Section 3
Difference-in-Difference
Estimator



Difference-in-Difference Estimator

Intuitive identification of effect of a program/policy:

1) Compare participants (“treated”) and non-participants
(“untreated”) (in cross-section): simple “differences estimator”
(OLS)

- Problem of unobserved differences between treated and untreated
that are correlated with outcomes

Example: Effect of job training program on earnings

Those who participate in job training program are more motivated to work
anyways, so would earn more than non-participants even without
training program - overestimate effect of program



Difference-in-Difference Estimator

* Intuitive identification of effect of a program/policy:
2) Compare outcome of individuals who participate before and after
“treatment” (in panel data set):
- Problem of time-trends (e.g. business cycles)
Example: Effect of job training on employment

If there is a recession in the time after the job training, then underestimate
the effect of the job training.

- Solution: Differences-in-Differences Estimator (DID)

(differences out time-constant (level) differences between treatment
and control and time-trends)

Condition: Panel Data, where entities (e.g. individuals or states) are
observed at two or more points in time.



Difference-in-Difference Estimator

1) Graphic illustration of the Differences-in-Differences Estimator (DID)
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Difference-in-Difference Estimator

Main assumption of DID:

Counterfactual LEVELS for treated and non-treated can be different,

But their TIME VARIATION is similar:

E( YO(t1) - YO(t0) | D=1)= E( YO(t1) - YO(t0) | D=0)

[E(YO(t1)|D=1) is counterf]

- “In the absence of treatment, change in treated outcome would have been

as change in non-treated outcome,

l.e. changes in the economy or life-cycle etc (unrelated to treatment) affect

the two groups in a similar way.”

Implies relaxing assumption: E( YO | X,D=0)= E( YO | X,D=1) and

E( Y1 | X,D=0)= E( Y1 | X,D=1)

- Selectivity bias is allowed even conditional on X, BUT only through an

individual fixed effect (i.e. time constant).



Main assumption of DID:

E( YO(t1) - YO(t0) | D=1)= E( YO(t1) - YO(t0) | D=0)

Show how this assumption is used to generate a “control group” that can be
substituted in for the missing counterfactual
TTE =E(Y1(t1) - YO(t1) | D=1)
=E(Y1(tl) - YO(t0) + YO(t0) -YO(tl1) | D=1)
=E(Y1(tl) -YO(t0) | D=1) -|E(YO(tl) - YO(t0) | D=1) [2. term unobs]
=E(Y1(tl) - YO(t0) | D=1) -|E(YO(tl) - YO(t0) | D=0) [2.term obs]




Difference-in-Difference Estimator

2) Formally

- Show that this can be written in a regression framework with
iIndividual fixed effects and time fixed effects

Y (it) = a(t)+b*D(it)+m(i)+u(it), where a(t)=time FE, m(i)=indiv FE
Then

Y(i11) -Y(i0) = [a(1)-a(0)]+ b*[D(i1)-D(i0)] +[u(i1)-u(i0)]

and the fixed-effect estimator reduces to

b= E [Y(i1)-Y(i0)|D=1] — E [Y(i1)-Y(i0)|D=0]
- Sample version of this is the simple DID estimator

- Assumption in this framework: E [u(i1)-u(i0)|D=1] = E [u(i1)-u(i0)|D=0]



Brief Intro to Panel Data

Panel data with k regressors
{X1(it),..., Xk(it), Y(it)},
I=1,..., n (number of entities), t=1,.., T (number of time periods)

Another term for panel data is longitudinal data
Balanced panel: no missing observations

Unbalanced panel: some entities (states or indiv) are not observed for
some time periods




Why are Panel Data useful?
Entity Fixed Effects

With panel data we can control for factors that:
« Vary across entities (indiv or states), but do not vary over time
* Could cause omitted variable bias if they are omitted

e Are unobserved or unmeasured — and therefore cannot be included
In the regression

Key Idea:

If an omitted variable does not change over time, then any changes in
Y over time cannot be caused by the omitted variable

Example: Can alcohol taxes be a means to reduce traffic deaths?



