
5 Single-Factor Conditionally Heteroskedastic Models 

 
On-Line Supp.  How do we proceed to maximize the log-likelihood function of a 

sample by selecting the optimizing parameters, subject to ∈Θθ ? Ap-
propriate methods of numerical, constrained optimization need 
to be implemented: this is what packages such as Matlab, Gauss , 
EViews, or Stata are for. For instance (i.e., other, better but more 
complex methods are feasible), Newton's method makes use of the 
Hessian, which is a K K×  matrix 2( ) ( )/ 'H ≡ ∂ ∂ ∂θ θ θ θ  that collects 
second partial derivatives of the log-likelihood function with respect 
to each of the parameters in θ . Similarly the 1K ×  gradient 

( )/∂ ∂ θ θ  collects the first partial derivatives of the log-likelihood 

function with respect to each of the elements inθ . Let ˆ
jθ  denote the 

value of the vector of estimates at step j of the algorithm, and let 
ˆ( )/j∂ ∂ θ θ  and ˆH( )jθ  denote, respectively, the gradient and the 

Hessian evaluated at ˆ
jθ . Then the fundamental equation to update 

the estimates according to Newton's algorithm is: 

  1
1

ˆ ˆ ˆ ˆH ( )[ ( )/ ]j j j j
−

+ = − ∂ ∂θ θ θ θ θ   (0.1) 

Because the log-likelihood function is to be maximized, the Hessian 

should be negative definite, at least when ˆ
jθ  is sufficiently near ˆ

Tθ . 
This ensures that this step is in an uphill direction. The maximiza-
tion process therefore proceeds through the following steps: 
 Set an initial vector of parameters, 0θ̂ , and compute 

1
0

ˆH ( )− θ  and 0
ˆ( )/∂ ∂ θ θ . 

 Compute the new vector of estimated parameters 
1

1 0 0 0
ˆ ˆ ˆ ˆH ( )[ ( )/ ]−= − ∂ ∂θ θ θ θ θ  and therefore 1

1
ˆH ( )− θ  and 

1
ˆ( )/∂ ∂ θ θ ; check that the Euclidean norm || 1 0

ˆ ˆ−θ θ || (in 
words, this is the square root of the sum of all squared dif-
ferences between the elements of 1θ̂  and 0θ̂ ) is not inferior 
to some small threshold parameter (typically, 10-5). 

 Update the vector of parameter estimates to 
1

2 1 1 1
ˆ ˆ ˆ ˆH ( )[ ( )/ ]−= − ∂ ∂θ θ θ θ θ  and check that the norm ||

2 1
ˆ ˆ−θ θ || is not inferior to the threshold parameter. 

 Continue (unless a maximum number of iteration has been 
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exceeded, but with fast computers often thousands of itera-
tions are affordable in the space of a few minutes only) until 

1
1 1 1

ˆ ˆ ˆ ˆH ( )[ ( )/ ]j j j j
−

− − −= − ∂ ∂θ θ θ θ θ  is such that || 1
ˆ ˆ

j j−−θ θ || falls 
below the fixed convergence threshold, that signals that the 
optimizing vector has stopped changing. 

 Set ˆ ˆML
T j=θ θ . 

Numerical optimization is a very sensitive business; a myriad of 
choices are considered to be crucial to obtain “reliable” results, such 
as the initial value 0θ̂ , the convergence tolerance criterion, and often 
how much the algorithm is supposed to “travel” in the direction in-
dicated by the inverse Hessian matrix, i.e., the coefficient τ in the it-
eration in (5.123), generalized to read as 1

ˆ ˆ
j j+ = −θ θ

1 ˆ ˆH ( )[ ( )/ ]j jτ − ∂ ∂θ θ θ , where τ > 0 (clearly a τ < 1 “dims” the step 

taken in direction ˆ[ ( )/ ]j∂ ∂ θ θ , while a τ > 1 acts as a multiplier). 
Reliability here is often evidence or even taken to offer some guar-
antee that ˆ ˆML

T j=θ θ  truly represents a global (as opposed to local) 
maximizer of the log-likelihood function and as such it is unique, as 
assumed. For instance, just to get hard evidence on this aspect, it is 
often advised to start off the maximization algorithm in correspond-
ence of a range of alternative starting values and then retain, for the 
true and often lengthy iterative Netwon-style search, the most 
promising one(s). 
Other numerical optimization methods are of course possible. A few 
of them are faster than Newton’s method because they replace the 
Hessian matrix with cheaper to compute negative definite K K×  
matrices, for instance ( ) [ ( )/ ][ ( )/ ]'OPG ≡ − ∂ ∂ ∂ ∂ θ θ θ θ θ , which is neg-
ative definite by construction, unless ( )/∂ ∂ = θ θ 0 , which would in-
stead show that a stationary point has been reached. The advantage 
of this expression is that it only requires calculation (often numeri-
cally) of first-order derivatives. Moreover, our simplified illustration 
of Newton’s method ignores the role played by constraints, that may 
interfere with setting 1

1 1
ˆ ˆ ˆH ( )j j j

−
− −= −θ θ θ 1

ˆ[ ( )/ ]j−∂ ∂ θ θ , when 
the constraints are violated. 
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