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Abstract

When there is uncertainty about interest rates (typically due to either illiquidity or defaultability

of zero coupon bonds) the cash-additivity assumption on risk measures becomes problematic. When

this assumption is weakened, to cash-subadditivity for example, the equivalence between convexity and

the diversification principle no longer holds. In fact, this principle only implies (and it is implied by)

quasiconvexity.

For this reason, in this paper quasiconvex risk measures are studied. We provide a dual characteriza-

tion of quasiconvex cash-subadditive risk measures and we establish necessary and sufficient conditions

for their law invariance. As a byproduct, we obtain an alternative characterization of the actuarial mean

value premium principle.
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1 Introduction

Risk assessment is a fundamental activity for both regulators and agents in financial markets. The problem
of a formal definition of a risk measure and of the economic and mathematical properties that it should
satisfy has been heating the debate since the seminal papers of Artzner, Delbaen, Eber, and Heath (1997,
1999) on coherent risk measures.

In the last ten years there has been a flourishing of methodological proposals, mathematical extensions,
and variations on this topic. The convex monetary risk measures of Föllmer and Schied (2002, 2004) and
Frittelli and Rosazza Gianin (2002) are especially interesting in terms of economic content and mathematical
tractability among the generalizations of coherent risk measures. Moreover, these measures naturally appear
in pricing and hedging problems in incomplete markets, as shown, for example, by El Karoui and Quenez
(1997), Carr, Geman, and Madan (2001), Frittelli and Rosazza Gianin (2004), Staum (2004), Filipović and
Kupper (2008), and Jouini, Schachermayer, and Touzi (2008).
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A risk measure is a decreasing function ρ that associates to a future risky position X the minimal reserve
amount ρ (X) that should be collected today to cover risk X. The leading examples are solvency capital
requirements imposed by supervising agencies to insurance companies and financial institutions. Decreasing
monotonicity is a minimal rationality requirement imposed on the agencies: higher losses require higher
reserves.

Convex monetary risk measures have the additional requirement of being convex and cash-additive.1

As pointed out by El Karoui and Ravanelli (2008), cash-additivity fails as soon as there is any form of
uncertainty about interest rates; for example when the risk-free asset is illiquid or inexistent.2 For this
reason, they suggest to replace cash-additivity with cash-subadditivity, and, maintaining convexity, they
provide a representation result for convex cash-subadditive risk measures, together with several examples
arising from applications.

This paper starts from the observation that once cash-additivity is replaced with the economically sounder
assumption of cash-subadditivity, convexity should be replaced by quasiconvexity in order to maintain the
original interpretation in terms of diversification. Although convexity is generally regarded as the mathe-
matical translation of the fundamental principle “diversification cannot increase risk,” literally this principle
means

“if positions X and Y are less risky than Z, so it is any diversified position λX + (1− λ)Y with λ in (0, 1).”

Using a measure of risk ρ, this statement translates into

“ρ (X) , ρ (Y ) ≤ ρ (Z) implies ρ (λX + (1− λ)Y ) ≤ ρ (Z) for all λ in (0, 1),”

which is equivalent to convexity under the cash-additivity assumption, while in general (also under cash-
subadditivity) it only corresponds to quasiconvexity.3

From a financial viewpoint, the passage from convexity to quasiconvexity is conceptually very important.
It allows a complete disentangling between the diversification principle, which is arguably the central pillar of
risk management, and the assumption of liquidity of the riskless asset, which is an abstract (still very useful
and popular) simplification. The economic counterpart of quasiconvexity of risk measures is quasiconcavity
of utility functions (that is, convexity of preferences), which is classically associated to uncertainty aversion in
the economics of uncertainty (see, e.g., Debreu, 1959, and Schmeidler, 1989). Uncertainty aversion, namely

“if X and Y are preferred to Z, so it is any mixture λX + (1− λ)Y with λ in (0, 1),”

is one of the soundest empirical findings in situations where agents ignore the probabilistic model that
underlines the economic phenomenon they are facing (for example, it has been recently indicated by Caballero
and Krishnamurthy, 2008, as one of the possible causes behind the 2008 crisis).

For this reason, in this paper we study quasiconvex cash-subadditive risk measures on an L∞ space.4 We
show in Section 3 that these measures take the form

ρ (X) = max
Q∈M1,f

R (EQ (−X) , Q) , (1)

1See Section 2 for details and formal definitions.
2Black (1972) is one of the first contributions that casted doubts on liquidity and existence of riskless assets.
3See Föllmer and Schied (2008), Proposition 1, and Example 2.
4The extension to the general Lp case is studied in Appendix A.
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where M1,f is the set of (finitely additive) probabilities and R : R×M1,f → [−∞,∞] is an upper semi-
continuous quasiconcave function that is increasing and nonexpansive in the first component and such that
inft∈R R (t, ·) is constant. The function R is unique.

Convex monetary risk measures correspond to the separable specification

R (t, Q) = Dt− α (DQ) (2)

for some constant D ∈ (0, 1], while convex cash-subadditive risk measures correspond to

R (t, Q) = sup
c∈[0,1]

(ct− α (cQ)) , (3)

where α (·) is the Fenchel conjugate of ρ (−·).5

Representation (1) is not only general enough to capture most of the risk measures introduced in the
literature, but it also has a very natural interpretation: R (t, Q) is the reserve amount required today, under
the probabilistic scenario Q, to cover an expected loss t in the future. Since there is uncertainty about
probabilistic scenarios, the supervising agency follows the most cautious approach, that is, it requires the
maximum reserve. The evaluations R (t, Q) keep two factors into account, the expected loss t and the
plausibility of scenario Q, assessed by the supervising agency. As the special cases (2) and (3) show (see
again the discussion in El Karoui and Ravanelli, 2008), the separability of these two risk factors is lost as
soon as risky positions and reserve amounts cannot be expressed in the same numeraire in an unambiguous
way. This loss of separability becomes even clearer if, inspired by (2), one sets a (t, Q) = t − R (t, Q) and
rewrites (1) as

ρ (X) = max
Q∈M1,f

{EQ (−X)− a (EQ (−X) , Q)} (4)

where the “penalty function” a (EQ (−X) , Q) now depends both on the probabilistic scenario and on the
expected loss of the position (rather than on the probabilistic scenario alone).

It is important to observe that, while the results on convex and cash-subadditive measures build on
classic convex duality, our results build on the quasiconvex monotone duality developed in Cerreia-Vioglio,
Maccheroni, Marinacci, and Montrucchio (2008b). Specifically, the techniques developed there are the main
tool for our analysis in the L∞ case. We extend them in Appendix A where the general Lp case (1 ≤ p ≤ ∞)
is considered. As a consequence, there is also a substantial difference between the mathematics that underlies
our results and that used in the study of convex risk measures.

In view of the importance of law-invariance with respect to a given probability measure P , in Section
5 we characterize quasiconvex risk measures that satisfy this property and we show that in this case the
quantile representation

ρ (X) = max
Q∈M1

R

(∫ 1

0

q−X (s) q dQ
dP

(s) ds,Q
)

(5)

holds. This result extends those of Chong and Rice (1971), Kusuoka (2001), Föllmer and Schied (2004),
Dana (2005), Frittelli and Rosazza Gianin (2005), and Leitner (2005) from the domain of convex analysis to
that of quasiconvex analysis. Technically speaking, this is one of the most substantive contributions of the
present paper.

