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Abstract

This note reviews key models, methods, and results concerning the issue of whether and
how derivatives and portfolios thereof (called structured investment products) may generate an
increase in ex-ante welfare to long-run portfolio optimizers. Simple examples show that relatively
plain combinations of derivatives (such asymmetric straddles) have the potential to incresase risk-
adjusted performance by important amounts, easily in excess of 200 basis points per year. The
implied positions in derivatives are often modest but they affect the exposure to the underlying

risky portfolio in important ways.

1. Introduction

Derivatives trading is the world’s biggest business. Yet, the practice as well as academic research
on dynamic asset allocation typically exclude derivatives from investment portfolios.! Part of the
problem is that the portfolio optimization methods that are currently used, like Markowitz’s mean-
variance model, are ill-suited to handle options. First, the distribution of option returns departs
significantly from normality and therefore cannot be described by means and variances alone. Sec-
ond, the short history of options returns available severely limits the estimation of their complex
(predictive) return distribution. For example, we have data for Standard & Poor’s 500 options only
since 1993, which may not long enough to estimate the moments of their return distribution with
sufficient precision. Third, there are high transaction costs in option markets. On average, at-the-
money (ATM) options have a 5% relative bid-ask spread, while out-of-the-money (OTM) options
have relative bid-ask spreads of 10%. These high transaction costs are often (and, we shall argue,
incorrectly) estimated to be so high as to bar any plausible increase in ex-ante, risk-adjusted portfolio

performance to be interesting enough to be taken into serious consideration in practice.
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In a complete market setting, of course, such an exclusion can also be justified by th fact that
derivative securities are redundant (e.g., Black and Scholes, 1973; Cox and Ross, 1976).2 When
the completeness of the market breaks down, however—either because of infrequent trading or the
presence of additional sources of uncertainty, such as stochastic volatility and price jumps—it becomes
suboptimal to exclude derivatives from portfolio decisions. Optimal portfolio choice certainly belongs
to one of the most extensively studied problems in finance. Merton (1969, 1971, 1973) considers
continuous time economies in which individuals dynamically adjust portfolio positions in order to
maximize expected utility. Although portfolio selection is of major concern to asset managers, it has
taken some time until there were attempts to include derivatives into dynamic portfolio optimization.
This might be partially explained by the fact that initially, derivatives were seen as redundant
securities which could be replicated by implementing a dynamic trading strategy in stocks and bonds.
The standard Black-Scholes option pricing model supports this view. However, more advanced option
pricing models take additional risk factors such as stochastic volatility into account. In these models,
markets are incomplete and derivatives are no longer replicable by stocks and bonds alone. Instead
they provide opportunities to earn additional risk premiums.

In this paper, we study optimal investment strategies in incomplete markets that give investor
access not only to bond and stock markets but also to the derivatives market. The problem is at
first solved in closed form when trading is continuous, transaction costs, taxes and other frictions
are ignored, and investors derive utility only from their terminal wealth. Derivatives extend the risk
and return trade-offs associated with stochastic volatility and price jumps. Therefore derivatives
increase the (ex-ante) risk-adjusted performance achievable by optimizing a portfolio of securities.
Equivalently, derivatives are a vehicle to achieve the optimal exposure to the fundamental risk factors
in an economy, e.g., to diffusions and jump components.

The introduction of derivatives thus always increases the investor’s utility in a partial equilibrium
model. In this paper we therefore estimate also the extent of such improvements. To assess the port-
folio improvement from participating in the derivatives market, we compare the certainty-equivalent
wealth of two utility-maximizing investors with and without access to the derivatives market, which
can be thought of as a kind of an additional (riskless) rate of return earned by the investor with
access to derivatives. We calibrate the parameters of a stochastic volatility (later jumps are added
too) model to those reported by empirical studies on the FTSE MIB index and option markets. Our
results show that the improvement from including derivatives is driven mostly by the myopic compo-
nent. Under normal market conditions and a conservative (or positive) estimates of the volatility-risk
premium, the improvement in certainty equivalent wealth for an investor with relative risk aversion

of three is about 4%per year, which becomes higher when the market becomes more volatile (as

*Financial markets are said to be complete (in the an Arrow-Debreu sense) if it is possible to construct a portfolio
of securities at a point in time which guarantees a specific payoff in a specific state of nature at some future date. The
notion of dynamic completeness is the natural extension of this idea to dynamic trading strategies. See Harrison and
Kreps (1979) and Duffie and Huang (1985) for a more detailed discussion.



captured by volatility of volatility).

Specifically, we adopt an empirically realistic model for the aggregate stock market that incor-
porates two types of risk factors: diffusive price shocks and volatility risks. Later, also jump risks
are introduced. Taking this market condition as given, we solve the dynamic asset allocation prob-
lem (Merton, 1971) of a power-utility investor whose investment opportunity set includes not only
the usual riskless bond and risky stock, but also derivatives on the stock. What makes derivatives
valuable in such a setting of multiple risk factors is that the stock and bond alone cannot provide
independent exposure to each and every risk factor. For example, the risky stock by itself can only
provide a “package deal” of risk exposures: one unit each to diffusive and jump risks and none to
volatility risk. With the help of derivatives, however, this “package deal” can be broken down into its
two individual components. For example, an at-the-money option, being highly sensitive to market
volatility, provides exposure to volatility risk. The market incompleteness that makes derivatives
valuable in our setting also makes the pricing of such derivatives not unique. When we introduce
derivatives to complete the market, say one at-the-money, we need to make additional assumptions
on the volatility-risk and jump-risk premia implicit in such derivatives. Once such assumptions are
made and the derivatives are introduced, the market is complete.3

