Prep Course in Statistics - Prof. Massimo Guidolin
 A Few Review Questions and Problems concerning, Hypothesis Testing and Confidence Intervals

SUGGESTION: try to approach the questions first, without looking at the answers. Occasionally the questions/problems explicitly send you to check out concepts and definitions that have not explicitly discussed during the prep course. In this case - besides Casella and Berger's book-Wikipedia may be very useful, as always.

1. (Likelihood Ratio Test for a Normal Population Mean when the Variance is Unknown)

 Suppose X_{1}, \ldots, X_{n} is a random sample from a $N\left(\mu, \sigma^{2}\right)$ but an experimenter is interested only in inferences about μ, such as performing the one-sided mean test $H_{o}: \mu \leq \mu_{0}$ vs. $H_{1}: \mu>\mu_{0}$. In this case that the parameter σ^{2} is a nuisance parameter. Derive the LRT and show that the test based on LRT(\mathbf{x}) has the same structure as a test that defines the rejection region on the basis of a Student's t statistic.Solution. The LRT statistic is (in this case, taking the max or the sup delivers the same value function, ask yourself why):

$$
\operatorname{LRT}(\mathbf{x})=\frac{\max _{\left\{\mu, \sigma^{2}: \mu \leq \mu_{0}, \sigma^{2} \geq 0\right\}} L\left(\mu, \sigma^{2} ; \mathbf{x}\right)}{\max _{\left\{\mu, \sigma^{2}: \sigma^{2} \geq 0\right\}} L\left(\mu, \sigma^{2} ; \mathbf{x}\right)}=\frac{\max _{\left\{\mu, \sigma^{2}: \mu \leq \mu_{0}, \sigma^{2} \geq 0\right\}} L\left(\mu, \sigma^{2} ; \mathbf{x}\right)}{L\left(\hat{\mu}^{M L}, \hat{\sigma}_{M L}^{2} ; \mathbf{x}\right)},
$$

where $\hat{\mu}^{M L}$ and $\hat{\sigma}_{M L}^{2}$ are the well-known ML estimators. At this point, if $\hat{\mu} \leq \mu_{0}$ then the restricted maximum is the same as the unconstrained one and numerator and denominator will be identical; otherwise, the restricted maximum is $L\left(\mu_{0}, \sigma_{0}^{2} ; \mathbf{x}\right)$, where $\sigma_{0}^{2} \equiv n^{-1} \sum_{i=1}^{n}\left(x_{i}-\mu_{0}\right)^{2}$. Therefore:

$$
\operatorname{LRT}(\mathbf{x})=\left\{\begin{array}{ll}
1 & \bar{x}<\mu_{0} \\
\frac{L\left(\mu_{0}, \sigma_{0}^{2} ; \mathbf{x}\right)}{L\left(\hat{\mu}^{M L}, \hat{\sigma}_{M L}^{2} ; \mathbf{x}\right)} & =\frac{\left(\sigma_{0}^{2}\right)^{-n / 2}}{\left(\hat{\sigma}^{2}\right)^{-n / 2}}=\left(\frac{\hat{\sigma}^{2}}{\sigma_{0}^{2}}\right)^{n / 2} \\
\bar{x} \geq \mu_{0}
\end{array},\right.
$$

because we know that $\hat{\mu}^{M L}=\bar{x}$. At this point, note that

$$
\begin{aligned}
\hat{\sigma}^{2}= & \frac{n-1}{n} S^{2} \\
\sigma_{0}^{2}= & n^{-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}+\bar{x}-\mu_{0}\right)^{2}=n^{-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+n^{-1} \sum_{i=1}^{n}\left(\bar{x}-\mu_{0}\right)^{2}+ \\
& +2 n^{-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(\bar{x}-\mu_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =n^{-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+\left(\bar{x}-\mu_{0}\right)^{2}+2 n^{-1}\left(\bar{x}-\mu_{0}\right) \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) \\
& =\frac{n-1}{n} S^{2}+\left(\bar{x}-\mu_{0}\right)^{2} .
\end{aligned}
$$

