
Section 3 
Difference-in-Difference 

Estimator



Difference-in-Difference Estimator
• Intuitive identification of effect of a program/policy:

1) Compare participants (“treated”) and non-participants 
(“untreated”) (in cross-section): simple “differences estimator” 
(OLS)
 Problem of unobserved differences between treated and untreated 
that are correlated with outcomes 

Example: Effect of job training program on earnings
Those who participate in job training program are more motivated to work 

anyways, so would earn more than non-participants even without 
training program  overestimate effect of program



Difference-in-Difference Estimator
• Intuitive identification of effect of a program/policy:

2) Compare outcome of individuals who participate before and after 
“treatment” (in panel data set): 
 Problem of time-trends (e.g. business cycles)

Example: Effect of job training on employment
If there is a recession in the time after the job training, then underestimate 

the effect of the job training.

 Solution: Differences-in-Differences Estimator (DID)
(differences out time-constant (level) differences between treatment 
and control and time-trends)

Condition: Panel Data, where entities (e.g. individuals or states) are 
observed at two or more points in time.



Difference-in-Difference Estimator

1) Graphic illustration of the Differences-in-Differences Estimator (DID)





Difference-in-Difference Estimator

Main assumption of DID:
Counterfactual LEVELS for treated and non-treated can be different,
But their TIME VARIATION is similar: 

E( Y0(t1) - Y0(t0) | D=1)= E( Y0(t1) - Y0(t0) | D=0)  [E(Y0(t1)|D=1) is counterf]

 “In the absence of treatment, change in treated outcome would have been 
as change in non-treated outcome, 
i.e. changes in the economy or life-cycle etc (unrelated to treatment) affect 
the two groups in a similar way.”

Implies relaxing assumption: E( Y0 | X,D=0)= E( Y0 | X,D=1) and 
E( Y1 | X,D=0)= E( Y1 | X,D=1)

 Selectivity bias is allowed even conditional on X, BUT only through an 
individual fixed effect (i.e. time constant).



• Main assumption of DID:
E( Y0(t1) - Y0(t0) | D=1)= E( Y0(t1) - Y0(t0) | D=0)

• Show how this assumption is used to generate a “control group” that can be 
substituted in for the missing counterfactual
TTE  = E( Y1(t1) - Y0(t1) | D=1)

= E( Y1(t1)  - Y0(t0) + Y0(t0)  -Y0(t1) | D=1)
= E( Y1(t1)  - Y0(t0) | D=1)  - E( Y0(t1) - Y0(t0) | D=1)  [2. term unobs]
= E( Y1(t1)  - Y0(t0) | D=1)  - E( Y0(t1) - Y0(t0) | D=0)  [2. term obs] 



Difference-in-Difference Estimator

2) Formally
Show that this can be written in a regression framework with 

individual fixed effects and time fixed effects

Y(it) = a(t)+b*D(it)+m(i)+u(it),   where a(t)=time FE, m(i)=indiv FE
Then 
Y(i1) -Y(i0) = [a(1)-a(0)]+ b*[D(i1)-D(i0)] +[u(i1)-u(i0)]
and the fixed-effect estimator reduces to

b= E [Y(i1)-Y(i0)|D=1] – E [Y(i1)-Y(i0)|D=0]
 Sample version of this is the simple DID estimator

 Assumption in this framework: E [u(i1)-u(i0)|D=1] = E [u(i1)-u(i0)|D=0]



Brief Intro to Panel Data

• Panel data with k regressors
{X1(it),…, Xk(it), Y(it)}, 
i=1,…, n (number of entities),  t=1,.., T (number of time periods)

• Another term for panel data is longitudinal data
• Balanced panel: no missing observations
• Unbalanced panel: some entities (states or indiv) are not observed for 

some time periods



Why are Panel Data useful? 
Entity Fixed Effects

With panel data we can control for factors that:
• Vary across entities (indiv or states), but do not vary over time
• Could cause omitted variable bias if they are omitted
• Are unobserved or unmeasured – and therefore cannot be included 

in the regression

Key Idea:
If an omitted variable does not change over time, then any changes in 

Y over time cannot be caused by the omitted variable

Example: Can alcohol taxes be a means to reduce traffic deaths?







