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Prep Course in Statistics — Prof. Massimo Guidolin
A Few Review Questions and Problems concerning,

Hypothesis Testing and Confidence Intervals

SUGGESTION: try to approach the questions first, without looking at the answers. Occasionally

the questions/problems explicitly send you to check out concepts and definitions that have not explicitly

discussed during the prep course. In this case–besides Casella and Berger’s book–Wikipedia may be

very useful, as always.

1. (Likelihood Ratio Test for a Normal Population Mean when the Variance is Unknown)

Suppose 1, ...,  is a random sample from a ( 2) but an experimenter is interested only in

inferences about , such as performing the one-sided mean test :  ≤ 0 vs. 1:   0. In this case

that the parameter 2 is a nuisance parameter. Derive the LRT and show that the test based on LRT(x)

has the same structure as a test that defines the rejection region on the basis of a Student’s t statistic.

Solution. The LRT statistic is (in this case, taking the max or the sup delivers the same value

function, ask yourself why):

 (x) =

max
{2:≤0 2≥0}

( 2;x)

max
{2:2≥0}

( 2;x)
=

max
{2:≤0 2≥0}

( 2;x)

(̂ ̂2;x)


where ̂ and ̂2 are the well-known ML estimators. At this point, if ̂ ≤ 0 then the restricted max-

imum is the same as the unconstrained one and numerator and denominator will be identical; otherwise,

the restricted maximum is (0 
2
0;x), where 

2
0 ≡ −1

P
=1( − 0)

2. Therefore:

 (x) =

⎧⎨⎩ 1 ̄  0
(0

2
0;x)

(̂̂2;x)
=

(20)
−2

(̂2)−2 =
³
̂2

20

´2
̄ ≥ 0



because we know that ̂ = ̄. At this point, note that

̂2 =
− 1


2

20 = −1
X
=1

( − ̄+ ̄− 0)
2 = −1

X
=1

( − ̄)2 + −1
X
=1

(̄− 0)
2 +

+2−1
X
=1

( − ̄)(̄− 0)
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= −1
X
=1

( − ̄)2 + (̄− 0)
2 + 2−1(̄− 0)

X
=1

( − ̄)

=
− 1


2 + (̄− 0)
2

As a result, because

 (x) =

⎧⎪⎨⎪⎩
1 ̄  0µ

−1


2

−1


2+(̄−0)2

¶2

̄ ≥ 0

=

⎧⎪⎪⎨⎪⎪⎩
1 ̄  0Ã

−1


−1

+
(̄−0)2

2

!2

̄ ≥ 0



the rejection region  (x)   implies that if ̄  0 rejection is impossible, as one would expect, while

if ̄ ≥ 0
−1


−1

+

(̄−0)2
2

 −

2 =⇒ (̄− 0)

2

2
 (− 1)

³


2 − 1

´
which will be the case when (̄−0)22 is sufficiently large exceeding an increasing function of the fixed
 Now note that

Pr

µ
̄  0 + −1

√


¯̄̄̄
 = 0

¶
= Pr

⎛⎜⎜⎜⎝ ̄− 0

√
| {z }

−1

 −1

¯̄̄̄
¯̄̄̄
¯ = 0

⎞⎟⎟⎟⎠
= Pr

µ
(̄− 0)

2

2
 2−1

¯̄̄̄
 = 0

¶
= 

which has the structure as the rejection region determined above.

The lesson of this exercise is: Besides being an extension of an example analyzed during the lecture,

this problem shows that the structure of LRTs is independent–for a given and fixed –from the specific

statistical assumptions that are made.

2. (Computing and Optimizing a Normal Power Function) Let 1, ...,  be a random

sample from a ( 2) population, 2 known. An LRT of :  ≤ 0 versus 1: 0 is a test that

rejects  if

LRT ≡ ̄− 0

√


 

The constant  ∈ [0 1] can be any positive number.
(a) Compute the power function of this LRT.

(b) Suppose the experimenter wishes to have a maximum Type I Error probability of 0.1. Suppose,

in addition, the experimenter wishes to have a maximum Type II Error probability of 0.2 if  ≥ 0 + .

Show how to choose  and  to achieve these goals.

Solution. (a) From the definition of power function,

() = Pr(̄ ∈ ) = Pr

µ
̄− 0

√


 

¶
= Pr

µ
̄− + − 0


√


 

¶

= Pr

µ
̄− 


√

+

− 0

√


 

¶
= Pr

⎛⎜⎜⎜⎝ ̄− 


√
| {z }

∼(01)

 − − 0

√


⎞⎟⎟⎟⎠
= Pr

µ
  − − 0


√


¶

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As  increases from −∞ to +∞, it is easy to see that this normal probability increases from 0 to 1.