As a result, because

$$
\operatorname{LRT}(\mathbf{x})=\left\{\begin{array}{ll}
1 & \\
\bar{x}<\mu_{0} \\
\left(\frac{\frac{n-1}{n} S^{2}}{\frac{n-1}{n} S^{2}+\left(\bar{x}-\mu_{0}\right)^{2}}\right)^{n / 2} & \bar{x} \geq \mu_{0}
\end{array}=\left\{\begin{array}{ll}
1 & \bar{x}<\mu_{0} \\
\left(\frac{\frac{n-1}{n}}{\frac{n-1}{n}+\frac{\left.\bar{x}-\mu_{0}\right)^{2}}{S^{2}}}\right)^{n / 2} & \bar{x} \geq \mu_{0}
\end{array},\right.\right.
$$

the rejection region $\operatorname{LRT}(\mathbf{x})<c$ implies that if $\bar{x}<\mu_{0}$ rejection is impossible, as one would expect, while if $\bar{x} \geq \mu_{0}$,

$$
\frac{\frac{n-1}{n}}{\frac{n-1}{n}+\frac{\left(\bar{x}-\mu_{0}\right)^{2}}{S^{2}}}<c^{-\frac{n}{2}} \Longrightarrow \frac{\left(\bar{x}-\mu_{0}\right)^{2}}{S^{2} / n}>(n-1)\left(c^{\frac{n}{2}}-1\right)
$$

which will be the case when $\left(\bar{x}-\mu_{0}\right)^{2} / S^{2}$ is sufficiently large exceeding an increasing function of the fixed c. Now note that

$$
\begin{aligned}
\operatorname{Pr}\left(\left.\bar{x}>\mu_{0}+t_{n-1, \alpha} \frac{S}{\sqrt{n}} \right\rvert\, \mu=\mu_{0}\right) & =\operatorname{Pr}(\left.\underbrace{\frac{\bar{x}-\mu_{0}}{S / \sqrt{n}}}_{T_{n-1}}>t_{n-1, \alpha} \right\rvert\, \mu=\mu_{0}) \\
& =\operatorname{Pr}\left(\left.\frac{\left(\bar{x}-\mu_{0}\right)^{2}}{S^{2} / n}>t_{n-1, \alpha}^{2} \right\rvert\, \mu=\mu_{0}\right)=\alpha,
\end{aligned}
$$

which has the structure as the rejection region determined above.
The lesson of this exercise is: Besides being an extension of an example analyzed during the lecture, this problem shows that the structure of LRTs is independent-for a given and fixed c-from the specific statistical assumptions that are made.
2. (Computing and Optimizing a Normal Power Function) Let X_{1}, \ldots, X_{n} be a random sample from a $N\left(\mu, \sigma^{2}\right)$ population, σ^{2} known. An LRT of $H_{o}: \mu \leq \mu_{0}$ versus $H_{1}: \mu . \mu_{0}$ is a test that rejects H_{o} if

$$
\mathrm{LRT} \equiv \frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}}>c .
$$

The constant $c \in[0,1]$ can be any positive number.
(a) Compute the power function of this LRT.
(b) Suppose the experimenter wishes to have a maximum Type I Error probability of 0.1. Suppose, in addition, the experimenter wishes to have a maximum Type II Error probability of 0.2 if $\mu \geq \mu_{0}+\sigma$. Show how to choose c and n to achieve these goals.