Omitted variable bias

• Why might there be more traffic deaths in states that have higher 
alcohol taxes?

• Other factors that determine traffic fatality rate:
– Density of cars on the road
– “Culture” around drinking and driving, etc

• These omitted factors could cause omitted variable bias.
• Example: traffic density, suppose

1. High traffic density means more traffic deaths
2. (Western) states with lower traffic density have lower alcohol 

taxes
 Two conditions for omitted variable bias are satisfied. Specifically, 

“high taxes” could reflect “high traffic density”, so the OLS 
coefficient would be biased upwards.

 Panel data allows us to eliminate omitted variable bias when the 
omitted variables are constant over time within a given state.



• Consider the panel data model
FatalityRate(it)=a+b*BeerTax(it)+c*Z(i)+u(it),

Where Z(i) is a factor that does not change over time (eg traffic 
density), at least during the years on which we have data. Suppose 
Z(i) is not observed, so its omission could result in omitted variable 
bias.

 The effect of Z(i) can be eliminated using T=2 years.

• Key Idea: Any change in the fatality rate from 1982 to 1988 cannot 
be caused by Z(i), because Z(i) (by assumption) does not change 
between 1982 and 1988.
[FatalityRate(i1988)=a+b*BeerTax(i1988)+c*Z(i)+u(i1988)]

- [FatalityRate(i1982)=a+b*BeerTax(i1982)+c*Z(i)+u(i1982)]

• This difference eqn can be estimated by OLS, even though Z(i) is 
not observed.





• What if you have more than 2 time periods (T>2)?
• For i=1,…,n and t=1,…, T

Y(it) = a+b*X(it)+c*Z(i)+u(it)
we can rewrite this in two useful ways:

1. “Fixed Effects” regression model
Y(it) = a(i)+b*X(it)+u(it)  intercept a(i) is unique for each state, 
slope b is the same in all states





• What if you have more than 2 time periods (T>2)?
• For i=1,…,n and t=1,…, T

Y(it) = a+b*X(it)+c*Z(i)+u(it)
we can rewrite this in two useful ways:

1. “Fixed Effects” regression model
Y(it) = a(i)+b*X(it)+u(it)  intercept a(i) is unique for each state, 
slope b is the same in all states

2. “n-1 binary regressors” regression model
Y(it) = a+b*X(it)+c2*D2(i)+c3*D3(i)+…+cn*Dn(i)+u(it), where 
D2(i)=1{i=2}, i.e. D2(i) is 1 if the ith observation is from state 2



Three estimation methods:
1. “n-1” binary regressors” OLS regression
2. “Entity-demeaned” OLS regression
3. “Changes” specification (only works for T=2)

 These three methods produce identical estimates of the regression 
coefficients and identical standard errors.

Ad 1. Y(it) = a+b*X(it)+c2*D2(i)+c3*D3(i)+…+cn*Dn(i)+u(it)
- First create the binary variables, D2(i),…, Dn(i)
- Then estimate above equation by OLS
- Inference (hypothesis tests, confidence intervals) is as usual 

(using heteroscedasticity-robust standard errors!!)
- Impractical when n is very large, although STATA automates 

dummy variable creation



Ad 2. 
- First construct the demeaned variables
- Then estimate above equation by OLS
- Inference (hypothesis tests, confidence intervals) is as usual 

(using heteroscedasticity-robust standard errors!!)
- This is like the “changes” approach, but Y(it) is deviated from the 

state average instead of Y(i1)
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Estimation can be done easily in STATA:
• “areg” automatically demeans the data (useful when n large)
• The reported intercept is the average of the n-1 dummy variables 

