MSc. Finance/CLEFIN
2017/2018 Edition

FINANCIAL ECONOMETRICS AND EMPIRICAL FINANCE - MODULE 2

Mock Question 2 (total 17 points, out of 50 from 3 questions) Time Advised: 24 minutes (for this question)

Question 2.A (14 points)

Consider a bivariate VAR(2) model for S\&P 500 returns and the log changes in the VIX volatility index $\left(R_{t}^{S \& P}\right.$ and $\left.\Delta \ln V I X_{t}\right)$. Write:

- The structural, unconstrained $\operatorname{VAR}(2)$ that includes contemporaneous effects across the two markets.
- The associated unconstrained reduced-form $\operatorname{VAR}(2)$.

Explain through which steps it is possible to transform the structural VAR model into the reduced-form one (algebra is not required, unless it helps you provide an efficient answer). How would/could you estimate the structural VAR? How would/could you estimate the reducedform model? Explain what are the issues/limitations caused by the transformation of a structural VAR into a reduced-form model.

Debriefing:

Vector Autoregressions: Reduced-Form vs. Structural

- What is the difference? Consider the simple $N=2, p=1$ case of

$$
\begin{aligned}
x_{t} & =\gamma_{10}-b_{12} z_{t}+\gamma_{11} x_{t-1}+\gamma_{12} z_{t-1}+\epsilon_{t}^{x} \\
z_{t} & =\gamma_{20}-b_{21} x_{t}+\gamma_{21} x_{t-1}+\gamma_{22} z_{t-1}+\epsilon_{t}^{z}
\end{aligned}
$$

where both x_{t} and z_{t} are stationary, $\epsilon_{\mathrm{t}}^{x}$ and $\epsilon_{\mathrm{t}}^{2}$ are uncorrelated white noise processes, also called structural errors

- Using matrices, this VAR(1) model may be re-written as:

- Pre-multiplying both sides by B^{-1} (this will be possible if $\mathrm{b}_{12} \mathrm{~b}_{21}$ $\neq 1$),
$y_{t}=\underbrace{B^{-1} \Gamma_{0}}_{\mathbf{a}_{0}}+\underbrace{B^{-1} \Gamma_{1} y_{t-1}}_{A_{1}}+\underbrace{B^{-1} \epsilon_{t}}_{u_{t}}=$ Reduced-form VAR $_{\mathbf{a}_{0}+A_{1} y_{t-1}+u_{t}}^{\text {Res }}$
Lecture 4: Multivariate Time Series Analysis- Prof. Guidolin

```
2 Introduction to VAR Analysis
2.1 From Structural to Reduced-Form VARs
Vector Autoregresive Model Var(p): A Vector Autoregrexive model of order p is a
process that can be represented as
    \mp@subsup{y}{t}{}=\mp@subsup{a}{0}{}+\mp@subsup{A}{1}{}\mp@subsup{y}{t-1}{}+\mp@subsup{A}{2}{}\mp@subsup{y}{t-2}{}+\ldots+
where
\mp@subsup{y}{t}{}=N\times1 vector containing N endogenous variables
<1 vector of constants
\mp@subsup{\mathbf{A}}{1}{},\mp@subsup{\mathbf{A}}{2}{},\ldots,\mp@subsup{\mathbf{A}}{p}{}=pN\timesN\mathrm{ matrices of autoregressive coefficients u}\mp@subsup{\mathbf{u}}{t}{}
=N\times1 vector of serially uncorrelated, white noise disturbances.
Structural VAR or VAR in primitive form:
        y
        yy,s}=\mp@subsup{b}{2,0}{}-\mp@subsup{b}{2,1}{}\mp@subsup{y}{1,2}{}+\mp@subsup{\varphi}{2,1}{\prime}\mp@subsup{y}{1,2-1}{}+\mp@subsup{\varphi}{2,2}{\prime}\mp@subsup{y}{2,-1}{}+\mp@subsup{\epsilon}{2,}{
where
\mp@subsup{y}{1,}{\prime},\mathrm{ and y2,},\mathrm{ are assumed to be stationary}
\mp@subsup{\epsilon}{1,}{\prime,},\mathrm{ and }\mp@subsup{\epsilon}{2,t}{,}\mathrm{ are uncorrelated white-noise dixturbancer with xtandard deviation }\mp@subsup{\sigma}{1}{}\mathrm{ and }\mp@subsup{\sigma}{2}{}
respectively.
In matrix notation
    [ccc}\begin{array}{c}{1}\\{\mp@subsup{b}{2,1}{}}
or in compact form
                                    By }=\mp@subsup{Q}{0}{0}+\mp@subsup{Q}{1}{}\mp@subsup{y}{t-1}{}+\mp@subsup{\epsilon}{t}{
                                    - y, depends on its own lag and on both one lag and current value of y2;; y2, depends
                                    on its own lag and on both one lag and current value of \mp@subsup{y}{1,}{}
                                    - It captures contemporancous feedback effects:
                            1. -\mp@subsup{b}{1,2}{}\mathrm{ measures the contemporaneous effect of a unit change of }\mp@subsup{y}{2,x}{}\mathrm{ on }\mp@subsup{y}{1,z}{}\mathrm{ ;}
- It captures contemporaneous feedback effects:
1. \(-b_{1,2}\) measures the contemporaneous effect of a unit change of \(y_{2, x}\) on \(y_{1, x}\);
```