As a byproduct, in Subsection 5.1 we characterize the risk measures that agree with the actuarial mean
value premium principle (see Rotar, 2007), that is, the measures of the form

ρ (X) = `−1 (EP (` (−X))) , (6)

5More in general, there is a natural correspondence between the properties of ρ and those of R as shown in Section 4.
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where ` is a strictly increasing and convex loss function. Though in a static setting, this result is in the spirit
of a very recent one of Kupper and Schachermayer (2008) and it builds on the classic Nagumo-Kolmogorov-de
Finetti Theorem.6 Interestingly, Proposition 12 shows that for this class of functions

R (t, Q) = t− L (−t;Q,P ) , (7)

where L (−t;Q,P ) is the generalized distance between probability measures induced by `, introduced by
Bellini and Frittelli (2002) in the context of minimax martingale measures. The closing Subsection 5.2
proposes maxima of risk measures of the form (6) as emerging from the agreement of a group of supervising
agencies, and studies their properties.

We conclude by observing that, as it happens with coherent risk measures and maxmin expected utility
preferences (Gilboa and Schmeidler, 1989), or convex monetary risk measures and variational preferences
(Maccheroni, Marinacci, and Rustichini, 2006), also quasiconvex risk measures have a decision theoretic
foundation: the uncertainty averse preferences we recently studied in Cerreia-Vioglio, Maccheroni, Marinacci,
and Montrucchio (2008a) to which we refer the interested reader for details.

2 Preliminaries

Let (Ω,A, P ) be a probability space and L∞ (Ω,A, P ) be the space of bounded random variables.7 Its
topological dual L∞ (Ω,A, P )∗ is isometrically isomorphic to the space of all bounded finitely additive set
functions on A that are absolutely continuous with respect to P (see, e.g., Yosida, 1980, Ch. IV.9).

The positive unit ball of L∞ (Ω,A, P )∗ is denoted by M1,f (Ω,A, P ) and coincides with the set of
finitely additive probabilities that are absolutely continuous with respect to P ; in particular, M1 (Ω,A, P )
is the subset of M1,f (Ω,A, P ) consisting of all its countably additive elements. For this reason, given
X ∈ L∞ (Ω,A, P ) and µ ∈ L∞ (Ω,A, P )∗, we indifferently write: µ (X),

∫
Xdµ, or even Eµ (X) if µ ∈

M1,f (Ω,A, P ). The specification of the probability space (Ω,A, P ) is often omitted and we just write L∞

and M1,f .
Unless otherwise stated, L∞ (Ω,A, P ) is endowed with its norm topology, L∞ (Ω,A, P )∗ is endowed with

its weak∗ topology, and its subsets with the relative weak∗ topology. Product spaces are endowed with the
product topology.

We consider one period of uncertainty {0, T}. The elements of L∞ represent payoffs at time T of financial
positions held at time 0.

A risk measure is a decreasing function ρ : L∞ → [−∞,∞].

As anticipated in the introduction, ρ (X) is interpreted as the minimal reserve amount that should be
collected today to cover future risk X. Decreasing monotonicity is justified by the fact that smaller losses
cannot require greater reserves.

Given a (deterministic) discount factor D ∈ (0, 1], the function ρ is a monetary risk measure if, in
addition, it satisfies:

Cash-additivity ρ (X −m) = ρ (X) +Dm for all X ∈ L∞ and m ∈ R.

This condition is interpreted in the following way “when m dollars are subtracted from the future position
the present capital requirement is augmented by the same discounted amount Dm.” In fact, investing Dm
in a risk-free manner offsets the certain future loss m.

6See, Nagumo (1930), Kolmogorov (1930), de Finetti (1931), as well as Hardy, Littlewood, and Pólya (1934).
7Equalities and inequalities among random variables hold almost surely with respect to P .
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Cash-additivity is a controversial assumption both from a theoretical and practical viewpoint. For, D
is the price of a non-defaultable zero coupon bond available on the market at time 0 with maturity T and
face value 1: existence and liquidity of such an asset is not an innocuous assumption and, as observed by
El Karoui and Ravanelli (2008), any form of uncertainty in interest rates is sufficient to make the cash-
additivity assumption too stringent. For example, in case of illiquidity, D may well depend on the amount
m of purchased assets.

These considerations lead to the following relaxed version of cash-additivity, which only takes into account
the time value of money:

Cash-subadditivity ρ (X −m) ≤ ρ (X) +m for all X ∈ L∞ and m ∈ R+.

The meaning of this condition is “when m dollars are subtracted from a future position the present capital
requirement cannot be augmented by more than m dollars.” This is a much more compelling assumption
than cash-additivity since it just relies on the fact that an additional reserve of m dollars surely covers the
additional loss of the same amount.8

As discussed in the introduction, the risk diminishing effect of diversification is usually translated by:

Convexity ρ (λX + (1− λ)Y ) ≤ λρ (X) + (1− λ) ρ (Y ) for all X,Y ∈ L∞ and λ ∈ (0, 1).

But, it actually corresponds to the much weaker:

Quasiconvexity ρ (λX + (1− λ)Y ) ≤ max {ρ (X) , ρ (Y )} for all X,Y ∈ L∞ and λ ∈ (0, 1).

The next simple proposition shows that convexity is equivalent to quasiconvexity for monetary risk
measures.9 Clearly, this is not the case for cash-subadditive risk measures.10 In reading the result, recall
that a function ρ : L∞ → [−∞,∞] is nonexpansive (Lipschitz continuous with constant 1) if ρ (Y ) ≤
ρ (X) + ‖X − Y ‖ for all X,Y ∈ L∞.

Proposition 1 Let ρ be a risk measure.

(a) If ρ is cash-additive, then it is convex if and only if it is quasiconvex.

(b) ρ is cash-subadditive if and only if it is nonexpansive.

In both cases, ρ is either finite valued or identically ±∞.

Proof. (a) is essentially known (see, e.g., Gilboa and Schmeidler, 1989, Lemma 3.3, or Marinacci and
Montrucchio, 2004, Corollary 4.2). Next we prove (b). If ρ : L∞ → R is nonexpansive then ρ (X −m) ≤
ρ (X) + 1 ‖X − (X −m)‖ for all X ∈ L∞ and all m ∈ R+, that is, ρ (X −m) ≤ ρ (X) +m. Conversely, for
all X,Y ∈ L∞, X − Y ≤ ‖X − Y ‖, then X − ‖X − Y ‖ ≤ Y , monotonicity and cash-subadditivity imply
ρ (Y ) ≤ ρ (X − ‖X − Y ‖) ≤ ρ (X) + ‖X − Y ‖, as wanted. �

Next example shows how the illiquidity of the risk-free asset naturally generates quasiconvex cash-
subadditive risk measures that are neither convex nor cash-additive.

8Notice that cash-subadditivity is equivalent to require ρ (X +m) ≥ ρ (X)−m for all X ∈ L∞ and all m ∈ R+. In fact, it

implies ρ (X) = ρ (X +m−m) ≤ ρ (X +m) +m, and the converse is proved in the same way. In particular, our definition is

equivalent to that of El Karoui and Ravanelli (2008).
9Clearly, the above definition of quasiconvexity and the one we reported in the introduction are equivalent.

10See Example 2 below.
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Example 2 Let ∅ ( C ( L∞ be the set of future positions considered acceptable by the supervising agency,
and assume that C is convex and C + L∞+ ⊆ C. For all m ∈ R denote by v (m) the price at time 0 of m
dollars at time T and define, as in Artzner, Delbaen, Eber, and Heath (1999),

ρC,v (X) = inf {v (m) : X +m ∈ C} ∀X ∈ L∞.

If v (m) = Dm with D ∈ (0, 1] then ρC,v is a (finite valued) convex monetary risk measure.11 The linearity of
v is precisely the assumption that fails when zero coupon bonds with maturity T are illiquid. Still it remains
sensible to assume that v : R→ (−∞,∞] is increasing and v (0) = 0.

Provided v is also upper semicontinuous, we have

ρC,v (X) = v (inf {m ∈ R : X +m ∈ C}) = v (ρC,id (X)) ∀X ∈ L∞,

where id : R→ (−∞,∞] is the identity. Moreover, since ρC,id is a convex monetary risk measure, then for
any nonexpansive v that is not convex, ρC,v is a quasiconvex cash-subadditive risk measure that is neither
convex nor cash-additive.