In the first part of our paper, we assume the presence of diffusive and volatility risks only. Here
the dynamic asset allocation problem is solved in closed form. Our results can be interpreted in
three steps. First, we solve the investor’s optimal wealth dynamics. Second, we find the exposure
to the three risk factors that supports the optimal wealth dynamics. Finally, we find the optimal
positions in the risky stock and the derivative securities that achieve the optimal exposure to the risk
factors. Instrumental to the final step is the ability of the derivative securities to complete the market.
When derivatives can be used to hedge volatility risk, the optimal weight on the derivative security
depends explicitly on how sensitive the chosen derivative is to volatility. There are two economically
different sources from which the need to access the volatility risk arises. Acting myopically, the
investor participates in the derivatives market simply to take advantage of the risk-and-return trade-
off provided by volatility risk. Under the assumption of a positive compensation of volatility risk,
buying volatility (which under some conditions is equivalent to assigning a positive weight to a
positive Vega structured product) improves the ex-ante risk-return trade-off of the optimal portfolio.
Moreover, acting non-myopically, the investor holds derivatives to further exploit the time-varying
nature of the investment opportunity set, which, in our setting, is driven exclusively by stochastic
volatility. As the volatility becomes more persistent, this non-myopic demand for derivatives grows.

As for the choice among alternative derivatives or structured option baskets, in the first part of

3By exogenously specifying the market prices of risk factors, our analysis is of a partial-equilibrium nature. In fact,
this is very much the spirit of the asset allocation problem: a small investor takes prices (both risks and returns) as
given and finds for himself the optimal trading strategy. By the same token, when we quantify the improvement for
including derivatives, we are addressing the improvement in certainty-equivalent wealth for this very investor, not the

welfare improvement of the society as a whole. The latter would require an equilibrium treatment.



our paper, in a complete market and with continuous trading, an investor can achieve the overall
optimal future payoff profile by investing in the stock, the risk-free bond, and sufficiently many
(maybe even infinitely many) derivatives. In this setup, the exact payoff profiles of the derivatives
do not matter, and the investor is indifferent between trading plain-vanilla options or more exotic
contracts. There would thus be nothing special about retail plain vanilla derivatives vs. structured
products.

In reality, however, trading takes place in discrete time, and markets are in general incomplete.
Furthermore, retail investors are hindered from implementing the optimal portfolio strategies due to
too high minimum investment amounts, high transaction costs or margin requirements, short-selling
restrictions, and maybe also a lack of knowledge. In this situation, the characteristics of the available
derivatives may actually matter a lot. A retail investor will then benefit from a derivative whose
payoff profile is equal (or close) to her optimal payoff profile and which is offered by an issuer who
is better than himself able to implement the corresponding replication strategy. In the second part
of the paper, we therefore tackle the case of an incomplete market, in which there are diffusive,
volatility, and jump risks and in which the investor solves a buy-and-hold portfolio problem. In
this case, the resulting optimal payoff profile is in general highly complicated and does not only
depend on observable stock prices, but also on the paths of state variables like stochastic volatility.
Furthermore, such an optimal profile becomes specific to the investor under consideration. Due to
these reasons, these optimal payoff profiles will not be traded in the market. Nevertheless, financial
institutions might design contracts that at least approximate these optimal payoffs and help the
investors to come closer to their first best. If structured investment products (henceforth, SPS, such
as investment certificates) exist, they should increase the utility of the investor significantly, and
there should be a significant demand for them.

In our work we take a perspective inspired after the problem of long-run investors. In particular,
the long lasting turmoil in the financial markets since 2008 has emphasized the challenges that
pension funds face in developing strategies which focus on “(...) delivering an adequate target pension
with a high degree of probability (...)” (see Blake, Cairns, and Dowd, 2008). In this paper, we
therefore investigate whether the use of equity- and volatility-based derivative instruments may help
the pension industry in meeting such challenges, by considering the design problem for optimal
derivative strategies in the context of strategic asset allocation and for long-horizon investors. To do
S0, it is important to use asset pricing models which incorporate risks such as stochastic volatility
and jumps (in the second part of this paper). Moreover, while traditional asset allocation focuses on
diversification across asset classes, we propose an allocation strategy which emphasizes diversification
across risk premia (i.e., across underlying risk factors) instead. The possibility to earn volatility and
jump risk premia may be particularly interesting for investors with a long time horizon. Focusing
on a long investment horizon, Littermann (2011) argues that pension funds may be more capable

to bear volatility and jump risks than other financial institutions since volatility is mean-reverting



over longer time horizons and jumps will hurt the objectives of short-term investors much more than
those of long-term investors. Therefore the latter have a comparative advantage over the former
investors and there is an opportunity for trades that may lead to an improvement in risk-adjusted
performances.

The rest of the paper is organized as follows. Section 1 presents a rather stylized and yet realistic
model of the dynamic of asset returns for the simplified case of one risky portfolio (stock), one
riskless bond, and one SPS of varying complexity. Such a model represents in fact the state of the
art in the derivative pricing and portfolio choice literatures. Section 2 describes the strategic asset
allocation problem solved by an investor with a horizon T who maximizes her expected power utility
and who can continuously trade, including the chance to resort to SPS with maturity 7 < T. Section
3 examines the ex-ante, risk-adjusted welfare gains deriving from holding SPS positions. Section 4
extends the set up in Section 2 to incomplete markets and applies numerical methods to solve the
portfolio problem. In this case, the specific SPS that is made available to an investor, will affect the
ex-ante welfare gains caused by the availability of the derivatives. Section 5 concludes by discussing

several directions for extensions and additional research.

