined, fixed terms can be ex-pressed as an infinite order s
moving average process, MA(«0), and it is therefore linear Starting from an AR(1) model
. . . El(w — )% = $*El(yey — p)?] + E[&]
= Ifthe process is stationary, the sum X2, ;e._; will converge =g = Sl = e B
under the stationarity assumption E[(u — p)] = E[(ue1 — p)?] = Var[u] it becomes
* The (unconditional) mean of an AR(p) model is Varly] = 2Varlu] + o7
0 and therefore N
H=—— Varly] = 125
1- ¢1 - ¢2 T d’p provided that ¢%, < 1. 7
o The necessary and sufficient condition for the mean of an AR(p) I:ﬁff;fmﬁﬁmng,ih,ﬁz f,;"‘d(‘_“f e dertved before together, for an AR model.
process to exist and be finite is that the sum of the AR coefficients is fo e o  gemeesl AR{) meodel thae Farrnila oF the vasiance hecomes
less than one in absolute value, |4, + ¢, +..+¢ |<1 o2
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In the general case, covariance stationarity can be checked using the Schur criterion

Schur criterion: Construct two lower-triangular matrices, Ay and Ay of the form

1 o (U] — @y o o 0

—dy 1 0 oy 0
S Ay=]| P2 TP
2 L e

0 . ]

Moments and ACFS Of an AR(p) Process The AR(p) ]:rf:(:;.s i;:':ﬁ;c:c;iim:nmv if am: un;d:f Lh::;lri;;.s 70‘;.‘;&::;:;;;’
= The (unconditional) variance of an AR(p) process is computed from

is positive definite.

Yule-Walker equations written in recursive form (see below) The autocovariances and autocorrelations of AR(p) processes can be computed by solving
. a set of Yule-Walker equations.
In the AR(2) case, for instance, we have ! o Yl Walker cauat
— ¢2)ch Yule-Walker equations for an AR(2) process where y =0
Var[y,] = 1+ 1-— _ (1+ _ Yo = Onliy1 + Dalhe 2+ &
( ¢£)( I(pll ¢£) ?1 ¢£) We multiply the previous equation by ., with s 1,2, . and take the expectation of
For AR(p) models, the characteristic polynomials are rather each resulting stochastic difference equation
convoluted - it is infeasible to define simple restrictions on the AR Elwow] = é1Blwerw] + boluaw] + Bl
- . . . . Elwewt] = €1 Elpe-avn] + delvv] + Elvel
coefficients that ensure covariance stationarity T S B
» E.g., for AR(2), the conditionsare ¢p; + ¢, < 1, py — ¢p < 1, || <1 — Bt o] = & F {1t s] + Gl 2w ] + Bl see]
= The autocovariances and autocorrelations functions of AR(p) —— Bl s] = Bl et ] = 72
processes can be computed by solving a set of simultaneous Blew] = o® and Bly ] =0
equations known as Yule-Walker equations Therefore
It is a system of K equations that we recursively solve to determine the A"n - O':J,:j’:?:‘a
ACF of the process, i.e., p, forh=1,2, ... = imer t bt s22
See example concerning AR(2) process given in the lectures and/or in e e p1 = dupn + dapn
the lecture notes pa= i it tapea 522

. By construction py = 1, then
= For a stationary AR(p), the ACF will decay geometrically to zero e
Lecture 3: Autoregressive Moving Average [ARMA) Models - Prof. Guidolin 10

&3

and, consequently, we can solve by recursive substitution p, for any s >

# The autocorrelation function of an AR(p) will decay geometrically to zero because
the leading term will also take the form of powers of sums of the coefficients which
need to be restricted to absolute sums that are less than one.

We can use the sample PACF function to identify the order of an AR(p) model. From the
definition of PACF
Ye = D1 +@11U + E1¢
U = Pz + P12l + Oralhe-z + Ene
Y = Poa + Prade—1 + Pralez + Paale-s + Ex

These models are in thﬁc‘ form of multiple linear regressions and can be estimated by simple
least squares, so that ¢;; is the sample j-order PACF of y, and should converge to zero for
all orders j = p.

