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Mock Question 2 (total 17 points, out of 50 from 3 questions)
Time Advised: 24 minutes (for this question)

Question 2.A (14 points)
Consider a bivariate VAR(2) model for S&P 500 returns and the log changes in the VIX volatility
index (R;%P and AInVIX,). Write:

» The structural, unconstrained VAR(2) that includes contemporaneous effects across the

two markets.

» The associated unconstrained reduced-form VAR(2).
Explain through which steps it is possible to transform the structural VAR model into the
reduced-form one (algebra is not required, unless it helps you provide an efficient answer). How
would/could you estimate the structural VAR? How would/could you estimate the reduced-
form model? Explain what are the issues/limitations caused by the transformation of a
structural VAR into a reduced-form model.

Debriefing:

2 Introduction to VAR Analysis

2.1  From Structural to Reduced-Form VARs

Voctor Autoregressive Model Var(p): A Vector Autaregressive model of erder p is
ncicass-Hins can bé repraied
Yi=mg Ayt Agyeat o Apyi gt =ap+ 3 A+
whes
yi i vl
g =
Ay,

officients u,
tuarbnees.

Vector Autoregressions: Reduced-Form vs. Structural

Structural VAR or VAR in primitive form:
= What is the difference? Consider the simple N = 2, p = 1 case of e = b — Buages 4 @1agie 1+ @rane + o
Ty ="10 — b2z + V11Tt + V2% T & bap = baiy ;
Tt = "Yep — a1z + To1ZTe=1 T YaoZt—1 + Ef:

where both x, and z, are stationary, €', and €? are uncorrelated
white noise processes, also called structural errors

= Using matrices, this VAR(1) model may be re-written as: station
Lbe][a] _[1o] , [rume] o] | [ L& Flizl-lel-b wlls)-lE)
bay 1 || 2 Y20 Ya1 Y22 | L 21 €
_V_ﬁ\—..\’_/ \_v_f\—v—f \‘_\f_’ or In compact
B Yt To ™ ye—1 e By, = Qo+ Qu¥i-1 +¢
By =To+ Tyt + &
= Pre-multiplying both sides by B! (this will be possible if b,,b,,

1‘1] I ey il (!
e _ p-lp. 4 p-l L N
=B To+B Ty 1+B ¢ =a + Ay +u o It captures contemporaneous feedback effects:
a, A ut | Reduced-form VAR | 1. —by 3 measures the contemporaneous effect of a unit change of gy, on gy,
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Vector Autoregressions: Reduced-Form vs. Structural

= The "new” error terms are composites of the two primitive shocks:

-1
uf_z_l_lbm L4
e ][]

_ 1 1 —bm ff _ 1‘_%?62
L —bgbyy [—bar 1 | [€ O

1—by2bay

e —boeg

= What are the properties of the reduced form errors? Recall that 5,
and €, were uncorrelated, white noise processes, then:

. [u:] =1; [E‘[ef _b.,ef]] - [3] (as Ele;] = Elg]] = 0)

ug byabyy | Elef — buef]
. 1 .
Varluf) = ——— Varle — b
arfu; (T brabm)? arley — biaeg;]
1

s{Varlg] + by Varlg] — 2bCovle. €]}

T (1= bigba)
2

_ 92+ (similarlv Var[u;] = o} + bho )
(1 — biabn )? - (1= bizbn)?
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Vector Autoregressions: Reduced-Form vs. Structural

= The reduced-form shocks u*, and v will be correlated even though
the structural shocks are not:

. : 1
Covl®. vl = Elvw’) = —
ovfuf, u;] [uf ] TETE
1

=—— —Flefe; — boy(€F)® — bya(€])? + byobay €7 €7
(1= bygbay )2 e 21(€7) 12(€7) 12021 €, €,
=0 =0

5 s byya? + biac?
e El—ba ()2 — =2 o _P2de T Ol
(1 —byabay }EE[ baa(€)” = buzler)’) (1 — byabyy )2

which shows that they are uncorrelated if b, = by, = 0

= This is very important: unless the variables are contempo-
raneously uncorrelated in the structural VAR (b,, = b,, = 0),a
reduced-form VAR will generally display correlated shocks

o IFVARSs are just extensions of AR models under what conditions will
they be stationary? Stay tuned...