2. The Model

The primitive securities in this economy are a riskless bond that pays a constant rate of interest r, and
a risky stock that represents the aggregate equity market.* To capture the empirical features that
are important in time series data on the aggregate stock market, we assume the following dynamics

for the (price) return process dS/S of the risky stock:

ds
?t = (r+nVy)dt+/VidB;
t

AV, = k(0 —Vy)dt + o\/Vi(pdB; + /1 — p2dZy),

where B and Z are standard Brownian motions assumed to be independent. The instantaneous
variance process V' is a stochastic process with long-run mean v > 0, mean-reversion rate k > 0,
and volatility coefficient o > 0. This formulation of stochastic volatility (Heston, 1993), allows the
diffusive price shock B to enter the volatility dynamics via the constant coefficient p that introduces
correlation between price and volatility shocks. Finally, n is a constant coefficient capturing the
risk premium associated to diffusive risk, B. The single risky asset represents an equity index and
although our analysis could also be performed in a multi-asset framework we will use this one single
representative risky portfolio throughout the paper.

In addition to investing in the risky stock and the riskless bond, the investor is also given the
chance to include derivatives in her portfolio. The relevant derivative securities are those that serve to

expand the dimension of risk-and-return trade-offs for the investor. More specifically for our setting,

4In reality interest rate risk must of course be mitigated separately (for example using interest rate swaps) but we

shall ignore this additional risk for the time being.



such derivatives are those that provide differential exposures to the two fundamental risk factors in
the economy. For concreteness, we consider the class of derivatives whose time t price O; depends on
the underlying stock price S; and the stock volatility V; through the generic function O; = g(S, V4).
Letting 7 be its time to expiration, this particular derivative is defined by its payoff structure at the
time of expiration. For example, a derivative with a linear payoff structure ¢g(S;,V;) = S; is the
stock itself, and it must be that g(S;, Vi) = S at all times. On the other hand, for some strike price
K > 0, a derivative with the non-linear payoff structure g(S;,V;) = (S; — K)* is a European-style
call option, while that with g(S;,V;) = (K — S;)* is a European-style put option. Unlike our earlier
example of the linear contract, the pricing relation g(S;, V;) at ¢ < 7 is not uniquely defined in
these two cases from the information contained in the risky stock only. In other words, by including
multiple sources of risks in a non-trivial way, the market is incomplete with respect to the risky stock
and riskless bond.

The market can be completed once we introduce enough non-redundant derivatives Ogi) =
g(i)(St, Vi) for i = 1,2,..., N. Alternatively, we can introduce a specific pricing kernel to price all of
the risk factors in this economy, and consequently any derivative securities. These two approaches
are equivalent. In incomplete markets the prices of derivatives are not unique. They depend on the
pricing of diffusion and volatility factors. That is, the particular specification of the N derivatives

that complete the market is linked uniquely to a pricing kernel {m;, 0 <t < 7} such that:
7 1 3
Olg) = ’/T_tEt[ﬂTig( )(STN VTZ)]

where 7; is the time to expiration for the ith derivative security. In this paper, we choose the latter

approach and start with the following parametric pricing kernel:>

dﬂ't = —7Tt’l”dt — ﬂtn\/vtdBt — th\/vtdzt (7‘(‘0 = 1) (1)

The following parametric specification of the price dynamics for the ¢th derivative security is consis-

tent with the pricing kernel in (1):

dOy) = rOldt + (95 S + opgl) ) (Vidt + \/VidBy) + a\/1 — p2g\! (€Vidt + \/VidZ,)
where gg) and g‘(,i) measure the sensitivity of the ith SPS price to infinitesimal changes in the stock
price and volatility, respectively, i.e., they are the partial derivatives of the payoff function vs. its
two arguments (one may generically call them “delta” and “Vega”). A derivative with non-zero gg
provides exposure to the diffusive price shock B; a derivative with non-zero gy provides exposure to

additional volatility risk Z. This specific parametric form has the advantage of having two parameters

(n and &) to separately price the two risk factors in the economy.%

5To verify that this parametric pricing kernel is a valid pricing kernel, which rules out arbitrage opportunities
involving the riskless bond, the risky stock, and any derivative securities, one can apply Ito’s lemma and show that
mpexp(re), ™S, and 7Oy are local martingales. For the special case of constant volatility, this pricing kernel can
be mapped to the equilibrium result of Naik and Lee (1990). Letting v be the relative risk-aversion coeflicient of the

representative agent, the coefficient for the diffusive-risk premium is n = .
50ne can show that the model-implied variance risk premium parameter is simply opn. Due to a negative correlation



3. The Asset Allocation Problem

The investor starts with positive wealth Wj. Given the opportunity to invest in the riskless asset (a
money market account, which earns interest at the constant rate r), the risky stock and the derivative
securities, he chooses, at each time ¢, to invest a fraction ¢, of her wealth in the stock S, and a
fractions v, in the derivative security O;. The investment objective is to maximize the expected

utility of her terminal wealth Wy, where T > 7.7

max F
¢t7 1/%

Wy
= 8

(subject to the law of motion of prices and volatility) where v > 0 is the relative risk-aversion
coefficient of the investor, and where the wealth process satisfies the self-financing condition:
C%t = rdt + 0B (qVidt + \/V,dBy) + 07 (€Vidt + \/V,dZ,).

Here 0P and 07 are defined as

07 = b+ <gs% + Jpgv0i> 0 =o\/1 - p%tgvoi. (3)

t t t
Utility functions with constant relative risk aversion guarantee that the terminal wealth will never
go negative since the absolute risk aversion will go to infinity when wealth levels approach zero.
Effectively, by taking positions ¢, and v, on the risky assets, the investor invests Hf in the diffusive
price shock B and 6,52 in the additional volatility risk Z. Except for adding derivative securities
to the investor’s opportunity set, the investment problem is the standard Merton’s (1971) problem.
Interestingly, the maturities of the chosen derivatives do not have to match the investment horizon
T. For example, it might be hard for an investor with a ten-year investment horizon to find an option
with a matching maturity. For the purpose of choosing the optimal portfolio weights at time ¢, what
matters is the choice of derivative securities O; at that time, not the future choice of derivatives. This
is true as long as, at each point in time in the future, there exist non-redundant derivative securities
to complete the market. Moreover, portfolio rebalancing occurs in continuous time, in the sense that
a solution consists of the process followed by the weights, {¢,, ¥, t < s < T}. Branger, Breuer, and
Schlag (2007) show that the rebalancing frequency is a major determinant of the utility gain that
can be realized by investing in options, and that the investor should rebalance her portfolio at least
monthly.
Following Merton (1971), we define the indirect utility function by