$$
\text { 2. }-b_{2,1} \text { measures the contemporaneous effect of a unit change of } y_{1, t} \text { on } y_{2, t} \text {. }
$$

- Each contemporaneous variable is correlated with its own error term, therefore the regressors are not uncorrelated with the error terms as required by OLS estimation techmiques.
- When $-b_{1,2} \neq 0, y_{2,2}$ depends on $y_{1, t}$ and on $\epsilon_{1, t}$ and will be correlated with it. When $-b_{2,1} \neq 0, y_{1, t}$ depends on $y_{2, t}$ and on $\epsilon_{2, t}$
- Contemporaneous terms cannot be used in forecasting.

Reduced-form VAR or VAR in standard form:

$$
\begin{aligned}
& y_{1, t}=a_{1,0}+a_{1,1} y_{1, x-1}+a_{1,2 y_{2, t-1}}+u_{1, t} \\
& y_{2, t}=a_{2,0}+a_{2,1} y_{1, t-1}+a_{2,2 y_{2, t-1}}+u_{2, t}
\end{aligned}
$$

that is obtained from by pre-multiplying both sides of $\mathrm{By}_{\mathrm{t}}=\mathrm{Q}_{0}+\mathrm{Q}_{1} \mathrm{y}_{\mathrm{t}-1}+\epsilon_{\mathrm{t}}$ by B^{-1}

$$
y_{t}=a_{0}+A_{1} y_{t-1}+u_{t}
$$

where $a_{0}=B^{-1} Q_{0}, A_{1}=B^{-1} Q_{1}, u_{t}=B_{t}^{-1} \epsilon_{\mathrm{t}}$.

- It does not contain contemporaneous feedback terms.
- It can be estimated equation by equation using OLS.
- $u_{1, x}$ and $u_{2 x}$ are composites of $\epsilon_{1, z}$ and $\epsilon_{2 x}$: in fact

$$
\begin{gathered}
\mathbf{u}_{\mathbf{t}}=\mathbf{B}^{-1} \epsilon_{\mathrm{t}} \text { then } \\
u_{1, t}=\frac{\epsilon_{1, t}-b_{1,2} \epsilon_{2, t}}{1-b_{1,2} b_{2,1}} \text { and } u_{2, t}=\frac{\epsilon_{2, t}-b_{2,1} \epsilon_{1, t}}{1-b_{1,2} b_{2,1}}
\end{gathered}
$$

Properties (derived by the white noise processes $\epsilon_{1, \lambda}, \epsilon_{2, t}$):

$$
\begin{gathered}
E\left[u_{1, t}\right]=E\left[\frac{\epsilon_{1,2}-b_{1,2}(2, t}{1-b_{1,2} b_{2,1}}\right]=0 \\
E\left[u_{2, t}\right]=E\left[\frac{\epsilon_{2, t}-b_{2,1} \epsilon_{1, t}}{1-b_{1,2} b_{2,1}}\right]=0 \\
\operatorname{Var}\left[u_{1, t}\right]=\frac{\operatorname{Var}\left[\epsilon_{1, t}-b_{1,2 \epsilon_{2, t}}\right]}{\left(1-b_{1,2} b_{2,1}\right)^{2}}= \\
6
\end{gathered}
$$