Therefore, it follows that () is an increasing function of , with

lim
→−∞() = lim

→−∞Pr
µ
  − − 0


√


¶
= Pr (  +∞) = 0

lim
→+∞() = lim

→−∞Pr
µ
  − − 0


√


¶
= Pr (  −∞) = 1

(b) As noted above, the power function of a LRT test in which one rejects if ̄− 0(
√
)   is

() = Pr

µ
  − − 0


√


¶


Because () is increasing in , so that solutions to the equations below are unique, the requirements

will be met if

(0) = 01 and (0 + ) = 1− 02| {z }
(0)=1− type II error

= 08

By choosing  = 128, we achieve (0) = Pr(  128) = 01, regardless of . Now we wish to choose

 so that (0 + ) = Pr(  128−√) = 08. However, we know that Pr(  −084) = 08, so that
setting 128−√ = −084 and solving for , yield  = 449. Of course n must be an integer. So choosing
 = 128 and  = 5 yield a test with error probabilities controlled as specified by the experimenter.

3. (UMP Binomial Test Derived from Neyman-Pearson’s Lemma) Notice that the conditions

of Neyman-Pearson’s lemma for simple hypotheses may be re-written as:⎧⎨⎩ x ∈  if
(x;1)

(x;0)
 

x ∈  if
(x;1)

(x;0)
≤ 

for some  ≥ 0 and  = Pr ∈Θ
(x ∈ )

assuming (x; 0) 6= 0. Let  ∼ (2 ) Use Neyman-Pearson lemma to show that in the test of :

 = 12 vs. 1:  = 34, the test that rejects the null hypothesis if  = 2 is the UMP test at size

 = 025.

Solution. Calculating the ratios of PMFs featured in the lemma, we have that for the three possibile

realizations of :

(0; 1)

(0; 0)
=

Ã
2

0

!¡
3
4

¢0 ¡1
4

¢2
Ã
2

0

!¡
1
2

¢0 ¡1
2

¢2 = 116

14
=
1

4

(1; 1)

(1; 0)
=

Ã
2

1

!¡
3
4

¢1 ¡1
4

¢1
Ã
2

1

!¡
1
2

¢1 ¡1
2

¢1 = 316

14
=
3

4

(2; 1)

(2; 0)
=

Ã
2

2

!¡
3
4

¢2 ¡1
4

¢0
Ã
2

2

!¡
1
2

¢2 ¡1
2

¢0 = 916

14
=
9

4

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If we choose (3/4)    (9/4), the Neyman-Pearson Lemma says that the test that rejects the null

hypothesis if  = 2 and otherwise fails to reject the null of  = 12 is the UMP test at size  = Pr( = 2;

 = 12) = 025 Note that the proof really consists of showing the existence of such a  ≥ 0 and

∗ ∈ (3
4
 9
4
) satisfies this condition.

4. (Deriving Normal One-Sided Confidence Bounds by Inversion) Let 1, ...,  be a

random sample from a ( 2) population. Construct a 1− upper confidence bound for  that is, we

want a confidence interval of the form (x) = (−∞ (x)].

Solution. To obtain such an interval by inversion, consider the one-sided tests (plural because as we

change 0 we derive different tests) of :  = 0 versus 1:   0. Note that we use the specification

of 1 t determine the form of the confidence interval: 1 specifies “large” values of 0, so the confidence

set will contain “small” values, values less than a bound; thus, we will get an upper confidence bound.

The size  LRT of  versus 1 rejects  if

̄ − 0

√


 −−1

Thus the non-rejection (abusing language, one may say acceptance) region for this test is:½
x : ̄ ≥ 0 − −1

√


¾
and this occurs with probability 1 − . Inverting this expression to find an inequality that expresses 

as a function of sample statistics, we have:

Pr

½
0 ≤ ̄ + −1

√


¾
= 1− 

which means that the desired one-sided confidence bound is (−∞ ̄ + −1
√
].

5. (Confidence Interval for the Sample Variance) Let 1, ...,  be a random sample from a

( 2) population. Construct 1−  confidence intervals for 2 and  respectively.

Solution. Because we know from lecture 1 that

(− 1)
2

2
∼ 2−1

A confidence interval is defined by a choice of  and  (  ) such that

Pr

½
 ≤ (− 1)

2

2
≤ 

¾
= Pr

©
 ≤ 2−1 ≤ 

ª
= Pr

n
2−11−2 ≤ 2−1 ≤ 2−12

o
= 1− 

where 2
−11−2 and 2

−12 are the critical values under the chi-square the leave 2 probabilities in

both tails. This choice splits the probability equally, putting 2 in each tail of the distribution (but

the 2−1 distribution, however, is a skewed distribution and it is not immediately clear that an equal

probability split is optimal for a skewed distribution). We can invert this set to find

Pr

(
2
−11−2
(− 1)2 ≤

1

2
≤

2
−12

(− 1)2
)
= Pr

(
(− 1)2
2
−12

≤ 2 ≤ (− 1)2
2
−11−2

)

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or equivalently

Pr

(s
(− 1)
2
−12

 ≤  ≤
s

(− 1)
2
−11−2



)


6. (MLEs and LRT-Based Tests in the Case of a Pareto Distribution) Let 1, ...,  be a

random sample from a Pareto population with PDF

(;  ) =


+1
[+∞)()   0,    [+∞)() =

(
1 if  ≥ 

0 otherwise


(a) Find the MLEs of  and .