Wy

J(t,w,v) = T

E

Wy=w,V; =v

max
{¢s, s, t<s<T}

between the price process S and the variance process V ,the resulting variance risk premium parameter has a sign

opposite to 71,
”An imperfect alternative to long-dated options is a carefully managed sequence of shorter-term options. We derive

a dynamic trading strategy consisting of a sequence of overlapping options contracts that will yield the same investment
profile as the optimal buy-and-hold strategy.



which, by the principle of optimal stochastic control, satisfies the following Hamilton-Jacobi-Bellman
(HJB) equation,

1
max {Jt + Widw (re + 080V + 07¢V;) + QWfJWWW[(HtBV + (092 + k(0 — Vi) Jy+

ty Yt

1
§JWJVV + UV,:VV}JV[/V[p@l{/3 +/1-— ,0295]} =0.

where J,, denotes the (second, possibly mixed) partial derivative with respect to z and y. To
solve the HJB equation, we first solve the optimal positions on the risk factors 95 and HtZ and then
transform them back via the linear relation (3) to the optimal positions in the risky assets. This
transformation is feasible as long as the chosen derivatives are non-redundant in the following sense
(see the proof in Liu and Pan, 2003): At any time ¢, the derivative security Oy is non-redundant if
gy # 0. Effectively, this non-redundancy condition guarantees market completeness with respect to
the chosen derivative security, the risky stock, and the riskless bond.

At this point, assuming that there are non-redundant derivatives available for trade at any time
t < T, for given wealth W; and volatility V;, the solution to the HJB equation is given by

1—y

T(tw,0) = T explyh(T — 1) + v H(T ~ 1)V,

where h(-) and H(-) are time-dependent coefficients that are independent of the state variables. That

is, for any T,

W) = 2K0 1 < 2kg exp((k1 + k:z)T/Q)_ 1)) N 11—+

o2 2ko + (kl + /CQ)(GXp(kgT) ¥ T
exp(ket) — 1 1—7v, 4 9
H = .
(7) 2ka + (k1 + k2)(exp(ka7) — 1) ~2 (" + &%)

E
&
Il

H—l_TfY(np—i-&\/l—p?)a ko = \/k? — 602.

The optimal portfolio weights on the risk factors B and Z are then given by:
9f:ﬂ+apH(T—t) 9f=§+0\/1—p2H(T—t)
Y g
~B
Transforming the 6, s to the optimal portfolio weights on the risky assets, we have:®

) 1 p § gs
= J4_ — +H(T —t) | =5
& Yoy 1= p? <70\/1 —p? ( )) g

S
IS (’yam—i_H(T t))gv.

The optimal derivative position is inversely proportional to gy /Oy which measures the volatility

exposure for each dollar invested in the derivative security. Intuitively, the more “volatility exposure

8Note that it is always possible to derive the exposures to the risk factors, given the portfolio weights. The other
direction, however, i.e. the calculation of the portfolio weights which result in a given set of exposures, is only possible

in a complete market. In an incomplete market, there are some exposures which cannot be attained.



per dollar” a derivative security provides, the more effective it is as a vehicle to hedge or invest in
volatility risk. Hence a smaller portion (in absolute value) of the investor’s wealth needs to be invested
in this derivative security. The demand for derivatives—or the need for volatility exposure—arises
for two different reasons. First, a myopic investor finds the derivative security attractive because, as
a vehicle to volatility risk, it could potentially expand the dimension of risk-and-return trade-offs.
This myopic demand for derivatives is reflected in the first term of 7])15. For example, negatively
priced volatility risk (¢ < 0) makes short positions in volatility attractive, inducing investors to sell
derivatives with positive “volatility exposure per dollar.” The opposite occurs when & > 0. Moreover,
the least risk-averse investors are more aggressive in taking advantage of the risk and return trade-off
through investing in derivatives.

Second, for an investor who acts non-myopically, there is a benefit in derivative investments even
when the myopic demand declines because of a zero volatility—risk premium (£ = 0). This non-myopic
demand for derivatives is reflected by the second term of the expression of 1, H(T — t)(O;/gv). In
our setting, the Sharpe ratio of the option return is driven exclusively by stochastic volatility. In
fact, it is proportional to volatility. This implies that a higher realized option return at one instant is
associated with a higher Sharpe ratio (better risk-return trade-off) for the next-instant option return.
That is, a good outcome is more likely to be followed by another good outcome. By the same token,
a bad outcome in the option return predicts a sequence of less attractive future risk-return trade-offs.
An investor with relative risk aversion v < 1 is particularly averse to sequences of negative outcomes
because her utility is unbounded from below. On the other hand, an investor with v > 1 benefits
from sequences of positive outcomes because her utility is unbounded from above. As a result, they
act quite differently in response to this temporal uncertainty and this is visible from the different
sign of the coeflicient

B exp(kaT) — 1 1—7
- 2]{32 + (kl =+ kg)(exp(kQT) — 1) ’}/2

H(r) (n* + &),

depending on whether v < 1. The investor with v > 1 takes a short position in volatility so as to
hedge against temporal uncertainty, while the one with v < 1 takes a long position in volatility so as
to speculate on the temporal uncertainty. Indeed, it is easy to verify that H(T —t), the driving force
of this non-myopic term, is strictly positive for investors with v < 1, strictly negative for investors
with v > 1, and zero for the log-utility investor.