Solution. (a) From the definition of power function,

$$
\begin{aligned}
\beta(\mu) & =\operatorname{Pr}(\bar{X} \in R)=\operatorname{Pr}\left(\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}}>c\right)=\operatorname{Pr}\left(\frac{\bar{x}-\mu+\mu-\mu_{0}}{\sigma / \sqrt{n}}>c\right) \\
& =\operatorname{Pr}\left(\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}+\frac{\mu-\mu_{0}}{\sigma / \sqrt{n}}>c\right)=\operatorname{Pr}(\underbrace{\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}}_{Z \sim N(0,1)}>c-\frac{\mu-\mu_{0}}{\sigma / \sqrt{n}}) \\
& =\operatorname{Pr}\left(Z>c-\frac{\mu-\mu_{0}}{\sigma / \sqrt{n}}\right) .
\end{aligned}
$$

As μ increases from $-\infty$ to $+\infty$, it is easy to see that this normal probability increases from 0 to 1 . Therefore, it follows that $\beta(\mu)$ is an increasing function of μ, with

$$
\begin{aligned}
\lim _{\mu \rightarrow-\infty} \beta(\mu) & =\lim _{\mu \rightarrow-\infty} \operatorname{Pr}\left(Z>c-\frac{\mu-\mu_{0}}{\sigma / \sqrt{n}}\right)=\operatorname{Pr}(Z>c+\infty)=0 \\
\lim _{\mu \rightarrow+\infty} \beta(\mu) & =\lim _{\mu \rightarrow-\infty} \operatorname{Pr}\left(Z>c-\frac{\mu-\mu_{0}}{\sigma / \sqrt{n}}\right)=\operatorname{Pr}(Z>c-\infty)=1
\end{aligned}
$$

(b) As noted above, the power function of a LRT test in which one rejects if $\bar{x}-\mu_{0} /(\sigma / \sqrt{n})>c$ is

$$
\beta(\mu)=\operatorname{Pr}\left(Z>c-\frac{\mu-\mu_{0}}{\sigma / \sqrt{n}}\right) .
$$

Because $\beta(\mu)$ is increasing in μ, so that solutions to the equations below are unique, the requirements will be met if

$$
\beta\left(\mu_{0}\right)=0.1 \text { and } \beta\left(\mu_{0}+\sigma\right)=\underbrace{1-0.2}_{\beta\left(\mu_{0}\right)=1-\text { type II error }}=0.8 .
$$

By choosing $c=1.28$, we achieve $\beta\left(\mu_{0}\right)=\operatorname{Pr}(Z>1.28)=0.1$, regardless of n. Now we wish to choose n so that $\beta\left(\mu_{0}+\sigma\right)=\operatorname{Pr}(Z>1.28-\sqrt{n})=0.8$. However, we know that $\operatorname{Pr}(Z>-0.84)=0.8$, so that setting $1.28-\sqrt{n}=-0.84$ and solving for n, yield $n=4.49$. Of course n must be an integer. So choosing $c=1.28$ and $n=5$ yield a test with error probabilities controlled as specified by the experimenter.
3. (UMP Binomial Test Derived from Neyman-Pearson's Lemma) Notice that the conditions of Neyman-Pearson's lemma for simple hypotheses may be re-written as:

$$
\left\{\begin{array}{ll}
\mathbf{x} \in R & \text { if } \frac{f\left(\mathbf{x} ; \theta_{1}\right)}{f\left(\mathbf{x} \theta_{0}\right)}>k \\
\mathbf{x} \in R^{c} & \text { if } \frac{f\left(\mathbf{x} ; \theta_{1}\right)}{f\left(\mathbf{x} ; \theta_{0}\right)} \leq k
\end{array} \text { for some } k \geq 0 \text { and } \alpha=\operatorname{Pr}_{\theta \in \Theta_{o}}(\mathbf{x} \in R),\right.
$$

assuming $f\left(\mathbf{x} ; \theta_{0}\right) \neq 0$. Let $X \sim B i(2, \theta)$. Use Neyman-Pearson lemma to show that in the test of H_{o} : $\theta=1 / 2$ vs. $H_{1}: \theta=3 / 4$, the test that rejects the null hypothesis if $X=2$ is the UMP test at size $\alpha=0.25$.