E[[éf — brzf: ){f: - bﬂlf: J

1

Lecture 4: Multivariate Time Series Analysis- Prol. Guidolin 12

2, =byy the cont s effect of a unit change of gy, on gy,

Each contemporaneous variable is correlated with its own error term, therefore the
regressors are not uncorrelated with the error terms as required by OLS estimation
techniques,

When —by 4 # 0. y3, depends on gy, and on € ; and will be correlated with it. When
—bay £ U, g, depends on ya, and on e,

Contemporaneous terms cannot be used in forecasting,

Reduced-form VAR or VAR in standard form:
Yie=arg b oy benayen oo

Woa = 000 + Q21 0-) + 033000 + Uy

that is ohtained from by pre-multiplying both sides of By, = Qo+ Quve ¢ +6 by B!
ye=ap + Agyeq u

where ag = B0, Ay = By, = Ble,.

# It does not contain contemporaneons feedback terms,
# [t can be estimated equation by equation using OLS,
® 1y, and wa, are composites of £, and e3,: 0 fact
—Rp-1
ue =B then

10 = Pgegs
1 by abs

10 = baaerg
by aba,

Uy, = and  wy, =

Praperties {derived by the white noise processes ¢, £,):

L

- ¢~ Inaea,

Eluy,| = B2 =0
fuss] I 1 — by ooy l

ar ey~ bogere

s ] = El———x] =

LI'"-II'] Fl 1- i’l.'lb}l 3 U

2 Varfey, — by ze;
Varluy,] = |]._’.;1| .,b:‘:];.rl -

6

”?,1 + ’5%,2“22
(1 — by oby)?

B Varle,] + b%‘QVLlT[EQ,,‘] — 2b12Covler ¢, €9,]
(1 — by by)?

2 2 9
o2y +by,074

Varfug,| = ———=
fi2c] (1 = bioba)?
constant over time
3. 2 4 p g
- — - +
Covlus, us,] = Eller, — buaeay)(eo, - baerd] _ —(Ba108 1‘2‘22.2)
o (1 — byaba,1) (1 — byobas)
® wuy, and ug, are serally uncorrelated, but are cross-correlated unless bys = byy =
4.

¥, = Var[uy ]

7| Covlugy, ua.]

Covluy,, ua,] _ of o1
Var[ug,] oz o)

o In general, it is not possible to identify the structural parameters and errors from
the OLS estimates of the parameters and the residuals of the standard form VAR,
unless some restrictions are imposed on the primitive system.

Recursive Choleski triangularization: Impose a Choleski decomposition on the
covariance matrix of the residuals of the VAR in its standard form, that is the restriction
bra =0, so that
Yo =bro+ @iy 1+ P12y 1 + €1y
Y2 = bao — baayre + ©2ay10-1 + p2212:-1 + €,
then

ure = €1 and  upe = ez — bayrery

1 0
“bay 1

vie | 1 0 bio + 1 0 YL Ple Vet |
Vau by 1 bago “boy 1 Y31 P2 Vo1

L 1]

In matrix form, the restriction by 5 = 0 means that Bl= [ ] so that



that minimizes 2.4 Estimation of a VAR(p) Model

S(8) =u(IxE.) 'u
Multivariate LS estimator:

nstrained, the GLS estimator is the same as

refore an unconstrained VAR can be estimated Sl:l["il]f_', from
Y =BZ+U
Asymptotic properties of the OLS estimator B (under standard assumptions): “._Iulnl Y= ¥ ',“-"'r' i, B= ',ﬂ”' \,] '\".s'.'."” Al U = uy, 2o U Z= (2, /71- Zr-1]
with Z; = [, ¥_1,¥i_2: fopetls Given that y = vec(Y), 8 = vec(B) and
{a) Consistent and asymptotically normally distributed 1 = vee(U) the multivariate LS estimator is
VTvecd B—B) & N(0.Zg) or vee(B) & N(vec(B), Eg/T) A=(ZZ)"' 2 T)ZeS )y = (ZZ)'Za )y
where Zg = plim(ZZ'/T)"' @ E,.
(b)
- 1 o ST big P11 P12 Vig-1
L,y= = s Z'-l_-‘l, or X, -r'z g iy = 4 . +
T-Npi L~ bap — b1 ob2a w21 —baprn won — baapre Vag-1
where i, = v, — BZ,_
g — ba i€
Multivariate ML estimator: 2t 21610
Under the assumptions: so that
) : . i . aro=>bro, acp=bopo—bioba1, a1 =11, a2=p1a,
(a) Sample of T observations on Y and a pre-sample of pinitial conditions y_. 1, 4_y-2. - - i *
- . ) . I . a2y = a1 —boiprt, a0 =@oa —boipra,  wi=€rg, Ul = €2 — bogery
(b) Stationary process and Gaussian multivariate white noise innevations.
Y = [vi.¥2. . ¥r] is jointly normally distributed. Tt follows that
2 _ v _ 2
(c) G n multivariate white noise (then innovations at different times are inde 0= Var -UU] =0t
2 — 17 1 2 2 92
o5 = Varlug] = o7y — by 07,
v 2
Covluyg, uag] = —boyor,
(e) ) B Yeap(-1(Y - BZ)(Ir ® £;1)(Y - BZ))
the ML estimator maximizes # The restriction implies that the observed values of u;; are completely attributed

NT T 1 to pure (structural) shocks to yi .
(B, £,: Y. Z) = Infy(Y) = ———In(2x)— In|E, |- (Y -BZ) (Iro¥; ") (Y-BZ) = pure { L Y

Question 2.B (2 points)
Suppose that the bivariate structural VAR(2) is to be exactly identified by imposing either of the
two possible Choleski triangularization schemes:

r_ 1 0 11_1 b12
B_[b21 1] and B =], 1]

Carefully explain the implications and differences in economic interpretations of the estimated,
corresponding reduced-form model deriving from imposing the restriction in B’ instead of B"".
How does your answer change when the restriction

woly ]

is imposed instead?

Debriefing:

Trivially, B’ implies that the original structural model is in reduced form or, alternatively, the
model has been over-identified by removing all contemporaneous effects between variables.
B’ implies that S&P 500 returns are ordered before VIX log-changes, so that any u7%” shock to
the S&P 500 is structural and primitive, while the u}’¥ shocks are correlated with both
structural shocks to S&P 500 and the VIX.

On the opposite, B" implies that log changes in VIX are order before S&P 500, so that any
u?™ shock to the VIX is structural and primitive, while the u7%? shocks are correlated with both

structural shocks to S&P 500 and the VIX.



® In a Novariate VAR, we need to impose (N2 — N)/2 in order to retrieve the N
structural shocks from the residual of the OLS estimate.

Identifying Structural from Reduced-Form VARs

= |Inasense, shocksto Z, are more pl‘imitive. eniay a highel‘ rank, and Example for a VAR(1) with three endogenous variables:

move the system also through a contemporaneous impact on , We need to illl])\f.‘é(.‘ (32—3)/2 = 3 restrictions ihm.is equivalent to pre-multiplying
the structural VAR by the lower triangular matrix

= The VAR(1) now acquires a triangular structure:

_ 10 0
Te="10— biazy + @iy + 7 12281 T € Bl=| by 1 0
- - o - . z -bis by 1
Zt="Tao T Yo ¥t=1 T Vaadt—1 T &
i . —1 . 1 bya so that
=B To+B Ty +B ey =a, + Ayipg—1 +1y with B 1 0 0 €1
! ; R ] L D1 -1 .
a Ay e wu =B ‘&= -ba 10 @ | =
o -bag -bga 1 €
= This corresponds to imposing a Choleski decomposition on the S ’
covariance matrix of the residuals of the VAR in its reduced form { o ]
= 2t — 02,1€1,¢
= Indeed, now we can re-write the relationship between the pure €30 — baaere — bageay

shocks (from the structural VAR) and the regression residuals as

H There

Uy _ H_l_ _ lbm ! ff _ ff—bmc’;
_“r €= 01 [ - @ variabl

— to a VAR model we are introducing a number of (potentially arbitrary) assump-

re as many Choleski decompositions as all the possible orderings of the
es. Therefore, when we apply a Choleski triangular identification scheme

tions on the contemporaneous relationships among the variables.
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Recursive Choleski Identification

= In fact, this method is quite general and extends well beyond this
VAR(1), N = 2 example: in a N-variable VAR(p), B is a NxN matrix
because there are N residuals and N structural shocks

= Exactidentification requires (N? — N)/2 restrictions placed on the
relationship btw. regression residuals and structural innovations

= Because a Choleski decomposition is triangular, it forces exactly
(N?-N)/2 values of the B matrix to equal zero

Because with N = 2, (22-2)/2 = 1, you see that b;, = 0 was sufficient
in our example

= There are as many Choleski decompositions as all the possible
orderings of the variables, a combinatorial factor of N
A Choleski identification scheme results in a specific ordering, we are
introducing a number of (potentially arbitrary) assumptions on the
contemporaneous relationships among variables
Choleski decompositions are deliberate in the restrictions they place
but tend not to be based on theoretical assumptions
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Question 2.C (1 point)
Suppose that the estimation of a constrained, reduced-form VAR(2) has provided the following
ML estimates of the conditional mean function and of the covariance matrix of the reduced-form

shocks (p-values are in parentheses):
0.006 0.053 0.473 0.113
S&P _ S&P _
Re™ = 0.044) T (0.093)Fe=1 ~ (0.003)2VIXe-1 + (0 045)
0.194 0.375 0.094 0.804

_ _ S&P S&P
AlVIX: = =(0.149) ™ (0.024)Re1 T (0.050)Re=2 T (0.000)
0.008  —0.016

%P\ _ [(0.000) (0.007)
w/ix|) = [-0.016  0.014
(0.007) (0.000)

You would like to recover the original structural parameters, including the contemporaneous,
average impact of both VIX changes on S&P 500 returns and vice-versa. Is there a chance that
this may be possible even though you are not ready to impose a Choleski ordering on the two

AlnVIX,_, + ufs?

AlnVIX,_; +ul™

Var

variables?

Debriefing: One cannot say for sure but the evidence shown has two implications:
» The estimated reduced-form VAR(2) carries restrictions and in fact estimation has been
properly performed by MLE applied to the bivariate system.
= There are two restrictions that have been imposed, setting the coefficients of RF%f to
zero in the first equation and the coefficient of AlnVI1X;_, to zero in the second equation;
indeed note that ML estimation has been performed, because it is likely that the reduced-

4



form VAR will include restrictions.
Now, we can only speculate that such restrictions derive from restrictions that have been
imposed on the matrix I, in the structural representation of the model,
RS&P RS&P RS&P £ S&P
B =T+ - +T, - +1 5l
AlnVIX; AlnVIX,_4 AlnVIX,_, €¢
_[oO Yiz

L=, .

Y21 0
However, we know that the exact identification of a bivariate structural VAR requires imposing
(22 -2)/2 = 1restriction and that such constraints do not have to be imposed necessarily on the
matrix of contemporaneous effects B. Because two such restrictions seem to have been imposed
on I, yes, there is a chance for the structural model—in particular for the two coefficients
measuring the contemporaneous, average impact of both VIX changes on S&P 500 returns and
vice-versa—to be identified (probably, over-identified), even though no Choleski
triangularization has affected B (in fact, no restrictions at all have been imposed).

in the sense that
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