The hedging demand of the investor arises from the impact of V; on the compensation per unit of
risk, as e.g. discussed in Munk (2004) or Munk and Sgrensen (2004). The intuition is as follows. For
small V;, the expected return is low, and the risk of a large negative return and thus a low terminal
wealth is comparably high. This induces the investor to shift wealth from states with high Vi to
states with low V. On the other hand, for high V;, the expected return is high. This induces the
investor to shift wealth to states with a high V; to grasp these good investment opportunities. Taken

together, her ultimate hedging demand depends on the trade-off between these two opposite effects.



For v > 1, the utility function of an investor is unbounded from below, but bounded from above. He
cares more about states with low V; since this implies a higher probability of losses due to a lower
expected return. Thus, her hedge is to take a short position in V;. In line with this intuition, the
marginal indirect utility of this investor is decreasing in V;, which formally follows from the fact that
H is non-positive. A low volatility thus corresponds to a high indirect utility, implying a bad state.’

Given that volatility risk exposure is taken care of by the derivative holdings, the “net” demand
for stock should simply be linked to the risk-and-return trade-off associated with diffusive price risk.
Focusing on the first term of g;bt, this is indeed true. Specifically, the demand for stock is proportional
to the attractiveness of the stock and inversely proportional to the investor’s risk aversion, n/7.
The interaction between the derivative security and its underlying stock, however, complicates the
optimal demand for stocks. For example, by holding a call option, one effectively invests a fraction
gs—typically referred to as the “delta” of the option—in the underlying stock. The last term in
&t is there to correct for this “delta” effect. In addition, there is also a “correlation” effect that
originates from the negative correlation between volatility and price shocks, typically referred to as
the leverage effect (Black, 1976). Specifically, a short position in the volatility automatically involves
long positions in the price shock, and equivalently, the underlying stock. The second term in gAbt
appears to correct this “correlation” effect.

As a benchmark, a “no-derivatives” (ND) investor solves the same investment problem as that
in (2) with the additional constraint that he cannot invest in the derivatives market, th =0. At any

time t, the indirect utility of a “no-derivatives” investor with a year-1" investment horizon is

1—y
INP(r W, V) = lt— exp(yh"Pr + yHNP 7V
hND(T) - 2KT n ( 2ko exp((k1 + k2)7/2) ) 1— Y,
o2(p* +v(1—p?))  \2ka + (k1 + k2)(exp(keT) — 1) gl
HND(T) _ exp(ket) — 1 1 —2fyn2

2]€2 —+ (kl =+ kg)(exp(kQT) — 1) y

-~ 1—n
nop kg = \/k% - ?nﬁ(ﬁ +y(1 = p?)).

k1

K —

~ND
Trivially, in this case the optimal weight given to the stock is ¢, ~ = 7/, which is the standard

expression with the price of diffusive risk divided by the coefficient of relative risk aversion.

3.1. Empirical Characterization of the Optimal Strategies

To examine the empirical properties of our results, we fix a set of base-case parameters for our current
model. Specifically, for one-factor volatility risk, we set the long-run mean at © = (18%)?2, the rate
of mean reversion at £ = 5, and the volatility coefficient at o = 0.25. The correlation between price

and volatility risks is set at p = -0.40. Given the well established empirical property of the equity

Driessen and Maenhout (2007) have shown that empirically, improvements by including derivatives are driven

mostly by the myopic component.

10



risk premium, calibrating the market price of the Brownian shocks B is straightforward. Specifically,
setting 7 = 4 and coupling it with the base-case value of © = (18%)? for the long-run mean of
volatility, we have an average equity risk premium of 6.76% per year. We fix the risk-free rate a
3.56%. The properties of the market price of volatility risk, however, are not as well established. In
part because volatility is not a directly tradable asset, there is less consensus on reasonable values for
its market price. Empirically, however, there is strong support that volatility risk is priced (see, e.g.,
Chernov and Ghysels, 2000, Pan, 2002, Benzoni, 1998, and Bakshi and Kapadia, 2003, report that
volatility risk is negatively priced).!® Instead of calibrating the volatility-risk premium coefficient &
to the existing empirical results, however, we will allow this coefficient to vary in our analysis so as
to get a better understanding of how different levels and signs of the volatility risk premium could a
effect the optimal investment decision. However, differently from Liu and Pan (2003) and the papers
that have followed from their efforts, we also allow the volatility risk premium to become positive.
Using this set of base-case parameters, particularly the risk-and-return trade-off implied by the
data, we now provide some quantitative examples of optimal investments in the S&P 500 index and
options. Specifically, we consider the following “equity protection” structured product (henceforth,

EPSP), based on purchasing an asymmetric straddle option that bets long on volatility:
EPCy = g(St, Vi; K1, Ko, 7) = caup(St, Vi; K1, 7) + aac(Sy, Vi; Ko, 1) Kz > K

where ¢(Sg, Vi; K, 7) is the pricing formula for a standard European call option with strike K and
time-to-maturity 7 and p(St, Vi; K, 7) is the corresponding formula for a put. Initially, we set oy = 4
and as = 1.