Finally, R0 (R×M1,f ) denotes the class of functions R : R×M1,f → [−∞,∞] that are upper semi-
continuous, quasiconcave, increasing in the first component, with inft∈R R (t, Q) = inft∈R R (t, Q′) for all
Q,Q′ ∈ M1,f . Moreover, R1 (R×M1,f ) is the subset of R0 (R×M1,f ) consisting of functions R that are
nonexpansive in the first component, that is, R (t′, Q) ≤ R (t, Q) + |t− t′| for all t, t′ ∈ R and all Q ∈M1,f .

3 Representation

We are now ready to state and prove our first representation result.

Theorem 3 A function ρ : L∞ → [−∞,∞] is a quasiconvex cash-subadditive risk measure if and only if
there exists R ∈ R1 (R×M1,f ) such that

ρ (X) = max
Q∈M1,f

R (EQ (−X) , Q) ∀X ∈ L∞. (8)

The function R ∈ R1 (R×M1,f ) for which (8) holds is unique and satisfies

R (t, Q) = inf {ρ (X) : EQ (−X) = t} ∀ (t, Q) ∈ R×M1,f . (9)

Recall that ρ is a quasiconvex cash-subadditive risk measure if and only if it is a quasiconvex and nonex-
pansive risk measure. The next lemma characterizes quasiconvex and upper semicontinuous risk measures.

Lemma 4 A function ρ : L∞ → [−∞,∞] is a quasiconvex upper semicontinuous risk measure if and only
if there exists R ∈ R0 (R×M1,f ) such that

ρ (X) = max
Q∈M1,f

R (EQ (−X) , Q) ∀X ∈ L∞. (10)

The function R ∈ R0 (R×M1,f ) for which (10) holds is unique and satisfies

R (t, Q) = inf {ρ (X) : EQ (−X) = t} ∀ (t, Q) ∈ R×M1,f . (11)

Proof. Notice that L∞ is a normed Riesz space with order unit IΩ, M1,f is the positive unit ball of
its topological dual, and −ρ is a quasiconcave, lower semicontinuous, and monotone increasing function.

11See, for example, Föllmer and Schied (2004, Ch. 4).
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The statement then follows from Lemma 8 and Theorem 3 of Cerreia-Vioglio, Maccheroni, Marinacci, and
Montrucchio (2008b). �

Proof of Theorem 3. It only remains to show that ρ is cash-subadditive if and only if R is nonexpansive
in the first component.

Suppose ρ is cash-subadditive, then, for all (t, Q) ∈ R×M1,f and m ∈ R+,

R (t+m,Q) = inf {ρ (X) : EQ (−X) = t+m} = inf {ρ (X) : EQ (− (X +m)) = t}

= inf {ρ (Y −m) : EQ (−Y ) = t} ≤ inf {ρ (Y ) +m : EQ (−Y ) = t} = R (t, Q) +m.

Therefore, for all t, t′ ∈ R and Q ∈M1,f , t′ ≤ t+ |t− t′| and monotonicity of R in the first component imply

R (t′, Q) ≤ R (t+ |t− t′| , Q) ≤ R (t, Q) + |t− t′| ,

as wanted.
Conversely, if R is nonexpansive in the first component, then, for all (t, Q) ∈ R×M1,f and m ∈ R+,

R (t+m,Q) ≤ R (t, Q) + |t− (t+m)| = R (t, Q) +m.

Moreover, for all X ∈ L∞, there is Q′ ∈M1,f such that ρ (X −m) = R (EQ′ (− (X −m)) , Q′). Therefore,

ρ (X −m) = R (EQ′ (− (X −m)) , Q′) = R (EQ′ (−X) +m,Q′) ≤ R (EQ′ (−X) , Q′) +m

≤ max
Q∈M1,f

R (EQ (−X) , Q) +m = ρ (X) +m,

as wanted. �

In particular, denoting by α (·) the Fenchel conjugate of ρ (−·),12 a quasiconvex cash-subadditive risk
measure ρ is convex if and only if

R (t, Q) = sup
c∈[0,1]

(ct− α (cQ)) ∀ (t, Q) ∈ R×M1,f ,

thus obtaining the result of El Karoui and Ravanelli (2008). Moreover, ρ is cash-additive if and only if

R (t, Q) = Dt− α (DQ) ∀ (t, Q) ∈ R×M1,f ,

which corresponds to the well known characterization of convex monetary risk measures.13

Maintaining the interpretation of R (t, Q) as the reserve amount required today to cover an expected loss
t in the future under the probabilistic scenario Q, the above relations corroborate the claim of El Karoui and
Ravanelli (2008) that the passage to cash-subadditivity is the most parsimonious way of taking into account
interest rate uncertainty and a supervising agency that is averse to such uncertainty.

4 Additional Properties

In this section we further investigate the correspondence between the properties of ρ and those of R.
12That is α (µ) = supX∈L∞(Ω,A,P ) (µ (X)− ρ (−X)) for all µ ∈ L∞ (Ω,A, P )∗.
13For more details on the relations between convex duality and quasiconvex monotone duality, see Cerreia-Vioglio, Maccheroni,

Marinacci, and Montrucchio (2008b).
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4.1 Subadditivity, Positive Homogeneity, and Star-Shapedness

Here we analyze some of the most common properties that risk measures, directly or indirectly, have been
required to satisfy. We already discussed cash-additivity and convexity as well as their consequences.

The first property, introduced by Artzner, Delbaen, Eber, and Heath (1999), is very natural and suggests
that the overall risk is controlled by controlling the risk of each position:

Subadditivity ρ (X + Y ) ≤ ρ (X) + ρ (Y ) for all X,Y ∈ L∞.

The second property, still introduced by the same authors, is:

Positive Homogeneity ρ (λX) = λρ (X) for all λ ∈ (0,∞).

Positive homogeneity was early realized to be controversial in terms of liquidity.14 Finally, we consider:

Star-Shapedness ρ (λX) ≥ λρ (X) for all X ∈ L∞ and λ ∈ [1,∞).

This property seems to be the sensible weakening of positive homogeneity imposing that capital require-
ments increase more than linearly if the position is magnified by a factor greater than 1.15

Next proposition characterizes the above properties of ρ in terms of properties of R. From a financial
perspective it confirms the intuition that R represents scenario-dependent reserves while ρ represents their
synthesis. In order to avoid indeterminacies, real valued risk measures are considered.

Proposition 5 Let ρ : L∞ → R be an upper semicontinuous and quasiconvex risk measure. Then:

(a) ρ is subadditive if and only if R (·, Q) is subadditive for all Q ∈M1,f .

(b) ρ is positively homogeneous if and only if R (·, Q) is positively homogeneous for all Q ∈M1,f .

(c) ρ is star-shaped if and only if R (·, Q) is star-shaped for all Q ∈M1,f .

Proof. (a) Suppose ρ is subadditive, and let t, t′ ∈ R and Q ∈M1,f . Then,

R (t+ t′, Q) = inf {ρ (X) : EQ (−X) = t+ t′}

≤ inf {ρ (Y + Z) : EQ (−Y ) = t and EQ (−Z) = t′}

≤ inf {ρ (Y ) + ρ (Z) : EQ (−Y ) = t and EQ (−Z) = t′}

= inf {ρ (Y ) : EQ (−Y ) = t}+ inf {ρ (Z) : EQ (−Z) = t′}

= R (t, Q) +R (t′, Q) .