Solution. Calculating the ratios of PMFs featured in the lemma, we have that for the three possibile realizations of X :

$$
\begin{aligned}
& \frac{f\left(0 ; \theta_{1}\right)}{f\left(0 ; \theta_{0}\right)}=\frac{\binom{2}{0}\left(\frac{3}{4}\right)^{0}\left(\frac{1}{4}\right)^{2}}{\binom{2}{0}\left(\frac{1}{2}\right)^{0}\left(\frac{1}{2}\right)^{2}}=\frac{1 / 16}{1 / 4}=\frac{1}{4} \\
& \frac{f\left(1 ; \theta_{1}\right)}{f\left(1 ; \theta_{0}\right)}=\frac{\binom{2}{1}\left(\frac{3}{4}\right)^{1}\left(\frac{1}{4}\right)^{1}}{\binom{2}{1}\left(\frac{1}{2}\right)^{1}\left(\frac{1}{2}\right)^{1}}=\frac{3 / 16}{1 / 4}=\frac{3}{4} \\
& \frac{f\left(2 ; \theta_{1}\right)}{f\left(2 ; \theta_{0}\right)}=\frac{\binom{2}{2}\left(\frac{3}{4}\right)^{2}\left(\frac{1}{4}\right)^{0}}{\binom{2}{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{0}}=\frac{9 / 16}{1 / 4}=\frac{9}{4} .
\end{aligned}
$$

If we choose $(3 / 4)<k<(9 / 4)$, the Neyman-Pearson Lemma says that the test that rejects the null hypothesis if $X=2$ and otherwise fails to reject the null of $\theta=1 / 2$ is the UMP test at size $\alpha=\operatorname{Pr}(X=2$; $\theta=1 / 2)=0.25$. Note that the proof really consists of showing the existence of such a $k \geq 0$, and $k^{*} \in\left(\frac{3}{4}, \frac{9}{4}\right)$ satisfies this condition.
4. (Deriving Normal One-Sided Confidence Bounds by Inversion) Let X_{1}, \ldots, X_{n} be a random sample from a $N\left(\mu, \sigma^{2}\right)$ population. Construct a $1-\alpha$ upper confidence bound for μ, that is, we want a confidence interval of the form $C(\mathbf{x})=(-\infty, U(\mathbf{x})]$.

Solution. To obtain such an interval by inversion, consider the one-sided tests (plural because as we change μ_{0} we derive different tests) of $H_{o}: \mu=\mu_{0}$ versus $H_{1}: \mu<\mu_{0}$. Note that we use the specification of $H_{1} \mathrm{t}$ determine the form of the confidence interval: H_{1} specifies "large" values of μ_{0}, so the confidence set will contain "small" values, values less than a bound; thus, we will get an upper confidence bound. The size α LRT of H_{o} versus H_{1} rejects H_{o} if

$$
\frac{\bar{X}-\mu_{0}}{S / \sqrt{n}}<-t_{n-1, \alpha}
$$

Thus the non-rejection (abusing language, one may say acceptance) region for this test is:

$$
\left\{\mathbf{x}: \bar{X} \geq \mu_{0}-t_{n-1, \alpha} \frac{S}{\sqrt{n}}\right\}
$$

and this occurs with probability $1-\alpha$. Inverting this expression to find an inequality that expresses μ as a function of sample statistics, we have:

$$
\operatorname{Pr}\left\{\mu_{0} \leq \bar{X}+t_{n-1, \alpha} \frac{S}{\sqrt{n}}\right\}=1-\alpha
$$

which means that the desired one-sided confidence bound is $\left(-\infty, \bar{X}+t_{n-1, \alpha} S / \sqrt{n}\right]$.
5. (Confidence Interval for the Sample Variance) Let X_{1}, \ldots, X_{n} be a random sample from a $N\left(\mu, \sigma^{2}\right)$ population. Construct $1-\alpha$ confidence intervals for σ^{2} and σ, respectively.

