Università Commerciale Luigi Bocconi

MSc. Finance \& CLEFIN A.A. 2013/2014

Prep Course in Statistics - Prof. Massimo Guidolin Review Questions concerning, Random Sampling and Point Estimation

SUGGESTION: try to approach the questions first, without looking at the answers. Occasionally the questions/problems explicitly send you to check out concepts and definitions that have not explicitly discussed during the prep course. In this case - besides Casella and Berger's book-Wikipedia may be very useful, as always.

1. (A case in which more data fail to mean higher precision of an estimate/sample statistic) Casella and Berger (i.e., your textbook, 2002, example 5.2.10) show that if Z_{1}, \ldots, Z_{n} is a random sample from a Cauchy $(0,1)$ distribution, then the sample mean \bar{Z}_{n} also has a $\operatorname{Cauchy}(0,1)$ distribution. Take that result as given (but make sure to read example 5.2.10). Show that if X_{1}, \ldots, X_{n} is a random sample from a Cauchy (μ, σ) distribution, then \bar{X}_{n} also has a Cauchy (μ, σ) distribution. What do you learn from this result? [Hint: yes, now it is a good time to review what is a Cauchy distribution, see p. 107 of your textbook]
2. (Properties of the t-Student) Let X be a random variable with a t distribution with p degrees of freedom.
(a) Show that X^{2} has an F distribution with 1 and p degrees of freedom, where Snedecor's F distribution with n and m degrees of freedom is the distribution of ratios of sample variances from two independent normal random samples, that we know have a chi-square distribution. ${ }^{1}$ What is the link between the square of a t_{p} and $F_{1, p}$?
(b) Derive the mean and variance of X assuming $p>2$. (Hint: exploit the fact that if and only if $X \sim t_{p}$, then $X=Z / \sqrt{V / p}$ where $Z \sim N(0,1), V \sim \chi_{p}^{2}$, and Z and V are independent).
(c) Let $f(x ; p)$ denote the PDF of X. Show that

$$
\lim _{p \rightarrow \infty} f(x ; p)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}
$$

at each value of $x \in(-\infty, \infty)$. This suggests that as $p \rightarrow \infty, X$ converges in distribution to a $N(0,1)$ random variable. (Hint: Use Stirling's Formula, i.e., that $n!\simeq \sqrt{2 \pi} n^{n+0.5} e^{-n}$, to make the proof easier; recall that if a_{1}, a_{2}, \ldots is a sequence of numbers converging to a, that is, $\lim _{n \rightarrow \infty} a_{n}=a$, then $\lim _{n \rightarrow \infty}\left(1+a_{n} /(n+\kappa)\right)^{n}=e^{a}$, where κ is a constant).
(d) Use the results of parts (a) and (b) to argue that, as $p \rightarrow \infty, X^{2}$ converges in distribution to a χ_{1}^{2} random variable.
3. (The weak law of large numbers) State and, using Chebychev's Inequality, prove the weak law of large numbers. (Hint: Chebychev's Inequality states that if X is a random variable and $g(\cdot)$ is any nonnegative function, then, for any $r>0$,

$$
\left.\operatorname{Pr}(g(X) \geq r) \leq \frac{E[g(X)]}{r}\right)
$$

4. (Approximating the mean and variance of a ratio of random variables) Ratios of random variables are often very important in finance: think about accounting and focus on your favorite (if you really have one, I would start worrying) accounting ratio, defined as X / Y, where both X and Y are random variables, that are not known in advance (say $X=$ current liabilities; $Y=$ total assets). For simplicity, assume that both X and Y are continuous random variables and call their means μ_{X} and μ_{Y}, their variances $\sigma_{X}^{2}, \sigma_{Y}^{2}$, and their covariance $\sigma_{X Y}$.