Conversely, assume R (·, Q) is subadditive for all Q ∈M1,f , and let X,Y ∈ L∞. Then, by (10), there exists
Q̄ ∈M1,f such that

ρ (X + Y ) = R
(
EQ̄ (−X − Y ) , Q̄

)
≤ R

(
EQ̄ (−X) , Q̄

)
+R

(
EQ̄ (−Y ) , Q̄

)
≤ max
Q∈M1,f

R (EQ (−X) , Q) + max
Q∈M1,f

R (EQ (−Y ) , Q) = ρ (X) + ρ (Y ) .

(b) Suppose ρ is positively homogeneous, and let t ∈ R, λ ∈ (0,∞), and Q ∈M1,f . Then,

R (λt,Q) = inf {ρ (X) : EQ (−X) = λt} = inf
{
ρ (X) : EQ

(
−X
λ

)
= t

}
= inf {ρ (λY ) : EQ (−Y ) = t} = inf {λρ (Y ) : EQ (−Y ) = t}

= λ inf {ρ (Y ) : EQ (−Y ) = t} = λR (t, Q) .

14The fact that an additional liquidity risk may arise if a position is multiplied by a large factor is indeed one of the motivations

leading to the introduction of convex risk measures (see Föllmer and Schied, 2002).
15Notice that this property is equivalent to: ρ (λX) ≤ λρ (X) for all λ ∈ (0, 1].
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Conversely, assume that R (·, Q) is positively homogeneous for all Q ∈M1,f , and let X ∈ L∞ and λ ∈ (0,∞).
Then,

ρ (λX) = max
Q∈M1,f

R (EQ (−λX) , Q) = λ max
Q∈M1,f

R (EQ (−X) , Q) = λρ (X) .

(c) Suppose ρ is star-shaped, and let t ∈ R, λ ∈ [1,∞), and Q ∈M1,f . Then,

R (λt,Q) = inf {ρ (X) : EQ (−X) = λt} = inf
{
ρ (X) : EQ

(
−X
λ

)
= t

}
= inf {ρ (λY ) : EQ (−Y ) = t} ≥ inf {λρ (Y ) : EQ (−Y ) = t}

= λ inf {ρ (Y ) : EQ (−Y ) = t} = λR (t, Q) .

Conversely, assume that R (·, Q) is star-shaped for all Q ∈M1,f , and let X ∈ L∞ and λ ∈ [1,∞). Then,

ρ (λX) = max
Q∈M1,f

R (EQ (−λX) , Q) ≥ λ max
Q∈M1,f

R (EQ (−X) , Q) = λρ (X) .

�

Similar considerations hold for cash-additivity and convexity.16

We conclude this section by providing an alternative characterization of coherent risk measures (i.e. risk
measures that are: cash-additive, subadditive, and positively homogeneous). The following proposition can
be also proved by standard convex analysis, but the proof presented here seems shorter and elegant.

Proposition 6 Let ρ : L∞ → R be a risk measure. The following conditions are equivalent:

(i) ρ is coherent;

(ii) ρ is subadditive, star-shaped, and ρ (−IΩ) ≤ −ρ (IΩ) = D ∈ (0, 1].

Proof. (i) implies (ii) is trivial. First, by subadditivity ρ (0) ≥ 0. Then,

0 ≥ ρ (IΩ) + ρ (−IΩ) ≥ ρ (IΩ − IΩ) = ρ (0) ≥ 0

it follows that ρ (0) = 0 and −ρ (−IΩ) = ρ (IΩ) = −D ∈ (0, 1].
For all X ∈ L∞, the function ρX : R+→ R defined by ρX (t) = ρ (tX), for all t ∈ R+, is star-shaped

(since ρ is), hence it is superadditive, and it is subadditive (since ρ is), thus it is additive. Moreover, since
ρX (t) is star-shaped, then ρX(t)

t is increasing on (0,∞), and ρX (t) = tρX(t)
t has at most countably many

discontinuity points on (0,∞). By Corollary 9 of Aczél and Dhombres (1989, Ch. 2), ρX is linear, therefore ρ
is positively homogeneous. Thus, ρ is sublinear and Lipschitz continuous of rank D. Finally, cash-additivity
is proved.

By Proposition 5 and since ρ is quasiconvex, then R (·, Q) is subadditive and positively homogeneous for
all Q ∈M1,f . Finally, let

Q = {Q ∈M1,f : R (1, Q) > −∞} .

If Q ∈ Q, by subadditivity R (1, Q) + R (−1, Q) ≥ R (0, Q) = 0 (where the latter equality descends from
monotonicity and upper semicontinuity of R (·, Q)). This, in turn, implies that R (−1, Q) > −∞. By positive

16Cash-additivity of ρ translates into R (t−m,Q) = R (t, Q) − Dm for all t ∈ R, m ∈ R, and Q ∈ M1,f . Convexity

of ρ corresponds to convexity of R in the first component; see Corollary 5 of Cerreia-Vioglio, Maccheroni, Marinacci, and

Montrucchio (2008b).
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homogeneity of R (·, Q), it follows that R (·, Q) is finite. Moreover, since ρ (X) ≥ R (EQ (−X) , Q) for all
X ∈ L∞,

D = ρ (−IΩ) ≥ R (1, Q) ≥ −R (−1, Q) ≥ −ρ (IΩ) = D

and positive homogeneity of R (·, Q) yields R (t, Q) = Dt for all t ∈ R. If Q /∈ Q then R (1, Q) = −∞. By
monotonicity and positive homogeneity, it follows that R (t, Q) = −∞ for all t ∈ R.

Lemma 4 guarantees ρ (X) = DmaxQ∈Q EQ (−X) for all X ∈ L∞, proving the statement. �

4.2 Continuity from Below (and Above)

Next proposition shows that, as in the special cases of convex cash-additive and cash-subadditive risk mea-
sures, the possibility of replacing finitely additive probabilities with countably additive probabilities in the
variational representation (8), and indeed in (10), corresponds to the following continuity requirement:

Continuity from below Xn ↗ X implies ρ (Xn)→ ρ (X) for all Xn, X ∈ L∞.

Proposition 7 Let ρ : L∞ → [−∞,∞] be a quasiconvex upper semicontinuous risk measure. The following
conditions are equivalent:

(i) ρ is continuous from below;

(ii) R (t, Q) = infX∈L∞ ρ (X) for all (t, Q) ∈ R× (M1,f \M1).

In this case,
max

Q∈M1,f

R (EQ (−X) , Q) = max
Q∈M1

R (EQ (−X) , Q) ∀X ∈ L∞. (12)

Proof. Define infL∞ ρ = infX∈L∞ ρ (X). Consider the following condition:

(iii) {Q ∈M1,f : R (t, Q) ≥ m} ⊆ M1 for all m ∈ (infL∞ ρ,+∞] and all t ∈ R.

We show that (i) =⇒ (iii) =⇒ (ii) =⇒ (i).
(i) implies (iii). Let t ∈ R, m ∈ (infL∞ ρ,+∞], and Q′ ∈ {Q ∈M1,f : R (t, Q) ≥ m}. Since m > infL∞ ρ,

there exist X ∈ L∞ such that ρ (X) < m and x ≥ X in R such that ρ (x) ≤ ρ (X) < m. If En ↘ ∅ in A,17

then x− kIEn
↗ x in L∞ for each k > 0. Continuity from below guarantees that there exists Nk ∈ N such

that for all n ≥ Nk

m > ρ (x− kIEn
) = max

Q∈M1,f

R (EQ (kIEn
− x) , Q) = max

Q∈M1,f

R (kQ (En)− x,Q) .

If kQ′ (En′)− x ≥ t for some n′ ≥ Nk, since R is increasing, it follows that

max
Q∈M1,f

R (kQ (En′)− x,Q) ≥ R (kQ′ (En′)− x,Q′) ≥ R (t, Q′) ≥ m,

which is absurd. Then kQ′ (En)− x < t for all n ≥ Nk, hence

Q′ (En) <
x+ t

k
∀n ≥ Nk,

thus limn→∞Q′ (En) ≤ k−1 (x+ t). Since this is the case for each k > 0, then limn→∞Q′ (En) = 0 and
Q′ ∈M1.