Figure 1 indicates that the demand for derivatives is driven mainly by the myopic component.
In particular, when the volatility-risk premium is set to zero, the non-myopic demand for straddles
is basically zero percent of the total wealth for an investor with relative risk aversion v = & and
investment horizon T' = 5 years. In contrast, when we set £ = —6, which is a conservative estimate
for the volatility-risk premium, the optimal portfolio weight in the EPSP increases to 54 % for the
same investor.!! The quantitative effect of the non-myopic component can best be seen by varying the
investment horizon (bottom left panel) or the volatility persistence (bottom right panel). Consider an
investor with v = 8 who would like to hedge against temporal uncertainty by taking short positions in
volatility. The bottom left panel shows that as we increase the investment horizon, this intertemporal

hedging demand increases. Similarly, the bottom right panel shows that as we decrease the persistent

10At an intuitive level, a negative volatility risk premium could be supported by the fact that aggregate market
volatility is typically high during recessions. A short position in volatility, which loses value when volatility becomes
high during recessions, is therefore relatively more risky than a long position in volatility, requiring an additional risk

premium. However, it remans true that a positive risk premium appears to be a case that is easily imagined.
"For example, Coval and Shumway (2001) report that zero-beta at-the-money straddle positions produce average

losses of approximately 3% per week. This number roughly corresponds to £ = —12. Using volatility-risk premium
to explain the premium implicit in option prices, Pan (2002) reports a total volatility-risk premium that translates to
€ = —10.
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level of the volatility by increasing the mean-reversion rate k, there is less benefit in taking advantage
of the intertemporal persistence, hence a reduction in intertemporal hedging demand.

As the market becomes more volatile, the costs of the EPSP increases, but the volatility sensitivity
of such a basket of derivatives decreases. In fact, the EPSP provides less “volatility exposure per
dollar” as market volatility increases. To achieve the optimal volatility exposure, more needs to
be invested in the EPSP, hence the increase in \{M with the market volatility. As the volatility
of volatility increases, the risk-and-return trade-off on volatility risk becomes less attractive, hence
the decrease in magnitude of the EPSP position with increasing “vol of vol”. Finally, the optimal
strategy with varying risk aversion = is as expected: less risk-averse investors are more aggressive in
their risky investment strategies.

Lakonishok et al. (2006) using a unique option data set provide detailed descriptive statistics on
the purchased and written open interest and open buy and sell volume of several classes of investors.
They establish that written option positions are more common than purchased positions: for both
calls and puts, non-market maker investors (mostly full service brokerage clients) in aggregate have
more written than purchased open interest. These findings appear consistent with the result that it
is rather difficult to generate significant optimal long positions in both call and put options when the
volatility risk premium is negative. A large number of life cycle portfolio choice papers now document
that a large group of young wage earners, once their income streams and stock market returns are
reasonably calibrated to data, will desire to invest 100% of their savings in the stock market (see,
e.g., Curcuru, Heaton, Lucas and Moore, 2004). From a normative perspective, long call positions
may help this class of agents since call options achieve the desired leverage without costly margin
borrowing.

Although most of the derivative products suggested in this paper are frequently traded Over The
Counter (OTC) as well as on exchanged-traded platforms, some of the products may be substantially
less liquidly available than their underlying equity portfolio. Plain-vanilla equity derivatives (single
or basket index puts and calls) are more liquidly available, although for large investors, transaction
programs may take a substantial amount of time before they are completed, unless one is willing
to accept significant implementation costs—yielding lower efficiency gains. Once derivative products
become part of the overall strategy, investors should also manage liquidity risk in trading derivatives,
i.e., the risk that the intended strategy can not be maintained in the future when the derivative
contracts expire. As a second class of potential implementation issues, it may be cumbersome to
align the derivative strategy with other parts of the existing portfolio. The benchmark may not be
available in a single derivative contract, unless one is willing to trade OTC basket options tailored

towards the investor’s specific equity portfolio.
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4. Ex-ante, Risk-Adjusted Portfolio Improvements

Suppose that market volatility is V; and consider an investor with initial wealth W; and investment
horizon T years, who takes advantage of the derivatives market. One can show that her optimal

expected utility is
1—y

W,
J(1, W, V3) = . t_ > exp[yh(T) + yH (1) V4],
where 7 = T — t. Hence optimal expected utility is independent of the specific derivative contract
chosen by the investor. This makes intuitive sense, because in our setting the market is complete
in the presence of the derivative security. Letting W; be the investor’s certainty-equivalent wealth,
defined by 3
W,
l—v

= J(Ta Wta ‘/t)v

so that

Wi = Wi exp <ﬁh(¢) + ﬁH(T)vt) .

The indirect utility for an investor with no access to the derivatives market is instead
WNP = W, exp <_7 NP (1) + S HND(T)V,:> .
1—v 1—7
At this point, to quantify the portfolio improvement from including derivatives, we adopt the following

measure: . .
AW — In W; — In WHNP
= T ,

which measures the portfolio improvement in terms of the annualized, continuously compounded

return in certainty-equivalent wealth. Because the investor has constant relative risk aversion, RV
does not depend on her initial wealth ;. Following Liu and Pan (2003), one can prove that for an
investor with v # 1, the portfolio improvement from including derivatives is strictly positive. For an
investor with log-utility (y = 1), the improvement is strictly positive if £ # 0 and zero otherwise.
The improvement from including derivatives is closely linked to the demand for derivatives. For
a myopic investor with log-utility, the demand for derivatives arises from the need to exploit the
risk-and-return trade-off provided by volatility risk. When the volatility-risk premium is zero, there
is no myopic demand for derivatives. Consequently, there is no benefit from including derivatives.
However, in the presence of a non-myopic demand for derivatives, the realized welfare gain for a
non-myopic investor is strictly positive regardless of the value of &.

To provide a quantitative assessment of the ex-ante risk-adjustment performance improvement,
we again use the base-case parameters described in Section 2. The results are summarized in Figure
2. Focusing first on the top right panel, we see that the welfare improvement is very sensitive
to how volatility risk is priced. Under normal market conditions with a conservative estimate of
the volatility-risk premium & = 4, our results show that the welfare improvement from including

derivatives is about 4.1% per year in certainty-equivalent wealth for an investor with risk aversion
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v = 3. As the investor becomes less risk averse and more aggressive in taking advantage of the
derivatives market, the improvement from including derivatives becomes even higher.