FIGURE 8.1

The Traffic Fatality Rate and the Tax on Beer

Panel a is a scatterplot of traffic
fatality rates and the real tax on
a case of beer (in 1988 dollars)
for 48 states in 1982. Panel b
shows the data for 1988. Both
plots show a positive relation-
ship between the fatality rate
and the real beer tax.
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FIGURE 8.1

The Traffic Fatality Rate and the Tax on Beer

Panel a is a scatterplot of traffic
fatality rates and the real tax on
a case of beer (in 1988 dollars)
for 48 states in 1982. Panel b
shows the data for 1988. Both
plots show a positive relation-
ship between the fatality rate
and the real beer tax.
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Omitted variable bias

Why might there be more traffic deaths in states that have higher
alcohol taxes?
Other factors that determine traffic fatality rate:

—  Density of cars on the road

—  “Culture” around drinking and driving, etc

These omitted factors could cause omitted variable bias.

Example: traffic density, suppose
1. High traffic density means more traffic deaths

2. (Western) states with lower traffic density have lower alcohol
taxes

- Two conditions for omitted variable bias are satisfied. Specifically,
“high taxes” could reflect “high traffic density”, so the OLS
coefficient would be biased upwards.

9

Panel data allows us to eliminate omitted variable bias when the
omitted variables are constant over time within a given state.




» Consider the panel data model
FatalityRate(it)=a+b*BeerTax(it)+c*Z(i)+u(it),

Where Z(i) is a factor that does not change over time (eg traffic
density), at least during the years on which we have data. Suppose

Z(1) is not observed, so its omission could result in omitted variable
bias.

- The effect of Z(i) can be eliminated using T=2 years.

 Key Idea: Any change in the fatality rate from 1982 to 1988 cannot
be caused by Z(i), because Z(i) (by assumption) does not change
between 1982 and 1988.
[FatalityRate(i1988)=a+b*BeerTax(i1988)+c*Z(i)+u(i1988)]
[FatalityRate(i1982)=a+b*BeerTax(i1982)+c*Z(i)+u(i1982)]

» This difference eqn can be estimated by OLS, even though Z(i) is
not observed.



FIGURE 8.2  Changes in Fatality Rates and Beer Taxes, 1982-1988
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What if you have more than 2 time periods (T>2)?
Fori=1,...,nand t=1,..., T

Y (it) = a+b*X(it)+c*Z(i)+u(it)

we can rewrite this in two useful ways:

“Fixed Effects” regression model

Y (it) = a(i)+b*X(it)+u(it) = intercept a(i) is unique for each state,
slope b is the same in all states



Ucy

Y = Clcy +[31X
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What if you have more than 2 time periods (T>2)?
Fori=1,...,nand t=1,..., T

Y (it) = a+b*X(it)+c*Z(i)+u(it)

we can rewrite this in two useful ways:

“Fixed Effects” regression model
Y (it) = a(i)+b*X(it)+u(it) = intercept a(i) is unique for each state,
slope b is the same in all states

“n-1 binary regressors” regression model
Y (it) = a+b*X(it)+c2*D2(i)+c3*D3(i)+...+cn*Dn(i)+u(it), where
D2(1)=1{i=2}, i.e. D2(i) is 1 if the ith observation is from state 2



Three estimation methods:

1. “n-1” binary regressors” OLS regression
2. ‘“Entity-demeaned” OLS regression
3. “Changes” specification (only works for T=2)

- These three methods produce identical estimates of the regression
coefficients and identical standard errors.

Ad 1. Y(it) = a+b*X(it)+c2*D2(i)+c3*D3(i)+...+cn*Dn(i)+u(it)
- First create the binary variables, D2(i),..., Dn(i)
- Then estimate above equation by OLS

- Inference (hypothesis tests, confidence intervals) is as usual
(using heteroscedasticity-robust standard errors!!)

- Impractical when n is very large, although STATA automates
dummy variable creation



Ad 2. (Y, _Y_u) =a+b(X; - X.) + U;,
- First construct the demeaned variables

- Then estimate above equation by OLS

- Inference (hypothesis tests, confidence intervals) is as usual
(using heteroscedasticity-robust standard errors!!)