[^0](a) Argue (this is less than proving it) that
$$
E\left[\frac{X}{Y}\right] \neq \frac{E[X]}{E[Y]} \quad \operatorname{Var}\left[\frac{X}{Y}\right] \neq \frac{\operatorname{Var}[X]}{\operatorname{Var}[Y]} .
$$
(b) Using a first-order Taylor expansion around the point $\left[\mu_{X} \mu_{Y}\right]^{\prime}$, show that as long as the conditions of Taylor's theorem hold,
$$
\hat{E}\left[\frac{X}{Y}\right] \simeq \frac{\bar{X}}{\bar{Y}} \quad \widehat{\operatorname{Var}}\left[\frac{X}{Y}\right] \simeq\left(\frac{\bar{X}}{\bar{Y}}\right)^{2}\left(\frac{S_{X}^{2}}{\bar{X}^{2}}+\frac{S_{Y}^{2}}{\bar{Y}^{2}}-2 \frac{S_{X Y}}{\bar{X} \bar{Y}}\right)
$$
where $\bar{X} \equiv n^{-1} \sum_{i=1}^{n} X_{i}, S_{X}^{2} \equiv(n-1)^{-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}, S_{X Y} \equiv(n-2)^{-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)^{2}$, and the last sample statistic is a sample covariance. Here "hats" indicate estimated moments.
5. (Higher-order moments for normal random samples) Let X_{1}, \ldots, X_{n} be a random sample from a $N\left(\mu, \sigma^{2}\right)$ population.
(a) Find expressions for $\mu_{1} \equiv E\left[X_{i}\right], \mu_{2} \equiv E\left[\left(X_{i}-\mu_{1}\right)^{2}\right], \mu_{3} \equiv E\left[\left(X_{i}-\mu_{1}\right)^{3}\right]$, and , $\mu_{4} \equiv E\left[\left(X_{i}-\mu_{1}\right)^{4}\right]$ in terms of μ and σ^{2}. (Hint: in the case of μ_{3}, use Stein's lemma, that $\left.E[g(X)(X-\mu)]=\sigma^{2} E\left[g^{\prime}(X)\right]\right)$.
(b) Calculate $\operatorname{Var}\left[S^{2}\right]$ using the fact that $(n-1) S^{2} / \sigma^{2} \sim \chi_{n-1}^{2}$ (stated in the lectures) and that $\operatorname{Var}\left[\chi_{n-1}^{2}\right]=$ $2(n-1)$.
6. (The CLT and a naive confidence interval for the difference of sample means from independent random samples) If \bar{X}_{1} and \bar{X}_{2} are the means of two independent samples of size n from a population with variance σ^{2}, find a value for n so that $\operatorname{Pr}\left(\left|\bar{X}_{1}-\bar{X}_{2}\right|<\sigma / 5\right) \simeq 0.99$. Justify your calculations.
7. (Method of Moment Estimation in the Binomial Case) Let $X_{1}, X_{2}, \ldots, X_{n}$ be IID $\operatorname{Bi}(k, p)$, i.e.,
$$
\operatorname{Pr}\left(X_{i}=x ; k, p\right)=\binom{k}{p} p^{x}(1-p)^{k-x}, x=0,1, \ldots, k
$$

Find the method of moment estimators for k and p simultaneously. Can you obtain negatives estimates of the parameters? What can you learn about the features of the random sample when k and p are estimated to be negative by the method of moments?
8. (MLE Estimation of Mean and Variance from a Normal Population) Let X_{1}, \ldots, X_{n} be a random sample from a $N\left(\mu, \sigma^{2}\right)$ population with both μ and σ^{2} unknown.
a. Derive the ML estimators of μ and σ^{2} by writing and differentiating the log-likelihood function.
b. Verify that the estimators derived under (a) represent an interior maximum and not a minimum.
9. (The relative MSEs of sample variance vs. ML estimator for the variance) Let X_{1}, \ldots, X_{n} be a random sample from a $N\left(\mu, \sigma^{2}\right)$ population with both μ and σ^{2} unknown.
a. Write the sample variance estimator, S^{2}, and the ML estimator for variance.
b. Compute the bias and the MSE of both estimators.
c. Show that even though it is biased, the ML estimator has a lower MSE than the sample variance.
10. (S^{2} is not UMVUE) Let X_{1}, \ldots, X_{n} be a random sample from a $N\left(\mu, \sigma^{2}\right)$ population with both μ and σ^{2} unknown and consider the sample variance estimator for σ^{2}. Show that S^{2} is unbiased but does not reach the Cramer-Rao lower bound. [Hint: because the normal distribution belongs to the normal family, one can prove that

$$
\left.E\left\{\left[\frac{\partial}{\partial \boldsymbol{\theta}^{\prime}} \ln f(\mathbf{x} ; \boldsymbol{\theta})\right]^{2}\right\}=-n E\left\{\frac{\partial^{2}}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\prime}} \ln f(\mathbf{x} ; \boldsymbol{\theta})\right\}\right)
$$

11. (Uniqueness of the Best Unbiased Estimator) Show that if W is BUE for θ, then W must be unique, i.e., if there is another W^{*} that is also claimed to be BUE, then $W^{*}=W$. (Hint: recall that the U in BUE means unbiased and that as such $M S E(W)=\operatorname{Var}[W]$; then try to build a third estimator just by taking $0.5 W+0.5 W^{*}$ and examine its MSE; finally, it could be useful to use the Cauchy-Schwarz inequality, by which $\operatorname{Cov}[X, Y] \leq$ $\sqrt{\operatorname{Var}[X] \operatorname{Var}[Y]})$.
12. (Consistency of the normal sample mean) Let X_{1}, \ldots, X_{n} be an IID sample from a $N(\mu, 1)$ population. Establish analytically that the sample mean estimator sequence $\bar{X}_{n} \equiv n^{-1} \sum_{i=1}^{n} X_{i}$ is consistent.

[^0]: ${ }^{1}$ The density of a $F_{n, m}$ distribution is: $f_{F}(x)=\frac{\Gamma\left(\frac{n+m}{2}\right)}{\Gamma\left(\frac{n}{2}\right) \Gamma\left(\frac{m}{2}\right)}\left(\frac{n}{m}\right)^{\frac{n}{2}} \frac{x^{(n / 2)-1}}{[1+(n / m) x]^{\frac{n+m}{2}}} \quad t \in(0,+\infty)$.and can be shown to be ratio between a χ_{n}^{2} and a χ_{m}^{2}. Finally, $E\left[F_{n, m}\right]=m /(m-2)$ for $m>2$ and $\operatorname{Var}\left[F_{n, m}\right]=2\left(\frac{m}{m-2}\right)^{2} \frac{n+m-2}{n(m-4)}$ for $m>4$.