We can further evaluate the relative importance of the myopic and non-myopic components of
portfolio improvement by setting & = 0. The welfare improvement from non-myopic trading in
derivatives is as low as 0.02% per year. This is consistent with our earlier result: the demand
for derivatives is driven mostly by the myopic component. The non-myopic component of the risk-
adjusted portfolio gain is further examined in the bottom panels of Figure 2 as we vary the investment
horizon and the persistence of volatility. Intuitively, as the investment horizon T increases, or as the
volatility shock becomes more persistent, the benefit of the derivative security as a hedge against
temporal uncertainty becomes more pronounced. Hence there is an increase in portfolio improvement.
Finally, from the middle two panels, we can also see that when market volatility increases, or when the
volatility of volatility increases, there is more to be gained from investing in the derivatives market.

Once derivatives allow us to take a direct exposure to volatility without exposure to the (direction
of) stock prices, the investment opportunity set is enlarged and volatility can then be considered to be
an asset class on its own. Investors thus can make trade-offs among distinct risk factors according to
their preferences. Driessen and Maenhout (2007) show that constant relative risk aversion investors
always find it optimal to short OTM puts, and only with distorted probability assessments are they

able to obtain positive weights for puts using cumulative prospect theory and anticipated utility.

5. An Extension to an Incomplete Market Setting

It is widely acknowledged that the continuous-time framework in which most of modern finance has
been developed is an approximation to reality—it is currently impossible to trade continuously, and
even if it were possible, market frictions would render continuous trading infinitely costly. Conse-
quently, any practical implementation of continuous-time asset allocation policies invariably requires
some discretization in which the investor’s portfolio is rebalanced only a finite number of times,
typically at equally spaced time intervals, with the number of intervals chosen so that the discrete

asset-allocation policy ‘approximates’ the optimal continuous-time policy in some metric.

TO BE COMPLETED

6. Discussion, Conclusion, and Further Extensions

Similarly to Liu and Pan (2003), it would be interesting to extend our exercise to assess the role of
SPS as a vehicle to disentangle jump risk from diffusive risk in complete markets, where analytical
results are available.'? In this setting, the relative importance of jump risk vs. diffusive risk would

represent the economic driving force behind any empirical findings. In fact, the empirical evidence

12Recently, Branger, Schlag, and Schneider (2008) have further examined the impact of jumps in volatility on optimal
portfolio choice, also dealing with the case in which nonlinear payoff securities may be used to hedge such risk.
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from the US option market suggests that, for investors with a reasonable range of risk aversion, jump
risk is compensated more highly than diffusive risk (Pan, (2002)) and this may create strong portfolio
tilts towards deep out-of-money options and similar structured payoff functions. Intuitively, this is
because in contrast to diffusive risk, which can be controlled via continuous trading, the sudden,
high-impact nature of jump risk takes away the investor’s ability to continuously trade out of a
leveraged position to avoid negative wealth. As a result, without access to derivatives, the investor
may avoid taking too leveraged a position in the risky stock (Liu et al. 2003). The same investor
would nevertheless feel freer to make choices when the worst-case scenarios associated with jump
risk can be taken care of by trading derivatives. For instance, this could be accomplished by taking
a larger position in the risky stock and buying deep out-of-the-money put options to hedge out the
negative jump risk.

Recently, Branger and Brauer (2008) have investigated the ex-ante economic gains deriving from
adding SPS(i.e., investment certificates, of the type of EPSPs but also discount certificates and turbos,
see their paper for detailed descriptions) to a portfolio that contains not only stocks and bonds, but
also a fixed number of plain vanilla options. Their results are not very different from the case in
which the investor is not allowed any access to derivatives and this shows how the complex features
of structured products may be crucial in portfolio management applications. In the ideal case of a
complete market and with continuous trading, the investor should carry a positive exposure to stock
diffusion risk, a negative exposure to volatility risk, and a negative exposure to jump risk. If she can
only trade the stock and the money market account and she is restricted to discrete trading, there is
no exposure to volatility risk, a lower exposure to stock diffusion risk, and a slightly higher exposure
to jump risk. With two derivatives, the investor would be able to match the initial exposures to the
diffusion risks and to one jump size from the ideal case. However, the exposure to volatility risk and
also to diffusion risk is significantly lower. When the investor can use only one structured product,
she has two objectives. She tries to come as close as possible to the optimal initial exposure given
by the ideal case. She thus looks for derivatives that offer her a certain (optimal) relation between
stock diffusion risk, volatility risk and jump risk.'3

A different problem is when derivatives in incomplete markets are used to move an expected
utility maximizer closer the optimal strategy, i.e., to the portfolio rule that yields the payoff profile
that maximizes expected utility. It is well known that under certain conditions, complex financial
instruments such as options and other derivative securities can be replicated by sophisticated dynamic
trading strategies involving simpler securities such as stocks and bonds. The essence of such a delta-
hedging argument is the ability to actively manage a portfolio continuously through time, and to do
so in a self-financing manner, i.e., with no cash inflows or outflows after the initial investment, so that

the portfolio’s value tracks the value of the derivative security without error at each point in time,

13For instance, guaranteed certificates have a positive exposure to volatility risk. Given that the volatility risk
premium may be negative, however, the investor may desire a negative exposure to earn the premium. He would thus

rather want to take a short position in guarantee certificates.
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until the maturity date of the derivative. Haugh and Lo (2001) consider the reverse implications of
this correspondence by constructing an optimal portfolio of complex securities at a single point in
time to mimic the properties of a dynamic trading strategy. Specifically, they focus on investment
policies that arise from standard dynamic optimization problems in which an investor maximizes
the expected utility of her end-of-period wealth, and construct a buy-and-hold portfolio of stocks,
bonds and options at the start of the investment horizon that will come closest to the optimal
dynamic policy, by defining “closest” in three distinct ways (expected utility, mean-squared error of
terminal wealth, and utility-weighted mean-squared error of terminal wealth). They find that under
certain conditions, a buy-and-hold portfolio consisting of just a few options is an excellent substitute
for considerably more complex dynamic investment policies.'* This effect is particularly strong for
highly risk tolerant investors under no short-sale constraints, as these investors use long positions in
call options to increase their risk exposure by exploiting the leverage that options imply. Haugh and
Lo also propose an approximate grid algorithm to optimize the structure of the SPS they advocate
(in the form of a portfolio of plain vanilla calls).