- This is like the “changes” approach, but Y(it) is deviated from the
state average instead of Y(il)



Estimation can be done easily in STATA:
« ‘“areq” automatically demeans the data (useful when n large)

 The reported intercept is the average of the n-1 dummy variables
(no clear interpretation)

areg fatality beertax, abscorb(state) r

Adj R-sguared
Root MSE

Regression with robust standard errors Number of ochs = 336
F( 1, 287) = 10.41
Prob > F = 0.0014
R-sguared = 0.9050

| Robust
fatality | “oef Std. Err t P>t [95% Conf. Interval
beertax | -.6558736 2032797 -3.23 0.001 -1.055982 -.25357€55
cons | 2.377075 1051515 22.61 0.000 2.1701089 2.584041
state | abzorbed (48 categories)



Why are Panel Data useful?
Time Fixed Effects

An omitted variable might vary over time but not across states:
. Safer cars (air bags, etc); changes in national laws
. These produce intercepts that change over time

. Let these changes (“safer cars”) be denoted by the variable, S(t),
which changes over time but not states

. The resulting population regression model is
Y (it)=a+b*X(it)+c*S(t)+u(it)
-  The intercept varies from one year to the next, m(1982)=a+c*S(1982)



Why are Panel Data useful?
Time Fixed Effects

Again two formulations for time fixed effects:

1. “Binary regressor” formulation: “T-1 binary regressors” OLS
regression
2. “Time effects” formulation: “Year demeaned” OLS regression (deviate

Y (it) and X(it) from year averages), then estimate by OLS



Time and entity fixed effects or “back to DID”

Y(it) = a(t)#b*T(it)+m(i)+u(it),
where T(it)=1 if in treatment group and after treatment, O otherwise

or

Y (it) = a+|b*D(it)*Z(it)| +c*Z(it)+d*D(it)+u(it),
where D(it)=1 if in treatment group, O otherwise
Z(it)=1 if in “after” period, 0 in “before” period
D(it)*Z(it)=1 if in treatment group in “after” pd (interaction effect)
- b is the Diff-in-Diff estimator




Estimation

Various equivalent ways to allow for both entity and time fixed effects:
- Differences and intercept (T=2 only)

- Entity (or time) demeaning and T-1 time (or N-1 entity) indicators

- T-1 time indicators and n-1 entity indicators

- Entity and time demeaning



Estimation

Under assumptions that are basically extensions of the least
squares assumptions, the OLS fixed effects estimator of b is
normally distributed.

BUT there are some subtleties associated with computing standard
errors that do not come up with cross-sectional data

Outline:
1. Fixed effects regression assumptions
2. Standard errors for fixed effects regression




Fixed-Effects Regression Assumptions

Yie = X;fr,B T & 1 Ujg,

where Xi; = (Xijt, ..., XK,})’ is a k X 1 dimensional vector and «;
are entity specific unobservables potentially correlated with Xj;

Q@ E(ui|Xi,..., Xit, i) =0
Q We observe an i.i.d. sample { W;}_, where

Wi = {Yi, .. Yir, X, .. X[r

Q Let X; = (X;f — % ZLI X;f> ("deviations from time

average"). The matrix
T et At
E ) XX
t=1

has rank k



Fixed-Effects Regression Assumptions

Assumption #1: E(uj:| X, ..., Xir,a;) =0

° u;; has mean zero, given the state fixed effect and the entire
history of the X's for that state.

o This is an extension of the previous multiple regression
Assumption #1

o This means there are no omitted lagged effects (any lagged
effects of X must enter explicitly)

° Also, there is not feedback from u to future X:

0 Whether a state has a particularly high fatality rate this year
doesn’'t subsequently affect whether it increases the beer tax.



Fixed-Effects Regression Assumptions

Assumption #2: We observe an i.i.d. sample {W;}_, where

W; — {Yfl, - YiTvX:'fl- ""X;T}

o This Is an extension of Assumption #2 for multiple
regression with cross-section data
o This is satisfied if entities (states, individuals) are randomly

sampled from their population by simple random sampling, then
data for those entities are collected over time.

o This does not require observations to be 1.i.d. over time for
the same entity — that would be unrealistic (whether a state has a
beer tax this year is strongly related to whether it will have a high
tax next year). In fact, want to allow Corr (ujt, uis) # 0 but will
discuss case where correlation is zero as well.



Assumption #2

u??f

@ Sampling is i.i.d. across entities (so r.vs belonging to two
different cols are independent)

@ However, within a col, the error terms are not independent
(could be correlated). Will need to take this into account
when constructing standard errors, but not for consistency
(think of this as analogous to the heteroscedasticity problem)



Fixed-Effects Regression Assumptions

Assumption #3: E (ZLl X;f)ﬁ) has rank k

@ This is the no multicollinearity assumption for the fixed effect
case.