2.

$$
\begin{aligned}
& =\frac{\operatorname{Var}\left[\epsilon_{1, t}\right]+b_{1,2}^{2} \operatorname{Var}\left[\epsilon_{2, t}\right]-2 b_{1,2} \operatorname{Cov}\left[\epsilon_{1, t}, \epsilon_{2, t}\right]}{\left(1-b_{1,2} b_{2,1}\right)^{2}}=\frac{\sigma_{\epsilon, 1}^{2}+b_{1,2}^{2} \sigma_{\epsilon, 2}^{2}}{\left(1-b_{1,2} b_{2,1}\right)^{2}} \\
& \operatorname{Var}\left[u_{2, t}\right]=\frac{\sigma_{\epsilon, 2}^{2}+b_{2,1}^{2} \sigma_{\epsilon, 1}^{2}}{\left(1-b_{1,2} b_{2,1}\right)^{2}} \\
& \text { constant over time. } \\
& \text { 3. } \operatorname{Cov}\left[u_{1, t}, u_{2, t}\right]=\frac{E\left[\left(\epsilon_{1, t}-b_{1,2} \epsilon_{2, t}\right)\left(\epsilon_{2, t}-b_{2,1} \epsilon_{1, t}\right)\right]}{\left(1-b_{1,2} b_{2,1}\right)^{2}}=\frac{-\left(b_{2,1} \sigma_{\epsilon, 1}^{2}+b_{1,2} \sigma_{\epsilon, 2}^{2}\right)}{\left(1-b_{1,2} b_{2,1}\right)^{2}}
\end{aligned}
$$

- $u_{1, t}$ and $u_{2, t}$ are serially uncorrelated, but are cross-correlated unless $b_{1,2}=b_{2,1}=$
0 .

4.

$$
\Sigma_{u}=\left[\begin{array}{cc}
\operatorname{Var}\left[\mathbf{u}_{1, t}\right] & \operatorname{Cov}\left[u_{1, t}, u_{2, t}\right] \\
\operatorname{Cov}\left[\mathrm{u}_{1, t}, u_{2, t}\right] & \operatorname{Var}\left[\mathrm{u}_{2, t}\right]
\end{array}\right]=\left[\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{1,2} \\
\sigma_{1,2} & \sigma_{2}^{2}
\end{array}\right]
$$

- In general, it is not possible to identify the structural parameters and errors from the OLS estimates of the parameters and the residuals of the standard form VAR, unless some restrictions are imposed on the primitive system.

Recursive Choleski triangularization: Impose a Choleski decomposition on the covariance matrix of the residuals of the VAR in its standard form, that is the restriction $b_{1,2}=0$, so that

$$
y_{1, t}=b_{1,0}+\varphi_{1,1} y_{1, t-1}+\varphi_{1,2} y_{2, t-1}+\epsilon_{1, t}
$$

$$
y_{2, t}=b_{2,0}-b_{2,1} y_{1, t}+\varphi_{2,1} y_{1, t-1}+\varphi_{2,2} y_{2, t-1}+\epsilon_{2, t}
$$

then

$$
u_{1, t}=\epsilon_{1, t} \quad \text { and } \quad u_{2, t}=\epsilon_{2, t}-b_{2,1} \epsilon_{1, t}
$$

In matrix form, the restriction $b_{1,2}=0$ means that $\mathbf{B}^{-\mathbf{1}}=\left[\begin{array}{cc}1 & 0 \\ -\mathrm{b}_{2,1} & 1\end{array}\right]$, so that