(b) Show that the LRT of :  = 1 and  unknown, versus 1:  6= 1 and  unknown, has critical

region of the form {x : Λ(x) ≤ 1, Λ(x) ≥ 2}, where 0  1  2 and

Λ(x) = ln

∙ Q
=1 

(min )

¸
 0

(Hint : note that by construction
Q

=1 (min )
  1).

Solution. (a) The log-likelihood is

ln( ;x) = ln
Q

=1



+1

[+∞)() =

⎧⎪⎨⎪⎩ ln

½


Q
=1

³
1


´+1¾
if  ≤ min 

−∞ if   min 

=

(
 ln  +  ln  + ( + 1) ln

Q
=1

1


if  ≤ min 
−∞ if   min 

=

(
 ln  +  ln  − ( + 1) lnQ

=1  if  ≤ min 
−∞ if   min 



For any value of , this is an increasing function of  for  ≤ min . So both the restricted and unrestricted
MLEs of are ̂ = min . This is a typical example of an MLE that follows the definition of lecture

2, but that does not correspond to an interior (global) maximum of the log-likelihood function and that

as such is NOT obtained by solving a first-order condition. To find the MLE of , for ̂ = min 

set
 ln( ̂;x)


=




+  lnmin


 − ln

Q
=1 

to zero, to obtain:



̂
+  lnmin


 − ln

Q
=1  = 0 =⇒ ̂


=



ln [(
Q

=1 )(min )
]
=



Λ(x)


Moreover,

2 ln(̂


 ̂;x)

2
= − 

(̂


)2
= − 2

Λ(x)
 0

(as Λ(x)  0) for all possible realizations of the sample, so that ̂


indeed represents an (interior)

MLE.
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(b) Under , the MLE of is ̂ = 1, and the MLE of is still ̂ = min . So the likelihood ratio

statistic is

 (x) =
exp[ ln 1 +  lnmin  − (1 + 1) ln

Q
=1 ]

exp
h
 ln 

Λ(x)
+ 

Λ(x)
 lnmin  −

³


Λ(x)
+ 1
´
ln
Q

=1 

i

=

(min )
Q

=1


2³


Λ(x)

´
[(min )]


Λ(x)Q

=1


 
Λ(x)

Q
=1 

=

−Λ(x)Q

=1
³


Λ(x)

´

−Λ(x)· 

Λ(x)
Q

=1 

=
−Λ(x)³


Λ(x)

´
−

=

µ
Λ(x)



¶

−Λ(x)+

Note now that

 ln (x)

Λ(x)
=



Λ(x)

½
 ln

µ
Λ(x)



¶
− Λ(x) + 

¾
=



Λ(x)
− 1

so that  (x) is increasing for Λ(x) ≤  and decreasing if Λ(x)  . Thus, Λ(x) ≤  is equivalent to

Λ(x) ≤ 1 or Λ(x) ≥ 2, for appropriately chosen constants 1 and 2.

7. (A Simple Application of the CLT) For a random sample 1, ...,  of Bernoulli() variables,

it is desired to test :  = 049 versus 1:  = 051 Use the Central Limit Theorem to determine,

approximately, the sample size needed so that the two probabilities of error are both about 01. Use a

test function that rejects  if
P

=1  is large.

Solution. The CLT tells us that

 =

P
=1  − p
(1− 

is approximately (0 1). For a test that rejects  when
P

=1  ≥ , we need to find  and  to satisfy

Pr

µ
 

− (049)√
 · 049 · 051

¶
= 001 and Pr

µ
 

− (051)√
 · 049 · 051

¶
= 099

We thus want
− (049)√
 · 049 · 051 ' 233 and

− (051)√
 · 049 · 051 ' −233

Solving these equations, gives  = 13 567 and  = 6 7835.

8. (Abusing the Size  in Practical Applications) One very striking abuse of  size levels is to

choose them after seeing the data and to choose them in such a way as to force rejection (or acceptance)

of a null hypothesis. To see what the true Type I and Type II error probabilities of such a procedure

are, calculate size and power of the following two trivial tests:

(a) Always reject , no matter what data are obtained (equivalent to the practice of choosing the 

size level to force rejection of ).

(b) Always accept , no matter what data are obtained (equivalent to the practice of choosing the

 size level to force acceptance of ).

6



Solution. (a)

 = Pr(reject 0|0 is true) = 1) =⇒ Type I error = 1

 = Pr(reject 0|1 is true) = 1) =⇒ Type II error = 0

(b)

 = Pr(reject 0|0 is true) = 0) =⇒ Type I error = 0

 = Pr(reject 0|1 is true) = 0) =⇒ Type II error = 1
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