@ Note that this applies to the demeaned regressors. |f Xj;
contains an element that does not vary over time for any
entity i, then the corresponding element in X; would be
identically zero and the rank condition would fall.

@ This assumption therefore shows explicitly why time constant
variables are not allowed in fixed effects analysis (unless they
are interacted with time-varying variables)



Consistency, Normality and Standard Errors of
Fixed Effects Estimator

FE estimator i1s OLS applied to the above equation



Consistency of Fixed Effects Estimator

Substituting in the equation for Yj; into the formula for Brp we
obtain

—1
. 1 0 o 1 [ T 3 o
!BFE — ( _ Z XETXI:;) (n , Z Xit (Xfrf/—‘; I 5‘;‘1‘))

where



Consistency of Fixed Effects Estimator

Substituting in the equation for Yj; into the formula for Brp we
obtain

~1
R 1 0 o 1 [ T R ~
)BFE — ( _ Z XﬁtX;t) (n , Z Xit (X;fﬁ’ + ah‘))

|
=
_|_
>

where




Consistency of Fixed Effects Estimator

Since [E (I‘Jff‘Xfl, ...X;T, .ﬂf,‘) — 0

for t =1...T so that by a LLN for i.i.d. random vectors

T T T
Z Z Xiplje = E (Z X’fﬂit) — Z E (Xfrafr) =0
i=1t=l1 t=1

t=1

1
n

and likewise

n T T
(i 393 xx) S E (z >’“<;f>’“<ff)
=1 t=1 t=1

which is well-behaved by the full rank assumption




Consistency of Fixed Effects Estimator

Putting the previous results together, we conclude that A, — 0 so
thatbre — P




Normality of Fixed Effects Estimator

We now write

we will show

VnA, = N (0,V)

for some (soon to be specified) variance matrix V
Then,

Vn (Beg —B) = N (0,V)

and as long as we have a good guess V for V we will do inference

as if B — 3 has the N (U, 'C//n) distribution



Normality of Fixed Effects Estimator

Two parts:

@ By a CLT for the sample average of i.i.d. random vectors



Normality of Fixed Effects Estimator

@ From earlier analysis of consistency, we know



Variance-Covariance Matrix

Define the matrices

p— = llr —
)thxk til

£
|

X; =

IIF e
Xit i

where X; has dimension T X k and u; has dimension T x 1.

T ~
Y X | = X'
t=1

T T /
t=1 t=1

Use this expression to study serial correlation in the error term



Variance-Covariance Matrix

@ In general, want to allow for error terms to be correlated over
time for an entity and this makes the formula for asymptotic
variance complication.

@ This is messy — but you get something for it — you can have
correlation of the error for an entity from one time period to
the next. This would arise if the omitted variables that make
up u;; are correlated over time as we often have reason to
believe.

@ Other names for this asymptotic variance: Heteroscedasticity-
and autocorrelation-consistent asymptotic
variance(autocorrelation is correlation with other time periods
— uit and uis correlated). Clustered standard errors, because
there is a grouping, or “cluster,” within which the error term

is possibly correlated, but outside of which (across groups) it
Is not.



Variance-Covariance Matrix

Extensions:
0 The clusters can be other groupings, not necessarily time
0 For example, you can allow for correlation of uit between

individuals within a given group, as long as there is independence
across groups — for example | runs over individuals, the clusters can
be families (correlation of uit for i within same family, not between

families).



Variance-Covariance Matrix - special case: no
correlation across time within entities

If the error terms are not correlated with each other, conditional on
X;,
~ o~ ,
E (u;u;\X;) = |T><:T
where l7 7 isthe T X T identity matrix. Then, the form of V
simplifies greatly
I

E (X/,d'X;) = “E (X!X;)

so that V simplifies to

V = (E (X/X;)) ™

Analogous to Conditional Homoscedasticity case



Variance-Covariance Matrix

@ Last critical bit is an estimator for the variance V. As usual,
apply analogy principle and replace population expectations
with sample averages, so

T n T
E (Z )ﬂd{;f)ﬂ“(;t) = — Z (Z ) — Vln
t=1

o However, estimating [E (X'T;u"X;) by

L (x

Is Infeasible since u; Iis not observed.