17That is En is a decreasing and vanishing sequence of elements of A.
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(iii) implies (ii). Clearly, for all (t, Q) ∈ R×M1,f , R (t, Q) = inf {ρ (X) : EQ (−X) = t} ≥ infL∞ ρ. If, per
contra, there exists (t0, Q0) ∈ R× (M1,f \M1) such that R (t0, Q0) > infL∞ ρ, then, setting m0 = R (t0, Q0),
by (iii) it follows that

Q0 ∈ {Q ∈M1,f : R (t0, Q) ≥ m0} ⊆ M1,

a contradiction.
(ii) implies (i). Let {Xn}n≥1 be a sequence in L∞ such that Xn ↗ X0 ∈ L∞. For each n ≥ 0, define

γn :M1,f → [−∞,+∞] by
γn (Q) = R (EQ (−Xn) , Q) ∀Q ∈M1,f .

Each γn is weak* upper semicontinuous, and the sequence {γn}n∈N is decreasing. If Q ∈ M1, then
EQ (−Xn) ↘ EQ (−X0), by the Levi Monotone Converge Theorem, and so, since R (·, Q) is upper semi-
continuous and increasing on R, limn→∞R (EQ (−Xn) , Q) = R (EQ (−X0) , Q); else if Q /∈ M1, then
R (EQ (−Xn) , Q) = infL∞ ρ for all n ≥ 0. Conclude that {−γn}n∈N pointwise converges and so Γ-converges
to −γ0 (see, e.g., Dal Maso, 1993, Rem. 5.5). By Theorem 7.4 of Dal Maso (1993), minQ∈M1,f

−γn (Q) →
minQ∈M1,f

−γ0 (Q), that is −ρ (Xn)→ −ρ (X0).

Finally, we show that (ii) implies (12). If X is such that ρ (X) = infL∞ ρ, then for all Q ∈ M1,f , by
Lemma 4,

ρ (X) ≥ R (EQ (−X) , Q) = inf {ρ (Y ) : EQ (−Y ) = EQ (−X)} ≥ inf L∞ ρ = ρ (X) .

Therefore the maximum in (10) is attained at each Q inM1,f , thus at each Q inM1. Else if ρ (X) > infL∞ ρ,
by (ii), the maximum in (10) cannot be attained on M1,f \M1, thus it is attained on M1. �

Next, notice that continuity from below implies norm upper semicontinuity for a risk measure ρ. Indeed:

Proposition 8 A risk measure ρ is continuous from below (resp., above) if and only if it is upper (resp.,
lower) semicontinuous with respect to bounded pointwise convergence.

Proof. Let {Xn}n∈N be a bounded sequence in L∞ that pointwise converges to X. Set Yn = infk≥nXk for
all n ∈ N. Then, we have that Xn ≥ Yn for all n ∈ N and Yn ↗ X. Monotonicity and continuity from below
imply

lim supn ρ (Xn) ≤ limn→∞ ρ (Yn) = ρ (X) .

Conversely, if Xn ↗ X, then monotonicity of ρ delivers ρ (X) ≤ lim infn ρ (Xn), while upper semicontinuity
with respect to bounded pointwise convergence delivers lim supn ρ (Xn) ≤ ρ (X). �

Moreover, continuity from below and norm lower semicontinuity imply continuity with respect to bounded
pointwise convergence, provided ρ is quasiconvex. Formally:

Proposition 9 Let ρ : L∞ → [−∞,∞] be a quasiconvex risk measure. The following conditions are equiv-
alent:

(i) ρ is continuous from below and norm lower semicontinuous;

(ii) ρ is continuous with respect to bounded pointwise convergence.

Proof. Clearly, (ii) and Proposition 8 yield (i). By Proposition 8, to prove the converse it is sufficient to show
that ρ is continuous from above. Let Xn ↘ X. By monotonicity, ρ (Xn) is increasing and limn→∞ ρ (Xn) ≤
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ρ (X). Assume, per contra, strict inequality holds. Then {Xn}n∈N is contained in {ρ < c} for some c < ρ (X).
The assumptions on ρ guarantee that {ρ ≤ c} is nonempty, convex, norm closed, and

{ρ ≤ c} ⊆
⋂
i∈I

[Qi ≥ bi] ,

where {(bi, Qi) : i ∈ I} = {(b,Q) ∈ R×M1 : [Q ≥ b] ⊇ {ρ ≤ c}}. As to the converse inclusion, let Y /∈
{ρ ≤ c}. By a Separating Hyperplane Theorem, there exist b ∈ R, ε > 0, and Q ∈ L∞ (Ω,A, P )∗ \ {0} such
that

{ρ ≤ c} ⊆ [Q ≥ b] and Y ∈ [Q < b− ε] .

Monotonicity allows to assume Q ∈M1,f .18 If Q /∈M1, then R (t, Q) = infX∈L∞ ρ (X) ≤ ρ (X1) < c for all
t ∈ R. For t = −b+ ε, this implies

c > R (−b+ ε,Q) = inf {ρ (Z) : EQ (Z) = b− ε} .

Then ρ (Z ′) < c for some Z ′ ∈ [Q = b− ε], which is absurd since {ρ ≤ c} ⊆ [Q ≥ b]. Summing up, if
Y /∈ {ρ ≤ c} there are b ∈ R and Q ∈ M1 such that [Q ≥ b] ⊇ {ρ ≤ c} and Y /∈ [Q ≥ b]. Thus, {ρ ≤ c}c ⊆(⋂
i∈I

[Qi ≥ bi]

)c
.

Finally, {Xn}n∈N ⊆ {ρ ≤ c} implies EQi
(Xn) ≥ bi for all n ∈ N and i ∈ I. By the Monotone Convergence

Theorem, EQi
(X) ≥ bi for all i ∈ I, then ρ (X) ≤ c which contradicts c < ρ (X). �

5 Law-invariance

In this section we consider a continuous from below quasiconvex risk measure

ρ (X) = max
Q∈M1

R (EQ (−X) , Q) ∀X ∈ L∞.

In the study of law-invariance it is useful to consider some important stochastic orders. The convex order
%cx is defined on L1 by

X %cx Y if and only if EP (φ (X)) ≥ EP (φ (Y ))

for all convex φ : R → R. The increasing convex order %icx and second order stochastic dominance %ssd
are defined analogously by replacing convex functions by increasing convex functions and increasing concave
functions, respectively. Notice that X %icx Y if and only if −X -ssd −Y and that the three preorders share
the same symmetric part ∼, which is the identical distribution with respect to P relation.19

As widely discussed in the literature (see, e.g., the classic Rothschild and Stiglitz, 1970, and Marshall
and Olkin, 1979), X %cx Y intuitively means that the values of X are more dispersed than those of Y ,
while X %ssd Y is the standard formalization of the statement “X is less risky than Y ,” provided P is the
unanimously accepted model for uncertainty.

The convex order naturally induces a relation on M1 by

Q %cx Q
′ if and only if

dQ

dP
%cx

dQ′

dP
.

The intuition is the same: the probability masses dQ (ω) are more scattered with respect to dP (ω) than the
masses dQ′ (ω).

18If Z ∈ L∞+ then X1 + nZ ∈ {ρ ≤ c} for all n ∈ N, and Q (X1) + nQ (Z) ≥ b delivers Q (Z) ≥ 0. Then Q is a non-zero

positive linear functional, and if Q /∈M1,f it is sufficient to normalize it.
19See Chong (1974) for this fact and for altenative characterizations of these orders.
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An extended real valued function γ defined on a subset of L1 is law-invariant (or rearrangement invariant)
if and only if

X ∼ Y implies γ (X) = γ (Y ) ;

while γ is Schur concave if and only if

X %cx Y implies γ (X) ≤ γ (Y ) .