$$
\begin{gathered}
{\left[\begin{array}{l}
\mathrm{y}_{1, t} \\
\mathrm{y}_{2, t}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
-\mathrm{b}_{2,1} & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{b}_{1,0} \\
\mathrm{~b}_{2,0}
\end{array}\right]+\left[\begin{array}{cc}
1 & 0 \\
-\mathrm{b}_{2,1} & 1
\end{array}\right]\left[\begin{array}{ll}
\varphi_{1,1} & \varphi_{1,2} \\
\varphi_{2,1} & \varphi_{2,2}
\end{array}\right]\left[\begin{array}{l}
\mathrm{y}_{1, t-1} \\
\mathrm{y}_{2, t-1}
\end{array}\right]+} \\
+\left[\begin{array}{cc}
1 & 0 \\
-\mathrm{b}_{2,1} & 1
\end{array}\right]\left[\begin{array}{l}
\epsilon_{1, t} \\
\epsilon_{2, t}
\end{array}\right]
\end{gathered}
$$

that minimize

- When a reduced-form VAR is unconstrained, the GLS estimator is the same as the OLS estimator, \hat{B}, and therefore an unconstrained VAR can be estimated equation by equation by OLS.

Asymptotic properties of the OLS estimator \hat{B} (under standard assumptions):
(a) Consistent and asymptotically normally distributed
$\sqrt{T} \operatorname{vec}(\hat{\mathbf{B}}-\mathbf{B}) \xrightarrow{D} N\left(0, \Sigma_{\beta}\right) \quad$ or $\quad \operatorname{vec}(\hat{\mathbf{B}}) \stackrel{\mathfrak{\sim}}{\sim} N\left(\operatorname{vec}(\mathbf{B}), \Sigma_{\mathrm{\beta}} / T\right)$
where $\Sigma_{\hat{\mathrm{B}}}=\operatorname{plim}\left(\mathbf{Z} \mathbf{Z}^{\prime} / T\right)^{-1} \otimes \Sigma$
(b)

$$
\hat{\Sigma}_{u}=\frac{1}{T-N_{p}} \sum_{t=1}^{T} \hat{\mathbf{u}}_{t} \hat{\mathbf{u}}_{t}^{\prime} \quad \text { or } \quad \tilde{\Sigma}_{u}=\frac{1}{T} \sum_{t=1}^{T} \hat{\mathbf{u}}_{t} \hat{\mathrm{u}}_{t}^{\prime}
$$

where $\hat{\mathbf{u}}_{t}=\mathrm{y}_{t}-\mathrm{BZ}_{t-}$

Multivariate ML estimator
Under the assumptions:
(a) Sample of T observations on Y and a pre-sample of p initial conditions $y_{-p+1}, y_{-p+2}, \ldots, y_{0}$.
(b) Stationary process and Gaussian multivariate white noise innovations.
$\Rightarrow \mathrm{Y}=\left[\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{T}\right]^{\prime}$ is jointly normally distributed.
(c) Gaussian multivariate white noise (then innovations at different times are inde pendent).
(d) Noise error terms are independent with $\boldsymbol{\Sigma}_{\alpha}$, then the covariance matrix of \mathbf{u} is $\Sigma_{U}=\mathbf{I}_{T} \otimes \Sigma_{w}$ and its normal density is
$\boldsymbol{\Sigma}_{u}(\mathbf{u})=(2 \pi)^{-\frac{-1 / 2}{2}}\left|\mathbf{I}_{T} \otimes \boldsymbol{\Sigma}_{u}\right|^{-\frac{1}{2}} \exp \left(-\frac{1}{2} \mathbf{u}^{\prime}\left(\mathbf{I}_{T} \otimes \boldsymbol{\Sigma}_{u}^{-1}\right) \mathbf{u}\right)$.
(e) $f_{v}(\mathbf{y})=(2 \pi)^{-\frac{\Delta T}{2}}\left|\mathbf{I}_{T} \otimes \Sigma_{u}\right|^{-\frac{1}{2}} \exp \left(-\frac{1}{2}(\mathrm{Y}-\mathrm{BZ})^{\prime}\left(\mathbf{I}_{T} \otimes \Sigma_{u}^{-1}\right)(\mathrm{Y}-\mathrm{BZ})\right)$.
the ML estimator maximizes

- The restriction implies that the observed values of $u_{1, t}$ are completely attributed to pure (structural) shocks to $y_{1, t}$.