Solution. Because we know from lecture 1 that

$$
(n-1) \frac{S^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}
$$

A confidence interval is defined by a choice of a and $b(a<b)$ such that

$$
\begin{aligned}
\operatorname{Pr}\left\{a \leq(n-1) \frac{S^{2}}{\sigma^{2}} \leq b\right\} & =\operatorname{Pr}\left\{l \leq \chi_{n-1}^{2} \leq u\right\} \\
& =\operatorname{Pr}\left\{\chi_{n-1,1-\alpha / 2}^{2} \leq \chi_{n-1}^{2} \leq \chi_{n-1, \alpha / 2}^{2}\right\}=1-\alpha
\end{aligned}
$$

where $\chi_{n-1,1-\alpha / 2}^{2}$ and $\chi_{n-1, \alpha / 2}^{2}$ are the critical values under the chi-square the leave $\alpha / 2$ probabilities in both tails. This choice splits the probability equally, putting $\alpha / 2$ in each tail of the distribution (but the χ_{n-1}^{2} distribution, however, is a skewed distribution and it is not immediately clear that an equal probability split is optimal for a skewed distribution). We can invert this set to find

$$
\operatorname{Pr}\left\{\frac{\chi_{n-1,1-\alpha / 2}^{2}}{(n-1) S^{2}} \leq \frac{1}{\sigma^{2}} \leq \frac{\chi_{n-1, \alpha / 2}^{2}}{(n-1) S^{2}}\right\}=\operatorname{Pr}\left\{\frac{(n-1) S^{2}}{\chi_{n-1, \alpha / 2}^{2}} \leq \sigma^{2} \leq \frac{(n-1) S^{2}}{\chi_{n-1,1-\alpha / 2}^{2}}\right\}
$$

or equivalently

$$
\operatorname{Pr}\left\{\sqrt{\frac{(n-1)}{\chi_{n-1, \alpha / 2}^{2}}} S \leq \sigma \leq \sqrt{\frac{(n-1)}{\chi_{n-1,1-\alpha / 2}^{2}}} S\right\}
$$

6. (MLEs and LRT-Based Tests in the Case of a Pareto Distribution) Let X_{1}, \ldots, X_{n} be a random sample from a Pareto population with PDF

$$
f(x ; \theta, v)=\frac{\theta v^{\theta}}{x^{\theta+1}} I_{[v,+\infty)}(x) \quad \theta>0, v>\theta \quad I_{[v,+\infty)}(x)= \begin{cases}1 & \text { if } x \geq v \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the MLEs of θ and v.
(b) Show that the LRT of $H_{o}: \theta=1$ and v unknown, versus $H_{1}: \theta \neq 1$ and v unknown, has critical region of the form $\left\{\mathbf{x}: \Lambda(\mathbf{x}) \leq c_{1}, \Lambda(\mathbf{x}) \geq c_{2}\right\}$, where $0<c_{1}<c_{2}$ and

$$
\Lambda(\mathbf{x})=\ln \left[\frac{\prod_{i=1}^{n} x_{i}}{\left(\min _{i} x_{i}\right)^{n}}\right]>0
$$

(Hint: note that by construction $\prod_{i=1}^{n} x_{i} /\left(\min _{i} x_{i}\right)^{n}>1$).
Solution. (a) The log-likelihood is

$$
\begin{aligned}
\ln L(\theta, v ; \mathbf{x}) & =\ln \prod_{i=1}^{n} \frac{\theta v^{\theta}}{x_{i}^{\theta+1}} I_{[v,+\infty)}\left(x_{i}\right)= \begin{cases}\ln \left\{\theta^{n} v^{\theta n} \prod_{i=1}^{n}\left(\frac{1}{x_{i}}\right)^{\theta+1}\right\} & \text { if } v \leq \min _{i} x_{i} \\
-\infty & \text { if } v>\min _{i} x_{i}\end{cases} \\
& = \begin{cases}n \ln \theta+\theta n \ln v+(\theta+1) \ln \prod_{i=1}^{n} \frac{1}{x_{i}} & \text { if } v \leq \min _{i} x_{i} \\
-\infty & \text { if } v>\min _{i} x_{i}\end{cases} \\
& = \begin{cases}n \ln \theta+\theta n \ln v-(\theta+1) \ln \prod_{i=1}^{n} x_{i} & \text { if } v \leq \min _{i} x_{i} \\
-\infty & \text { if } v>\min _{i} x_{i}\end{cases}
\end{aligned}
$$