(no clear interpretation)



Why are Panel Data useful? 
Time Fixed Effects

An omitted variable might vary over time but not across states:
• Safer cars (air bags, etc); changes in national laws
• These produce intercepts that change over time
• Let these changes  (“safer cars”) be denoted by the variable, S(t), 

which changes over time but not states
• The resulting population regression model is

Y(it)=a+b*X(it)+c*S(t)+u(it)
 The intercept varies from one year to the next, m(1982)=a+c*S(1982)



Why are Panel Data useful? 
Time Fixed Effects

Again two formulations for time fixed effects:
1. “Binary regressor” formulation: “T-1 binary regressors” OLS 

regression
2. “Time effects” formulation: “Year demeaned” OLS regression (deviate 

Y(it) and X(it) from year averages), then estimate by OLS



Time and entity fixed effects or “back to DID”

Y(it) = a(t)+b*T(it)+m(i)+u(it), 
where T(it)=1 if in treatment group and after treatment, 0 otherwise

or
Y(it) = a+ b*D(it)*Z(it) +c*Z(it)+d*D(it)+u(it),

where  D(it)=1 if in treatment group, 0 otherwise
Z(it)=1 if in “after” period, 0 in “before” period
D(it)*Z(it)=1 if in treatment group in “after” pd (interaction effect)

 b is the Diff-in-Diff estimator



Estimation

Various equivalent ways to allow for both entity and time fixed effects:
- Differences and intercept (T=2 only)
- Entity (or time) demeaning and T-1 time (or N-1 entity) indicators
- T-1 time indicators and n-1 entity indicators
- Entity and time demeaning



• Under assumptions that are basically extensions of the least 
squares assumptions, the OLS fixed effects estimator of b is 
normally distributed.

• BUT there are some subtleties associated with computing standard 
errors that do not come up with cross-sectional data

• Outline:
1. Fixed effects regression assumptions
2. Standard errors for fixed effects regression

Estimation



Fixed-Effects Regression Assumptions



Fixed-Effects Regression Assumptions



Fixed-Effects Regression Assumptions



Assumption #2



Fixed-Effects Regression Assumptions



Consistency, Normality and Standard Errors of 
Fixed Effects Estimator



Consistency of Fixed Effects Estimator



Consistency of Fixed Effects Estimator



Consistency of Fixed Effects Estimator



Consistency of Fixed Effects Estimator



Normality of Fixed Effects Estimator



Normality of Fixed Effects Estimator



Normality of Fixed Effects Estimator



Variance-Covariance Matrix



Variance-Covariance Matrix



Variance-Covariance Matrix



Variance-Covariance Matrix - special case: no 
correlation across time within entities



Variance-Covariance Matrix



Variance-Covariance Matrix



Case 1: Allowing for Serial Correlation
 Heteroscedasticity and autocorrelation-consistent asymptotic 

variance (HAC)



Case 2: No Serial Correlation



Case 3: No Serial Correlation and Conditional 
Homoscedasticity





Conclusions based on different assumptions



Additions to DID

• Note: It is also possible to use repeated cross-sections instead of 
panel data under certain conditions, e.g. group composition has to 
be stable (see, e.g., Meyer (1995) or Abadie (2005))

• Application of DID: read Card and Krueger (1995)
• Caveats and extensions: 

– Endogenous treatment (Besley/Case (2000))  example: DID 
assumptions exclude the possibility that a state increases the alcohol 
tax because of high rate of traffic fatalities in the past 

– Parallel trends: Trends can be different in the two groups if the 
distribution of X is different (Abadie (2005) “Semi-parametric DID”) 
 approach mixes “matching” and “diff-in-diff” (discuss later)

– Inference (Bertrand et al (2004)): when residual autocorrelation over 
time is not accounted for, the variance may be underestimated 
 additional potential solutions in addition to approach presented 
before (heteroscedasticity and autocorrelation-consistent asymptotic 
variance)