Question 2.B (2 points)

Suppose that the bivariate structural VAR(2) is to be exactly identified by imposing either of the two possible Choleski triangularization schemes:

$$
\boldsymbol{B}^{\prime}=\left[\begin{array}{cc}
1 & 0 \\
b_{21} & 1
\end{array}\right] \quad \text { and } \quad \boldsymbol{B}^{\prime \prime}=\left[\begin{array}{cc}
1 & b_{12} \\
0 & 1
\end{array}\right]
$$

Carefully explain the implications and differences in economic interpretations of the estimated, corresponding reduced-form model deriving from imposing the restriction in \boldsymbol{B}^{\prime} instead of $\boldsymbol{B}^{\prime \prime}$. How does your answer change when the restriction

$$
\boldsymbol{B}^{\prime \prime \prime}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

is imposed instead?

Debriefing:

Trivially, $\boldsymbol{B}^{\prime \prime \prime}$ implies that the original structural model is in reduced form or, alternatively, the model has been over-identified by removing all contemporaneous effects between variables. \boldsymbol{B}^{\prime} implies that S\&P 500 returns are ordered before VIX log-changes, so that any $u_{t}^{S \& P}$ shock to the S\&P 500 is structural and primitive, while the $u_{t}^{V I X}$ shocks are correlated with both structural shocks to S\&P 500 and the VIX.
On the opposite, $\boldsymbol{B}^{\prime \prime}$ implies that log changes in VIX are order before S\&P 500, so that any $u_{t}^{V I X}$ shock to the VIX is structural and primitive, while the $u_{t}^{S \& P}$ shocks are correlated with both structural shocks to S\&P 500 and the VIX.

Identifying Structural from Reduced-Form VARs

- In a sense, shocks to z_{t} are more primitive, enjoy a higher rank, and move the system also through a contemporaneous impact on x_{t}
- The $\operatorname{VAR}(1)$ now acquires a triangular structure:

$$
\begin{aligned}
& x_{t}=\gamma_{10}-b_{12} z_{t}+\gamma_{11} x_{t-1}+\gamma_{12} z_{t-1}+\epsilon_{t}^{x} \\
& z_{t}=\gamma_{20}+\gamma_{21} x_{t-1}+\gamma_{22} z_{t-1}+\epsilon_{t}^{2} \\
& y_{t}=\underbrace{B^{-1} \Gamma_{0}}_{\mathbf{a}_{0}}+\underbrace{B^{-1} \Gamma_{1} y_{t-1}}_{A_{1}}+\underbrace{B^{-1} \epsilon_{t}}_{u_{t}}=\mathbf{a}_{0}+A_{1} y_{t-1}+u_{t} \quad \text { with } B \equiv\left[\begin{array}{cc}
1 & b_{12} \\
0 & 1
\end{array}\right]
\end{aligned}
$$

- This corresponds to imposing a Choleski decomposition on the covariance matrix of the residuals of the VAR in its reduced form
- Indeed, now we can re-write the relationship between the pure shocks (from the structural VAR) and the regression residuals as

Lecture 4: Multivariate Time Series Analysis- Prof. Guidolin

- In a N-variate VAR, we need to impose $\left(N^{2}-N\right) / 2$ in order to retrieve the N structural shocks from the residual of the OLS estimate.

Example for a $\operatorname{VAR}(1)$ with three endogenous variables:
We need to impose $\left(3^{2}-3\right) / 2=3$ restrictions that is equivalent to pre-multiplying the structural VAR by the lower triangular matrix

$$
\mathbf{B}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-\mathrm{b}_{1,2} & 1 & 0 \\
-\mathrm{b}_{1,3} & -\mathrm{b}_{2,3} & 1
\end{array}\right]
$$

so that

$$
\begin{gathered}
\mathbf{u}_{\mathbf{t}}=\mathbf{B}^{-1} \epsilon_{t}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-b_{2,1} & 1 & 0 \\
-b_{3,1} & -b_{3,2} & 1
\end{array}\right]\left[\begin{array}{l}
\epsilon_{1, t} \\
\epsilon_{2, t} \\
\epsilon_{3, t}
\end{array}\right]= \\
=\left[\begin{array}{c}
\epsilon_{1, t} \\
\epsilon_{2, t}-b_{2,1} \epsilon_{1, t} \\
\epsilon_{3, t}-b_{3,1} \epsilon_{1, t}-b_{3,2} \epsilon_{2, t}
\end{array}\right]
\end{gathered}
$$

- There are as many Choleski decompositions as all the possible orderings of the variables. Therefore, when we apply a Choleski triangular identification scheme to a VAR model we are introducing a number of (potentially arbitrary) assumptions on the contemporaneous relationships among the variables.