For any value of, this is an increasing function of v for $v \leq \min _{i} x_{i}$. So both the restricted and unrestricted MLEs of are $\hat{v}^{M L E}=\min _{i} x_{i}$. This is a typical example of an MLE that follows the definition of lecture 2 , but that does not correspond to an interior (global) maximum of the log-likelihood function and that as such is NOT obtained by solving a first-order condition. To find the MLE of θ, for $\hat{v}^{M L E}=\min _{i} x_{i}$ set

$$
\frac{\partial \ln L\left(\theta, \hat{v}^{M L E} ; \mathbf{x}\right)}{\partial \theta}=\frac{n}{\theta}+n \ln \min _{i} x_{i}-\ln \prod_{i=1}^{n} x_{i}
$$

to zero, to obtain:

$$
\frac{n}{\hat{\theta}}+n \ln \min _{i} x_{i}-\ln \prod_{i=1}^{n} x_{i}=0 \Longrightarrow \hat{\theta}^{M L E}=\frac{n}{\ln \left[\left(\prod_{i=1}^{n} x_{i}\right) /\left(\min _{i} x_{i}\right)^{n}\right]}=\frac{n}{\Lambda(\mathbf{x})}
$$

Moreover,

$$
\frac{\partial^{2} \ln L\left(\hat{\theta}^{M L E}, \hat{v}^{M L E} ; \mathbf{x}\right)}{\partial \theta^{2}}=-\frac{n}{\left(\hat{\theta}^{M L E}\right)^{2}}=-\frac{n^{2}}{\Lambda(\mathbf{x})}<0
$$

(as $\Lambda(\mathbf{x})>0$) for all possible realizations of the sample, so that $\hat{\theta}^{M L E}$ indeed represents an (interior) MLE.
(b) Under H_{o}, the MLE of is $\hat{\theta}=1$, and the MLE of is still $\hat{v}=\min _{i} x_{i}$. So the likelihood ratio statistic is

$$
\begin{aligned}
& \operatorname{LRT}(\mathbf{x})=\frac{\exp \left[n \ln 1+n \ln \min _{i} x_{i}-(1+1) \ln \prod_{i=1}^{n} x_{i}\right]}{\exp \left[n \ln \frac{n}{\Lambda(\mathbf{x})}+\frac{n}{\Lambda(\mathbf{x})} n \ln \min _{i} x_{i}-\left(\frac{n}{\Lambda(\mathbf{x})}+1\right) \ln \prod_{i=1}^{n} x_{i}\right]} \\
& =\frac{\frac{\left(\min _{i} x_{i}\right)^{n}}{\left(\prod_{i=1}^{n} x_{i}\right)^{2}}}{\left(\frac{n}{\Lambda(\mathbf{x})}\right)^{n} \frac{\left[\left(\min _{i} x_{i}\right]^{n}\right]^{n} \Lambda(\mathbf{x})}{\left(\prod_{i=1}^{n} x_{i}\right)^{\frac{n}{n(x)}}} \prod_{i=1}^{n} x_{i}}=\frac{\frac{e^{-\Lambda(\mathbf{x})}}{\prod_{i=1}^{n} x_{i}}}{\left(\frac{n}{\Lambda(\mathbf{x})}\right)^{n} e^{-\Lambda(\mathbf{x}) \cdot \frac{n}{\Lambda(\mathbf{x})}} \prod_{i=1}^{n} x_{i}} \\
& =\frac{e^{-\Lambda(\mathbf{x})}}{\left(\frac{n}{\Lambda(\mathbf{x})}\right)^{n} e^{-n}}=\left(\frac{\Lambda(\mathbf{x})}{n}\right)^{n} e^{-\Lambda(\mathbf{x})+n} \text {. }
\end{aligned}
$$

