Macroeconomics Sequence, Block I

Introduction to Numerical Methods

Nicola Pavoni

September 27, 2016

Introduction

- Recall the $B E$ in the deterministic case:

$$
V(x)=\max _{x^{\prime} \in \Gamma(x)} F\left(x, x^{\prime}\right)+\beta V\left(x^{\prime}\right) .
$$

- Recall the value function iteration procedure:
(1) Initial guess V_{0}
(2) Apply the \mathbf{T} operator to it and get a new function $V_{1}=\mathbf{T} V_{0}$
(3) Apply again \mathbf{T} to V_{1} and get $V_{2}=\mathbf{T} V_{1}$ and so on.
- The maximization in T must be using numerical algorithms.
- The operator \mathbf{T} must work in finite spaces \Rightarrow (value) function approximations.
- We can only perform finitely many iterations \Rightarrow tolerance.

Discretization

(1) Discretize $\mathrm{X}: \hat{X}=\left[x^{1}, x^{2}, x^{3}, \ldots ., x^{N}\right]$.
(2) Pick $V_{0}: \hat{V}_{0}=\left[v_{0}^{1}, v_{0}^{2}, \ldots, v_{0}^{N}\right]$.
(3) For each $x^{i} \in \hat{X}$, look for the $x^{j}\left(=x^{\prime}\right) \in \hat{X}$ that solves

$$
\max _{x^{j} \in \hat{X}, x^{j} \in \hat{\Gamma}\left(x^{i}\right)} F\left(x^{i}, x^{j}\right)+\beta v_{0}^{j}
$$

(9) Denote v_{1}^{i} the value associated to $F\left(x^{i}, x^{j^{*}}\right)+\beta v_{0}^{j^{*}}$ \Rightarrow We get our new function $\hat{V}_{1}=\left[v_{1}^{1}, v_{1}^{2}, \ldots, v_{1}^{N}\right]$.
(3) Do so until below tolerance ε :

$$
d\left(\hat{V}_{n}, \hat{V}_{n+1}\right)=\sum_{i} \omega^{i}\left|v_{n}^{i}-v_{n+1}^{i}\right|<\varepsilon,
$$

The Deterministic Growth Model

- Parametrize: Cobb-Douglas production function and log utility:

$$
f(k)=k^{\alpha}+(1-\delta) k \text { and } u(c)=\ln (c),
$$

where δ is the depreciation rate, α is the capital share.

- If $\delta=1$:

$$
V(k)=\max _{0 \leq k^{\prime} \leq k^{\alpha}} \ln \left(k^{\alpha}-k^{\prime}\right)+\beta V\left(k^{\prime}\right),
$$

- We know that $g(k)=\alpha \beta k^{\alpha}$.
- We now compute it using Matlab

The Computer Code I

- Initialize the problem

```
clear all;
close all;
```

- Define parameters
beta=.9; \% $\beta=.9$
alpha=.35; \% $\alpha=.35$
NumPoints =100;
- Discretize the state space around the steady state capital stock

```
k_bar = (alpha*beta) ^(1/(1-alpha)); % k* = (\alpha\beta)
k_lo = k_bar*0.5;
k_hi = k_bar*2;
step = (k_hi-k_lo)/NumPoints;
K = k_lo:step:k_hi;
n=length(K);
```


The Computer Code II

- Build an $n \times n$ matrix whose columns are output at each value of k (in Matlab vectors are raw-vectors by default) $\mathrm{Y}=\mathrm{K} .{ }^{\wedge} \mathrm{alpha}$; YY $=$ ones $(n, 1) * Y$;
- Then another $n \times n$ matrix whose columns are capital $\mathrm{KK}=$ ones $(\mathrm{n}, 1) * \mathrm{~K}$;
- Consumption at each level of k^{\prime} is then given by C = YY-KK';
- Calculate the utility arising from each level of consumption $\mathrm{U}=\log (\mathrm{C})$;
- Take an initial guess at the value function $\mathrm{V}=\operatorname{zeros}(\mathrm{n}, 1)$; (this is a column-vector)

The Computer Code III

- Apply the operator

$$
W=U+\beta\left[\begin{array}{c}
0 \\
. . \\
0
\end{array}\right]\left[\begin{array}{ll}
1 & \ldots . .1
\end{array}\right]
$$

$\mathrm{VV}=\mathrm{V}$ *ones (1, n) ;
W=U+beta*VV;

- Given a k, we want to find the k^{\prime} that solves

$$
\left[\begin{array}{c}
T V\left(k^{1}\right) \\
T V\left(k^{2}\right) \\
\ddot{ } \\
T V\left(k^{N}\right)
\end{array}\right]=\max W
$$

$T V=\max W$;

The Computer Code III

- Main iteration loop for the value function.

```
flag=1;
while (flag > 10^(-2))
    VV=V*ones(1,n);
    W=U+beta*VV;
    V1=max(W)';
    flag = max(abs(V1-V));
    V=V1;
```

end

- When the value function has converged, find the policy function i.e. the k^{\prime} that gives the maximum value of the operator for each k. To do this first find the vector of indices where W takes its maximum value [val,ind] $=\max (\mathrm{W})$;
- Then use the indices to pick out the corresponding values of k. k_star = K(ind);

Generating Figures

```
figure(1)
hold on
plot(K, k_star, 'b-') This is the approximate policy
plot(K,g, 'r-') This is the analytic policy
plot(K,K,'-.') The 45 degree line
title('The Policy Funtion')
xlabel( ' Capital levels k ' )
ylabel( ' Next period capital k' )
hold off
```

Figure: Analytic and Approximate Policies
The Policy Funtion

Have a look at the file discretize.m