Finally, γ preserves second order stochastic dominance if and only if

X %ssd Y implies γ (X) ≤ γ (Y ) .

Clearly, the latter property is desirable for a risk measure, under the assumption that all the agents agree
on P . If X is considered to be less risky than Y , it is difficult for the supervising agency to require a higher
reserve amount for X than for Y .

Theorem 10 Let ρ be a quasiconvex and continuous from below risk measure. The following conditions are
equivalent:

(i) ρ preserves second order stochastic dominance;

(ii) R (t, ·) is Schur concave on M1 for all t ∈ R.

In this case,

ρ (X) = max
Q∈M1

R

(∫ 1

0

q−X (s) q dQ
dP

(s) ds,Q
)
∀X ∈ L∞ (13)

and

R (t, Q) = inf
{
ρ (Y ) :

∫ 1

0

q dQ
dP

(s) qY (1− s) ds = −t
}
∀ (t, Q) ∈ R×M1. (14)

Moreover, if (Ω,A, P ) is adequate, then (i) and (ii) are equivalent to:

(iii) ρ is law-invariant;

(iv) R (t, ·) is rearrangement invariant on M1 for all t ∈ R.

Here qZ denotes any quantile of Z ∈ L1 (see, e.g., Föllmer and Schied, 2004),20 and a probability space is
adequate if and only if it is either finite and endowed with the uniform probability or non-atomic. We used
the term “rearrangement invariant” rather than the equivalent “law-invariant” in (iv) since it gives a better
intuition of what happens in the finite equidistributed case: R (t, Q) = R (t, Q ◦ σ) for all permutations σ of
Ω and all (t, Q) ∈ R×M1.

Proof. The proof heavily relies on the theory of rearrangement invariant Banach spaces developed by
Luxemburg (1967) and Chong and Rice (1971). For convenience, the latter reference is denoted from now
on by CR. Following its notation, if X is measurable, set

δX (s) = inf {x ∈ R : P ({ω ∈ Ω : X (ω) > x}) ≤ s}

= inf {x ∈ R : FX (x) ≥ 1− s} = F−1
X (1− s) = q−X (1− s)

for all s ∈ [0, 1].

20Notice that we are not committing to any specific version of the quantile, e.g., the right continuous, or the left continuous,

etc.
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Step 1. If Y ∈ L∞ and Q ∈M1, then

{EQ′ (Y ) :M1 3 Q′ -cx Q} =
[∫ 1

0

δY (s) δ dQ
dP

(1− s) ds,
∫ 1

0

δY (s) δ dQ
dP

(s) ds
]
. (15)

Moreover, if (Ω,A, P ) is adequate, then

∫ 1

0

δY (s) δ dQ
dP

(1− s) ds = min {EQ′ (Y ) :M1 3 Q′ ∼ Q} and (16)∫ 1

0

δY (s) δ dQ
dP

(s) ds = max {EQ′ (Y ) :M1 3 Q′ ∼ Q} . (17)

Proof of Step 1. [CR 13.4] and [CR 13.8] guarantee that, if Y and X belong to the set M (Ω,A, P ) of
measurable functions and δ|Y |δ|X| ∈ L1 ([0, 1]), then{∫

Y X ′dP : M (Ω,A, P ) 3 X ′ -cx X
}

=
[∫ 1

0

δY (s) δX (1− s) ds,
∫ 1

0

δY (s) δX (s) ds
]
.

Moreover, if (Ω,A, P ) is adequate, then∫ 1

0

δY (s) δX (1− s) ds = min
{∫

Y X ′dP : M (Ω,A, P ) 3 X ′ ∼ X
}

and∫ 1

0

δY (s) δX (s) ds = max
{∫

Y X ′dP : M (Ω,A, P ) 3 X ′ ∼ X
}

.

The condition δ|Y |δ|X| ∈ L1 ([0, 1]) is implied by δ|Y | ∈ Lp ([0, 1]) and δ|X| ∈ Lq ([0, 1]), where either
p =∞ and q = 1 or p = 1 and q =∞, which is equivalent to Y ∈ Lp (Ω) and X ∈ Lq (Ω) [CR 4.3]. In this
case,

{X ′ ∈M (Ω,A, P ) : X ′ -cx X} = {X ′ ∈ Lq : X ′ -cx X} .

In fact, X ∈ Lq and X ′ -cx X imply X ′ ∈ Lq [CR 10.2]. Therefore, if Y ∈ Lp (Ω) and X ∈ Lq (Ω), then{∫
Y X ′dP : Lq 3 X ′ -cx X

}
=
[∫ 1

0

δY (s) δX (1− s) ds,
∫ 1

0

δY (s) δX (s) ds
]
. (18)

Moreover, if (Ω,A, P ) is adequate, then∫ 1

0

δY (s) δX (1− s) ds = min
{∫

Y X ′dP : Lq 3 X ′ ∼ X
}

and (19)∫ 1

0

δY (s) δX (s) ds = max
{∫

Y X ′dP : Lq 3 X ′ ∼ X
}

. (20)

If, in addition, X is a probability density (p.d.) and X ′ -cx X, then X ′ ≥ 0 [CR 10.2] and E (X ′) = E (X) =
1, that is X ′ is a probability density. Finally, if Y ∈ L∞ and Q ∈M1, then

{EQ′ (Y ) :M1 3 Q′ -cx Q} =
{∫

Y X ′dP : X ′ is a p.d. and X ′ -cx
dQ

dP

}
=
{∫

Y X ′dP : L1 3 X ′ -cx
dQ

dP

}
=
[∫ 1

0

δY (s) δ dQ
dP

(1− s) ds,
∫ 1

0

δY (s) δ dQ
dP

(s) ds
]
.
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Moreover, if (Ω,A, P ) is adequate, then∫ 1

0

δY (s) δ dQ
dP

(s) ds = max
{∫

Y X ′dP : L1 3 X ′ ∼ dQ

dP

}
= max

{∫
Y X ′dP : X ′ is a p.d. and X ′ ∼ dQ

dP

}
= max {EQ′ (Y ) :M1 3 Q′ ∼ Q} .

The formula for the minimum is proved in the same way. �

The next step is essentially due to Hardy, see, e.g., [CR 9.1]:

Step 2. Let p =∞ and q = 1 or vice versa, X,X ′ ∈ Lp and Y ∈ Lq.

(a) X -cx X ′ implies
∫ 1

0
δX (s) δY (s) ds ≤

∫ 1

0
δX′ (s) δY (s) ds.

(b) X -cx X ′ implies
∫ 1

0
δX (s) δY (1− s) ds ≥

∫ 1

0
δX′ (s) δY (1− s) ds.

(c) X -icx X ′ and Y ≥ 0 implies
∫ 1

0
δX (s) δY (s) ds ≤

∫ 1

0
δX′ (s) δY (s) ds.

Proof of Step 2. X,X ′ ∈ Lp and Y ∈ Lq is equivalent to δX , δX′ ∈ Lp ([0, 1]) and δY ∈ Lq ([0, 1]) [CR 4.3]. In
particular, δXδY , δX′δY ∈ L1 ([0, 1]). Also notice that f (s) ∈ Lq ([0, 1]) if and only if f (1− s) ∈ Lq ([0, 1]),
and ∫ 1

0

f (s) ds =
∫ 1

0

f (1− s) ds.

(a) (resp., (b)) If X -cx X ′, then
∫ w

0
δX (s) ds ≤

∫ w
0
δX′ (s) ds for all w ∈ [0, 1] and

∫ 1

0
δX (s) ds =∫ 1

0
δX′ (s) ds, since δY (s) is decreasing (resp., δY (1− s) is increasing), then

∫ 1

0
δX (s) δY (s) ds ≤

∫ 1

0
δX′ (s) δY (s) ds

(resp.,
∫ 1

0
δX (s) δY (1− s) ds ≥

∫ 1

0
δX′ (s) δY (1− s) ds) [CR 9.1].