Note now that

$$
\begin{aligned}
\frac{\partial \ln L R T(\mathbf{x})}{\partial \Lambda(\mathbf{x})} & =\frac{\partial}{\partial \Lambda(\mathbf{x})}\left\{n \ln \left(\frac{\Lambda(\mathbf{x})}{n}\right)-\Lambda(\mathbf{x})+n\right\} \\
& =\frac{n}{\Lambda(\mathbf{x})}-1
\end{aligned}
$$

so that $\operatorname{LRT}(\mathrm{x})$ is increasing for $\Lambda(\mathrm{x}) \leq n$ and decreasing if $\Lambda(\mathrm{x})>n$. Thus, $\Lambda(\mathrm{x}) \leq c$ is equivalent to $\Lambda(\mathbf{x}) \leq c_{1}$ or $\Lambda(\mathbf{x}) \geq c_{2}$, for appropriately chosen constants c_{1} and c_{2}.
7. (A Simple Application of the CLT) For a random sample X_{1}, \ldots, X_{n} of $\operatorname{Bernoulli}(p)$ variables, it is desired to test $H_{o}: p=0.49$ versus $H_{1}: p=0.51$. Use the Central Limit Theorem to determine, approximately, the sample size needed so that the two probabilities of error are both about .01. Use a test function that rejects H_{o} if $\sum_{i=1}^{n} x_{i}$ is large.

Solution. The CLT tells us that

$$
Z=\frac{\sum_{i=1}^{n} x_{i}-n p}{\sqrt{n p(1-p}}
$$

is approximately $N(0,1)$. For a test that rejects H_{o} when $\sum_{i=1}^{n} x_{i} \geq c$, we need to find c and n to satisfy

$$
\operatorname{Pr}\left(Z>\frac{c-n(0.49)}{\sqrt{n \cdot 0.49 \cdot 0.51}}\right)=0.01 \text { and } \operatorname{Pr}\left(Z>\frac{c-n(0.51)}{\sqrt{n \cdot 0.49 \cdot 0.51}}\right)=0.99
$$

We thus want

$$
\frac{c-n(0.49)}{\sqrt{n \cdot 0.49 \cdot 0.51}} \simeq 2.33 \text { and } \frac{c-n(0.51)}{\sqrt{n \cdot 0.49 \cdot 0.51}} \simeq-2.33 .
$$

Solving these equations, gives $n=13,567$ and $c=6,783.5$.
8. (Abusing the Size α in Practical Applications) One very striking abuse of α size levels is to choose them after seeing the data and to choose them in such a way as to force rejection (or acceptance) of a null hypothesis. To see what the true Type I and Type II error probabilities of such a procedure are, calculate size and power of the following two trivial tests:
(a) Always reject H_{o}, no matter what data are obtained (equivalent to the practice of choosing the α size level to force rejection of H_{o}).
(b) Always accept H_{o}, no matter what data are obtained (equivalent to the practice of choosing the α size level to force acceptance of H_{o}).

Solution. (a)

$$
\begin{aligned}
\text { Size } & \left.=\operatorname{Pr}\left(\text { reject } H_{0} \mid H_{0} \text { is true }\right)=1\right) \Longrightarrow \text { Type I error }=1 \\
\text { Power } & \left.=\operatorname{Pr}\left(\text { reject } H_{0} \mid H_{1} \text { is true }\right)=1\right) \Longrightarrow \text { Type II error }=0 .
\end{aligned}
$$

(b)

$$
\begin{aligned}
\text { Size } & \left.=\operatorname{Pr}\left(\text { reject } H_{0} \mid H_{0} \text { is true }\right)=0\right) \Longrightarrow \text { Type I error }=0 . \\
\text { Power } & \left.=\operatorname{Pr}\left(\text { reject } H_{0} \mid H_{1} \text { is true }\right)=0\right) \Longrightarrow \text { Type II error }=1 .
\end{aligned}
$$

References
Casella, G., and R.L., Berger, Statistical inference, Duxbury Press, 2002.