It would be also interesting to explicitly consider the downside risk constraints of pension funds
at short term horizons. In periods when the liquidity of certain assets is reduced, derivative contracts
may become valuable instruments to generate payoffs which cannot otherwise be obtained. Moreover,
pension funds are subject to stochastic, unanticipated withdrawals. Cui, Oldenkamp, and Vellekoop
(2013) model an expected utility maximization problem with a displaced CRRA utility function
under a threshold value which guarantees that the fund can never lose more than a percentage ¢
of its value in a period.'® Using an extended asset menu with equity and variance derivatives, they
find that an optimal portfolio that includes derivatives not only markedly improves welfare in an
expected utility framework, but also improves along most (and in some cases all) other evaluation
criteria which are frequently used by pension funds, such as the 2.5% quantile of the funding ratio
and the expected shortfall at that level (i.e., Value-at-risk and Tail-Value-at-Risk) as well as measures
of income security, which is represented by the probability of reaching specific return targets.

The optimal portfolio in Cui, Oldenkamp, and Vellekoop (2013) optimally loads on equity risk
premium, volatility risk premium and jump risk premium by holding a long position in equity and a
short position in variance derivatives.'® It also contains a long position in the OTM put and a short

position in the OTM call, which resembles a so-called collar strategy. The portfolio loads on volatility

“Merton (1995) first noted that, in the presence of transactions costs, derivative securities may be an efficient way

to implement optimal dynamic investment policies.
15Utility functions with constant relative risk aversion guarantee that the terminal wealth will never go negative since

the absolute risk aversion will go to infinity when wealth levels approach zero. In reality, pension funds would use a

higher threshold than zero for the absolute minimum of wealth they will allow in their optimization programme.
16Their variance derivative is the floating leg of a variance swap which generates a payoff which depends on the

average realized variance of the risky asset over the investment horizon. As such it is purely linked to the stochastic
volatility process and not directly to the asset price, although there is an indirect exposure due to the correlation

between the stock price and its volatility.
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risk via variance derivatives because these give investors a controlled exposure to this risk whereas
options’ sensitivity to volatility risk depends on the remaining time to maturity and the stock price
path. When variance derivatives are present in the portfolio one can further enhance the retirement
income security by a short position in calls (60% of stocks) and a long position in puts (8%, hence
not necessarily in equal amounts). The use of short calls to help pay for the purchase of puts is based
on the intuition that to improve the chances of achieving a desired income target in pension plans,
upside potential has to be relinquished if no extra external funding is available. The combination
of an out-of-the-money put and a shorted out-of-the-money call is used to transfer probability mass
from the investment portfolio’s rates of return for relatively extreme economic scenarios (where the
stock price increases or decreases dramatically) to more moderate ones. The direct protection offered
by put options is suboptimal.

Hsuhku (2007) and Tan (2009) study a problem in which investors are assumed to derive utility
from consumption, which means that spending off cumulated wealth is admissible. This is what
pension funds do off cumulated wealth as a result of withdrawals. Interestingly, Tan finds that when
there is no non-capital income, the utility cost of not being able to add long call or put positions
is generally small, while when there is non-capital income in the form of wage income reasonably
calibrated, the same cost for long call option positions can be substantial while that for long put option
positions is close to zero. Hsuhku assumes instead that investors have Duffie and Epstein’s (1992)
continuous-time recursive preferences that allow to separate an investor’s elasticity of intertemporal
substitution in consumption from the coefficient of relative risk aversion. When he introduces non-
redundant derivative securities written on the risky stock in an incomplete financial market, the
derivative provides differential exposures to stochastic volatility and make the markets complete. The
derivative securities can also supplement the deficient hedging ability of the intertemporal hedging
component of the risky stock, because of the nonlinear nature of derivative payoffs.

The work by Faias and Santa Clara (2011) has simulated in real time realized, out-of-sample
risk-adjusted returns from investing in the riskless asset, the S&P 500 index, and four constant
moneyness, one-month option contracts (one ATM call, one ATM put, a 5% OTM call, and a 5%
OTM put option) under power utility, similarly to what we have proposed in our paper, but assuming
a flexible process for index returns. Hence they adopt a simulation approach to portfolio optimization
similar to Cui, Oldenkamp, and Vellekoop’s (2013) incorporating realistic transaction costs. They
find that investors could have obtained high Sharpe ratios and positive certainty equivalents over a
January 1996 - October 2010 sample. The best strategy yields a Sharpe ratio of 0.50. This compares
well with the Sharpe ratio of the market in the same period of 0.13. Several strategies also present
positive skewness and low excess kurtosis, which is not achievable simply by shorting individual
options. Their strategies load significantly on all four options and are almost delta-neutral. On
average, we hold long positions of ATM puts and OTM calls and short positions of OTM puts. The

holdings of ATM call options change the most over time. It would be interesting to extend their
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exercise to structured investment products, when the resulting payoff function is made endogenous

to some extent.

In this paper, for simplicity, we have used only European call options in our buy-and-hold strate-

gies. A natural extension is to include more complex derivatives, perhaps with path dependences

such as knock-out or average-rate options. This extension may be especially relevant in the presence

of predictable drifts and volatility, when portfolios are restricted to be of the buy-and-hold type, so

that the first-best cannot be attained (see the discussion in Haugh and Lo, 2001). Finally, more work

remains to be done to facilitate the implementation of ALM (asset-liability management) strategies

which focus on allocations in terms of risk premia instead of particular assets.
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