Recursive Choleski Identification

- In fact, this method is quite general and extends well beyond this $\operatorname{VAR}(1), \mathrm{N}=2$ example: in a N -variable $\operatorname{VAR}(p), \mathrm{B}$ is a NxN matrix because there are N residuals and N structural shocks
- Exact identification requires $\left(N^{2}-N\right) / 2$ restrictions placed on the relationship btw. regression residuals and structural innovations
- Because a Choleski decomposition is triangular, it forces exactly ($\mathrm{N}^{2}-\mathrm{N}$)/2 values of the B matrix to equal zero
- Because with $\mathrm{N}=2,\left(2^{2}-2\right) / 2=1$, you see that $b_{21}=0$ was sufficient in our example
- There are as many Choleski decompositions as all the possible orderings of the variables, a combinatorial factor of N
- A Choleski identification scheme results in a specific ordering, we are introducing a number of (potentially arbitrary) assumptions on the contemporaneous relationships among variables
- Choleski decompositions are deliberate in the restrictions they place but tend not to be based on theoretical assumptions

Lecture 4: Multivariate Time Series Analysis- Prof. Guidolin

Question 2.C (1 point)

Suppose that the estimation of a constrained, reduced-form VAR(2) has provided the following ML estimates of the conditional mean function and of the covariance matrix of the reduced-form shocks (p -values are in parentheses):

You would like to recover the original structural parameters, including the contemporaneous, average impact of both VIX changes on S\&P 500 returns and vice-versa. Is there a chance that this may be possible even though you are not ready to impose a Choleski ordering on the two variables?

Debriefing: One cannot say for sure but the evidence shown has two implications:

- The estimated reduced-form $\operatorname{VAR}(2)$ carries restrictions and in fact estimation has been properly performed by MLE applied to the bivariate system.
- There are two restrictions that have been imposed, setting the coefficients of $R_{t-2}^{S \& P}$ to zero in the first equation and the coefficient of $\Delta \ln V I X_{t-2}$ to zero in the second equation; indeed note that ML estimation has been performed, because it is likely that the reduced-
form VAR will include restrictions.
Now, we can only speculate that such restrictions derive from restrictions that have been imposed on the matrix Γ_{2} in the structural representation of the model,

$$
\boldsymbol{B}\left[\begin{array}{c}
R_{t}^{S \& P} \\
\Delta \ln V I X_{t}
\end{array}\right]=\boldsymbol{\Gamma}_{0}+\boldsymbol{\Gamma}_{1}\left[\begin{array}{c}
R_{t-1}^{S \& P} \\
\Delta \ln V I X_{t-1}
\end{array}\right]+\boldsymbol{\Gamma}_{2}\left[\begin{array}{c}
R_{t-2}^{S \& P} \\
\Delta \ln V I X_{t-2}
\end{array}\right]+\left[\begin{array}{c}
\epsilon_{t}^{S \& P} \\
\epsilon_{t}^{V I X}
\end{array}\right],
$$

in the sense that

$$
\boldsymbol{\Gamma}_{2}=\left[\begin{array}{cc}
0 & \gamma_{12}^{2} \\
\gamma_{21}^{2} & 0
\end{array}\right] .
$$

However, we know that the exact identification of a bivariate structural VAR requires imposing $\left(2^{2}-2\right) / 2=1$ restriction and that such constraints do not have to be imposed necessarily on the matrix of contemporaneous effects \boldsymbol{B}. Because two such restrictions seem to have been imposed on Γ_{2}, yes, there is a chance for the structural model-in particular for the two coefficients measuring the contemporaneous, average impact of both VIX changes on S\&P 500 returns and vice-versa-to be identified (probably, over-identified), even though no Choleski triangularization has affected \boldsymbol{B} (in fact, no restrictions at all have been imposed).