(c) If X -icx X ′ and Y ≥ 0, then
∫ w

0
δX (s) ds ≤

∫ w
0
δX′ (s) ds for all w ∈ [0, 1] and δY is decreasing and

non-negative [CR 2.8], then
∫ 1

0
δX (s) δY (s) ds ≤

∫ 1

0
δX′ (s) δY (s) ds [CR 9.1]. �

Step 3. If either R (t, ·) is Schur concave on M1 for all t ∈ R or (Ω,A, P ) is adequate and R (t, ·) is
rearrangement invariant on M1 for all t ∈ R, then

ρ (X) = max
Q∈M1

R

(∫ 1

0

δ−X (s) δ dQ
dP

(s) ds,Q
)
∀X ∈ L∞. (21)

Proof of Step 3. Let X ∈ L∞. Then, EQ (−X) ≤
∫ 1

0
δ−X (s) δdQ/dP (s) ds for all Q ∈ M1, by (15), thus,

monotonicity of R in the first component implies

ρ (X) = max
Q∈M1

R (EQ (−X) , Q) ≤ sup
Q∈M1

R

(∫ 1

0

δ−X (s) δ dQ
dP

(s) ds,Q
)
.

Conversely, for any Q ∈M1, by (15) there exists Q′ -cx Q (resp., by (17) there exists Q′ ∼ Q) such that∫ 1

0

δ−X (s) δ dQ
dP

(s) ds = EQ′ (−X) .

Thus,

R

(∫ 1

0

δ−X (s) δdQ/dP (s) ds,Q
)

= R (EQ′ (−X) , Q) ≤ R (EQ′ (−X) , Q′) ≤ ρ (X)

by Schur concavity (resp., rearrangement invariance). Therefore,

sup
Q∈M1

R

(∫ 1

0

δ−X (s) δ dQ
dP

(s) ds,Q
)
≤ ρ (X)
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and the supremum is attained. �

Step 4. (ii) implies (i) and (13), also (iv) implies (i) provided (Ω,A, P ) is adequate.

Proof of Step 4. By Step 3, (ii) guarantees that (21) holds, and the same is true for (iv) if (Ω,A, P ) is
adequate. But (21) is equivalent to (13) since δY (s) = q−Y (1− s) for s ∈ [0, 1].

Moreover, X %ssd Y if and only if −X -icx −Y . Thus, Step 2.c implies
∫ 1

0
δ−X (s) δdQ/dP (s) ds ≤∫ 1

0
δ−Y (s) δdQ/dP (s) ds for all Q ∈M1, and monotonicity of R allows to conclude that

ρ (X) = max
Q∈M1

R

(∫ 1

0

δ−X (s) δ dQ
dP

(s) ds,Q
)
≤ max
Q∈M1

R

(∫ 1

0

δ−Y (s) δ dQ
dP

(s) ds,Q
)

= ρ (Y ) .

Therefore, ρ preserves second order stochastic dominance and, in particular, it is law-invariant. �

Step 5. If either ρ preserves second order stochastic dominance or (Ω,A, P ) is adequate and ρ is law-invariant,
then, for all (t, Q) ∈ R×M1,

R (t, Q) = inf
{
ρ (Y ) :

∫ 1

0

δ dQ
dP

(s) δY (1− s) ds ≤ −t
}

= inf
{
ρ (Y ) :

∫ 1

0

δ dQ
dP

(s) δY (1− s) ds = −t
}
. (22)

Proof of Step 5. Notice that if ρ preserves second order stochastic dominance, then it is Schur convex, that
is, X -cx Y implies ρ (X) ≤ ρ (Y ). Let ρ be Schur convex (resp. law-invariant). First observe that

R (t, Q) = inf {ρ (X) : EQ (−X) ≥ t} = inf {ρ (X) : EQ (X) ≤ −t}

for all (t, Q) ∈ R×M1.21 Since ρ is Schur convex (resp., rearrangement invariant), then

inf {ρ (X) : EQ (X) ≤ −t} = inf {ρ (Y ) : there exists X -cx Y such that EQ (X) ≤ −t}

(resp. = inf {ρ (Y ) : there exists X ∼cx Y such that EQ (X) ≤ −t} ),

but,

inf {ρ (Y ) : EQ (X) ≤ −t for some X -cx Y } = inf
{
ρ (Y ) : min

{∫
dQ

dP
XdP : L∞ 3 X -cx Y

}
≤ −t

}
(resp., inf {ρ (Y ) : EQ (X) ≤ −t for some X ∼ Y } = inf

{
ρ (Y ) : min

{∫
dQ

dP
XdP : L∞ 3 X ∼ Y

}
≤ −t

}
).

By (18) and (19), for all (t, Q) ∈ R×M1,

R (t, Q) = inf
{
ρ (Y ) :

∫ 1

0

δ dQ
dP

(s) δY (1− s) ds ≤ −t
}
≤ inf

{
ρ (Y ) :

∫ 1

0

δ dQ
dP

(s) δY (1− s) ds = −t
}
.

Finally, assume per contra that R (t, Q) < inf
{
ρ (Y ) :

∫ 1

0
δdQ/dP (s) δY (1− s) ds = −t

}
for some (t, Q) ∈

R×M1. This implies the existence of Z ∈ L∞ for which
∫ 1

0
δdQ/dP (s) δZ (1− s) ds ≤ −t and

ρ (Z) < inf
{
ρ (Y ) :

∫ 1

0

δ dQ
dP

(s) δY (1− s) ds = −t
}
.

Since δZ+m = δZ +m for all m ∈ R, then∫ 1

0

δ dQ
dP

(s) δZ+m (1− s) ds =
∫ 1

0

δ dQ
dP

(s) δZ (1− s) ds+m.

21Clearly, R (t, Q) ≥ inf
{
ρ (Y ) : EQ (−Y ) ≥ t

}
. Conversely, assume per contra that R (t, Q) > inf

{
ρ (Y ) : EQ (−Y ) ≥ t

}
for some (t, Q) ∈ R×M1. This implies the existence of Z ∈ L∞ for which EQ (−Z) ≥ t and ρ (Z) < R (t, Q). Set m =

EQ (−Z) − t ≥ 0, then Z + m ≥ Z, EQ (− (Z +m)) = t and R (t, Q) ≤ ρ (Z +m) ≤ ρ (Z) < R (t, Q), a contradiction. The

second equality is trivial.
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Choose m ≥ 0 so that ∫ 1

0

δ dQ
dP

(s) δZ+m (1− s) ds = −t,

then Z +m ≥ Z, and ρ (Z +m) ≤ ρ (Z) < inf
{
ρ (Y ) :

∫ 1

0
δdQ/dP (s) δY (1− s) ds = −t

}
, a contradiction.�

Step 6. (i) implies (ii) and (14), also (iii) implies (ii) provided (Ω,A, P ) is adequate.

Proof of Step 6. By Step 5, (i) guarantees that (22) holds, and the same is true for (iii) if (Ω,A, P ) is
adequate. But, the second part of (22) is equivalent to (14) since δY (s) = q−Y (1− s) for s ∈ [0, 1]. While
the first part together with Step 2.b yields the following chain of implications

Q -cx Q
′ =⇒

∫ 1

0

δ dQ
dP

(s) δY (1− s) ds ≥
∫ 1

0

δ dQ′
dP

(s) δY (1− s) ds for all Y ∈ L∞

=⇒
{
Y :

∫ 1

0

δ dQ
dP

(s) δY (1− s) ds ≤ −t
}
⊆
{
Y :

∫ 1

0

δ dQ′
dP

(s) δY (1− s) ds ≤ −t
}
∀t ∈ R

=⇒ R (t, Q) ≥ R (t, Q′) ∀t ∈ R.