Invertibility: An invertible MA(q) model can be expressed as an AR(=c):
ve= 3 Gliu g+
=1

A MA(q) is invertible when the magnitude of all the roots of the MA polynomial exceeds
the one.

# The ACF of a MA model has the same shape of the PACF of an AR model, and the
PACF of a MA model has the same shape of an AR model.

Question 1.B (2 points)

Using the lag operator L, write an AR(2) process in “lag operator-polynomial” form and discuss
how would you go about testing whether the process is stable and hence stationary. Will the
resulting stationarity, if verified, be strong or weak? Make sure to explain your reasoning.

Debriefing:

Because if the series is stationary, Wold’s decomposition applies, the process is linear and as
such weak and strong stationarity are equivalent.

See also material copied below.



Stability and Stationarity of AR(p) Processes

In case of an AR(p), because it is a stochastic difference equation, it

can be rewritten as l (1 —¢1L —¢2L2 —— gbpg’ ))’; = ¢0 +&,

or, more compactly, as ¢ (L)y, = ¢y + &, where ¢p(L) isa
polynomial of order p, (1- @511, — ¢21_',"‘ — ¢!;L"’)

Replacing in the polynomial ¢ (L) the lag operator by a variable A

and setting it equal to 0, i.e.,, ¢ (1) = 0, we obtain the characteristic
equation associated with the difference equation ¢(L)y, = ¢y + &

o A value of A which satisfies the polynomial equation is called a root

o A polynomial of degree p has p roots, often complex numbers

If the absolute value of all the roots of the characteristic equations

is higher than one the process is said to be stable

A stable process is always weakly stationary

o Ewen if stability and stationarity are conceptually different, stability

conditions are commonly referred to as stationarity conditions
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Question 1.C (1 point)

8

2.2 Autoregressive Processes

Autoregressive process: a p-th order autoregressive process, denoted as AR(p), s a
process that can be represented by the p-th order stochastic difference equation

Y=ot G Hdaleat o+ Bplspt &

where the process of {¢;} is an 1D white noise with mean zero and constant variance o?

In a compact form:

»
w=dot Y Gy ta
=

« AR(p) models are simple univariate devices to capture the Markovian nature of fi-
nancial and macroeconomic data, i.c., the fact that the series tends to be influenced
at most by a finite number of past values of the same series

Lag operator (L): it shifts the time index of a variables regularly sampled over time
backward by one unit, e.g. Ly, = ¥y

Difference operator (A): it expresses the difference between consecutive realizations of
a time series, 6.2 Ay, = U — Y1
We can rewrite the AR model using the lag operator

(1= L—Gol? — . — Py = dp+ €

In a compact form

L)y = dp + &
where 6(L) is the polynomial of order p, (1 — &y L — 62L% — .. — 0, L7)

(Reverse) Characteristic equation: the equation obtained by replacing in the polyno-
mial ¢{L) the lag operator L by a variable A and setting it equal to zero, i.e., @A) = 0.

Root of the polynomial ¢(L): any value of A which satisfies the polynomial equation
(A) = 0. It is a determinant of the behavior of the time series: if the absolute value of all
the roots of the characteristic equations is higher than one the process is said to be stable

e A stahle process is always weakly stationary.

Consider the following data and the corresponding sample ACF:
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What is the most likely type of ARMA(p, q) process that may have originated this SACF? What
other type of information would you be needing in order to make sure of your answer? Make
sure to carefully justify your arguments.

Debriefing: The series and the corresponding SACF were generated from 1,000 simulations
from an AR(2) process with the following features:

AR(2) 1 0 Unconditional
(%} 0.663 mean 0
¢, -0.335 Unconditional
(o} 0.1 variance 0.030

As seen in the lectures (lecture 3, slide 12), this cyclical but fading pattern characterizes
stationary AR(2) processes with coefficients of opposite signs. However, one could be really
“positive” this SACF comes from an AR(2) only after verifying that the SPACF has the typical
behavior of PACF for stationary AR(2) processes: two values statistically significant, followed
by no other significant values. Of course, one cannot detect the generating process just on the
basis of the SACF (also the confidence intervals were not given), but she could speculate on its
likely nature.
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