1
n



Variance-Covariance Matrix

Replace Gi; by 0; = Y, — X;BFE and estimate E (X't;u’X;) by

Vo, = % ; (X}0;0]X;)

and under an appropriate fourth moment assumption V5, will be

consistent for [E (X'T;U’X;) . Putting these together, estimate V

by
V=V 'V, vV}



Case 1: Allowing for Serial Correlation

-> Heteroscedasticity and autocorrelation-consistent asymptotic
variance (HAC)

areg fatality beertax,| absorb(state) r cluster(state)

Fegression with robust standard errors Number of obs = 336
F( 1, 47) £.34
Prob > F 0.04Z27
R-squared = 0.5050
Ad] R-squared = 0.8891
Root MSE = .18%8¢6
(standard errors adjusted for clustering on state)
| Robust

fatality | Coef Std. Err t P> T 95% Conf. Interval]
_____________ P e
beertax | -.6558736 314847¢ -2.08 1. 043 -1.289265 -. 022482
_cons | 2.377075 1615974 14.71 0.000 2.051983 2.7021e7

+

|

absorbed (48 categories)



Case 2: No Serial Correlation

areg fatality beertax,

ab=o

ro({=state) T

BEegression with robust standard errors

fatality | Coef
heertax | -.655873¢
cons | 2.377075

Std. Err
20327597

336
10.41
0.0014
0.9050
0.8891

.1898¢6

t
-3.23

Number of obs
F( 1, 287T)
Prob > F
RE-sqguared
Adj R-zguared
EootT MEE
P>t 95% Conft
0.001 -1.055982
0.000 2.170

JJJJJJJJJ

@ Point Estimates are |dentical (Why?)

@ Note that standard errors come down by a lot



Case 3: No Serial Correlation and Conditional
Homoscedasticity

. areg fatality beertax,| absorb(state)

fatality | Coef

beertax | - .655872¢
_cons | 2.377075
stats | E(47,

Number of cks = 336

E( 1, 287) = 1z.19

FProb > F = (0.0008g

E-squared = 0.8905

Ad] R-sguared = 0.889

EcotT MSE = 15988

t P>t 85% Conf. Interval]
-3.49 0.001 -1.025612 —-.28€1352
24 .5 Q. 0o00 2.18¢212 2.567937
52,179 Q0.000 (48 categories)

@ Point Estimates are ldentical

@ Standard Errors come down even further



V /n

Allowing Serial Correlation and Heteroscedasticity

symmetric e(W[Z,2]
Deertax cCons
beertax .099129 -
cons -.03087825 .02811372

No Serial Correlation and Heteroscedasticity

symmetric e (VI[Z2,2]

beertax _cons
beertax .041322¢4
cons -—-.02127132 LO0110568S%

No Serial Correlation and Homoscedasticity

beertax cons
besrtax 03528762
_cons —-.01811153 .00%4031¢



Conclusions based on different assumptions

(1)

(2)

(3)

(4)

BeerTax -.656** -.656" -.640* -.640™
(.203) (.315) (.255) (.386)
State effects? Yes Yes Yes Yes
Time effects? No No Yes Yes
F testing time — 247 — 3.61
effects = 0 (.024) (.005)
Clustered SEs? No Yes No Yes

Significant at the **1% *5% "10% level

This i1s a hard call — what would you conclude?




Additions to DID

Note: It is also possible to use repeated cross-sections instead of
panel data under certain conditions, e.g. group composition has to
be stable (see, e.g., Meyer (1995) or Abadie (2005))

Application of DID: read Card and Krueger (1995)

Caveats and extensions:

— Endogenous treatment (Besley/Case (2000)) - example: DID
assumptions exclude the possibility that a state increases the alcohol
tax because of high rate of traffic fatalities in the past

— Parallel trends: Trends can be different in the two groups if the
distribution of X is different (Abadie (2005) “Semi-parametric DID")

- approach mixes “matching” and “diff-in-diff” (discuss later)

— Inference (Bertrand et al (2004)): when residual autocorrelation over
time is not accounted for, the variance may be underestimated

—> additional potential solutions in addition to approach presented
before (heteroscedasticity and autocorrelation-consistent asymptotic
variance)



