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Before we start, recall the definition of the Propensity Score as:

p(Xi) = Pr(Di = 1 | Xi) = E(Di | Xi) (1)

where Di is a dummy treatment indicator and Xi a set of observable control
variables.

Theorem 1 (The Balancing Property).

Di ⊥ Xi | p(Xi)

In words, the distributions of the treatment status Di and the observable
control variables Xi are orthogonal to each other, once conditioning on the
propensity score p(Xi).

Proof. Given that Di is a binary variable, its distribution is fully summarized
by its mean and Theorem 1 is equivalent to the following statement:

E[Di | Xi, p(Xi)] = E[Di | p(Xi)] (2)

In words, once conditioning on p(Xi), it is irrelevant whether the mean of Di

is computed further conditioning on Xi or not. We proceed with the proof
by showing that both the term on the left and on the right hand sides of
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equation 2 are equal to the propensity score itself and, thus, are also equal
to each other.

Let us start with the left hand side:

E[Di | Xi, p(Xi)] = E[Di | Xi] = p(Xi) (3)

where the first equality comes trivially from the fact that p(Xi) is simply a
function of Xi, so that, conditioning on Xi, knowledge of p(Xi) is irrelevant.
The second equality comes directly from the definition of the propensity score
1.

Now, let us look at the right hand side of equation 2. In order to show
that E[Di | p(Xi)] = p(Xi) we need to apply the Law of Iterated Expectations,
which is reported here for convenience:

Law of Iterated Expectations: EA(A) = EB[EA|B(A | B)] (4)

where A and B are random numbers and where the subscripts to the expec-
tation operators indicate the distributions over which the expected value is
computed.

We are going to apply this exact same law to E[Di | p(Xi)], where, for
analogy with equation 4, A is defined as A = Di|p(Xi) and B = Xi|p(Xi).
Then, direct application of the Law of Iterated Expectations with such defi-
nitions to the right hand side of equation 2 leads to the following:

ED|p(X)[Di | p(Xi)] = EX|p(X)

{
ED|X,p(X)[Di | Xi, p(Xi)] | p(Xi)

}
= E[p(Xi) | p(Xi)] = p(Xi) (5)

The first equality comes from the Law of Iterated Expectations, while the
second uses equation 3 from the first part of this proof and the third equality
holds trivially. The combination of equations 3 and 5 proves the theorem.

Theorem 2 (Unconfoundedness).

y0i ⊥ Di | Xi

⇓
y0i ⊥ Di | p(Xi)
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In words, conditional independence of y0i given Xi, which is the hypothesis
of this theorem, implies conditional independence of y0i given the propensity
score p(Xi).

1

Proof. Once again, we use the fact that Di is a dummy variable to restate
theorem 2 as:

E[Di | y0i , Xi] = E[Di | Xi] (6)

⇓
E[Di | y0i , p(Xi)] = E[Di | p(Xi)] (7)

The proof proceeds by showing that both the left and the right hand sides of
equation 7 are equal to the propensity score itself and, hence, they are also
equal to each other. In doing so we will make use of the assumption of the
theorem (equation 6).

Notice that in the proof of the Balancing Property we have already shown
that the right hand side of equation 7 is equal to the propensity score (see
equation 5):

E[Di | p(Xi)] = p(Xi) (8)

We still need to prove that E[Di | y0i , p(Xi)] = p(Xi). We do it by using
the Law of Iterated Expectations (equation 4), where now A = Di|y0i , p(Xi)
and B = Xi|y0i , p(Xi). Hence:

E[Di | y0i , p(Xi)] = EX|y0i ,p(X)

{
ED|y0,X,p(X)[Di | y0i , Xi, p(Xi)] | y0i , p(Xi)

}
= EX|y0i ,p(X)

{
ED|y0,X [Di | y0i , Xi] | y0i , p(Xi)

}
(9)

where the first equality comes from direct application of the Law of Iterated
Expectations and the second equality trivially holds because p(Xi) is a func-
tion of Xi, so that conditioning on the latter makes the conditioning on the
first redundant.

Next, we can apply the hypothesis of the theorem, i.e. conditional in-
dependence of Di and y0i given Xi, to get rid of the conditioning on y0i in
equation 9:

EX|y1i ,p(X)

{
ED|y1,X [Di | y1i , Xi] | y1i , p(Xi)

}
=

EX|y1i ,p(X)

{
ED|X [Di | Xi] | y1i , p(Xi)

}
=

EX|y1i ,p(X)

[
p(xi) | y1i , p(Xi)

]
= p(Xi) (10)

1The theorem holds equally conditioning on y1i instead of y0i , or both.
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where the first equality comes from the hypothesis of the theorem, the second
from the definition of propensity score and the third trivially from the fact
that the expected value of any random variable conditional on itself is simply
equal to itself.

The combination of equations 9 and 10 shows that E[Di | y0i , p(Xi)] =
p(Xi), which together with equation 8, proves the theorem.
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