Hence, R (t, ·) is Schur concave for all t ∈ R. �

Finally, Steps 4 and 6 guarantee that (i)⇐⇒(ii), and in this case (13) and (14) hold. Moreover, if (Ω,A, P )
is adequate, the same steps deliver (iv)=⇒(i)=⇒(iii) and (iii)=⇒(ii)=⇒(iv). �

Theorem 10 considers law-invariant quasiconvex risk measures that are upper semicontinuous with respect
to bounded pointwise convergence (see Proposition 8). Jouini, Schachermayer, and Touzi (2006) show
that law-invariant convex monetary risk measures are automatically lower semicontinuous with respect to
bounded pointwise convergence, provided (Ω,A, P ) is standard. Whether this remains true for quasiconvex
risk measures is left for future research (but see Proposition 9).

5.1 Mean Value Premium Principle

Important examples of law-invariant quasiconvex risk measures that are continuous from below are those of
the form

ρ (X) = `−1 (EP (` (−X))) ∀X ∈ L∞, (23)

where ` is a strictly increasing and convex loss function. The characterization of these measures is a version
of the classic Nagumo-Kolmogorov-de Finetti Theorem and relies on two additional properties:

Constancy ρ (m) = −m for all m ∈ R.22

Conditional consistency Let A ∈ A and X,Y, Z ∈ L∞,

ρ (XIA) ≥ ρ (Y IA)⇐⇒ ρ (XIA + ZIAc) ≥ ρ (Y IA + ZIAc) .

The latter property is inspired by Savage (1954)’s “sure thing principle” and clearly hints at dynamic
consistency (see, e.g., Ghirardato, 2002).23 The seminal paper of Ellsberg (1961) shows how this assumption
is non-controversial only if agents think that P is a reliable model of the uncertainty they face.24

22Throughout the paper, ρ (m) is a little abuse for ρ (mIΩ).
23Indeed, in the Savagean perspective, these risk measures correspond to certainty equivalents of expected utility maximizers.
24See, e.g., Maccheroni, Marinacci, and Rustichini (2006) for a recent discussion of this issue.

17



Lemma 11 Let (Ω,A, P ) be a non-atomic probability space. A law-invariant risk measure ρ satisfies con-
stancy, conditional consistency, and continuity with respect to bounded pointwise convergence if and only if
there exists a strictly increasing and continuous ` : R→ R such that

ρ (X) = `−1 (EP (` (−X))) ∀X ∈ L∞.

The function ` is unique up to strictly increasing affine transformations, and it is convex if and only if ρ is
quasiconvex.

Proof. Sufficiency is trivial. Necessity reduces to check that the function M : D∞ → R defined for each
distribution with bounded support F = FX by

M (F ) = −ρ (X)

satisfies the assumptions of the Nagumo-Kolmogorov-de Finetti Theorem.
For the sake of completeness we include such check. Let [a, b] be any closed interval in the real line

and D (a, b) be the set of all simple probability distributions supported in [a, b]. The Dirac distribution
concentrated in x is denoted by Dx.

Constancy guarantees that:

Step 1. For all x ∈ [a, b], M (Dx) = x.

Step 2. If F,G ∈ D (a, b), F ≥ G, and F 6= G, then M (F ) < M (G).

Proof of Step 2. Since (Ω,A, P ) is non-atomic there are two simple measurable functions X ≤ Y such that
F = FX and G = FY . By monotonicity of ρ, M (F ) ≤ M (G). Assume per contra that M (F ) = M (G),
that is ρ (X) = ρ (Y ). If X = Y then F = G, which is absurd. Thus (again by non-atomicity) there exist
n ∈ N, A1 ∈ A with P (A1) = 1/n, and x, y ∈ R such that

X (ω) < x < y < Y (ω) ∀ω ∈ A1.

Therefore,
X ≤ xIA1 +XIAc

1
≤ yIA1 +XIAc

1
≤ Y.

By monotonicity of ρ,
ρ
(
xIA1 +XIAc

1

)
= ρ

(
yIA1 +XIAc

1

)
,

and so, by conditional consistency,
ρ (xIA1) = ρ (yIA1) .

Let A2, ..., An be such that {Ai}ni=1 form a partition of Ω with P (Ai) = 1/n for all i. By law-invariance

ρ (xIAi) = ρ (yIAi) ∀i = 1, ..., n.

Repeated applications of conditional consistency then deliver

ρ (xIΩ) = ρ (xIA1 + xIA2 + xIA3 + ...+ xIAn) = ρ (yIA1 + xIA2 + xIA3 + ...+ xIAn)

= ρ (yIA1 + yIA2 + xIA3 + ...+ xIAn) = ... = ρ (yIΩ) ,

which is absurd by constancy. �

Step 3. If F,G,H ∈ D (a, b), λ ∈ (0, 1), and M (F ) = M (G), then M (λF + (1− λ)H) = M (λG+ (1− λ)H).

Proof of Step 3. For every λ ∈ [0, 1], since (Ω,A, P ) is non-atomic, there are X,Y, Z ∈ L∞ and A = Aλ ∈ A
that are independent and such that F = FX , G = FY , H = FZ , and P (A) = λ (see, e.g., Billingsley, 1995,
Theorem 5.3). Independence guarantees that FW IA+W ′IAc = λFW + (1− λ)FW ′ if W,W ′ ∈ {X,Y, Z}.
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If λ = 1/2, then FW IA+W ′IAc = 2−1FW + 2−1FW ′ = 2−1FW ′ + 2−1FW = FW ′IA+W IAc . Assume, per
contra, M

(
2−1F + 2−1H

)
6= M

(
2−1G+ 2−1H

)
, then ρ (XIA + ZIAc) ≷ ρ (Y IA + ZIAc), by conditional

consistency and law-invariance

ρ (X) = ρ (XIA +XIAc) ≷ ρ (Y IA +XIAc) = ρ (XIA + Y IAc) ≷ ρ (Y IA + Y IAc) = ρ (Y ) ,

which contradicts M (F ) = M (G). Thus the statement is true for λ = 2−1. Induction guarantees that
it is true for any dyadic rational. Continuity with respect to bounded pointwise convergence of ρ and the
Skorohod Theorem (see, e.g., Billingsley, 1995, Theorem 25.6) guarantee that the statement is true for any
λ. �

For all n ∈ N, M satisfies the properties described in Steps 1-3 onD (−n, n). By the Nagumo-Kolmogorov-
de Finetti Theorem,25 for all n ∈ N there exists a unique strictly increasing continuous function φn : [−n, n]→
R such that φn (0) = 0 = φn (1)− 1 and

M (F ) = φ−1
n

(∫
R
φn (x) dF (x)

)
∀F ∈ D (−n, n) .

Define φ (x) = φn (x) if |x| ≤ n to obtain M (F ) = φ−1
(∫

R φ (x) dF (x)
)

for each simple probability distri-
bution, then,

ρ (X) = −φ−1 (EP (φ (X)))

for all simple and measurable X : Ω→ R. Continuity with respect to bounded pointwise convergence yields
the result for ` (·) = −φ (−·).

Finally, if ρ is quasiconvex, Theorem 10 guarantees that ρ preserves second order stochastic dominance.
Hence ` is convex. The converse is trivial. �

Next result builds on Rockafellar (1971) and explicitly evaluates R for risk measures that admit an
expected loss representation.

Proposition 12 If ` : R→ R is a strictly increasing convex function and ρ (X) = `−1 (EP (` (−X))) for all
X ∈ L∞, then

R (t, Q) = `−1

(
max
x≥0

[
xt− EP

(
`∗
(
x
dQ

dP

))])
∀ (t, Q) ∈ R×M1.

Observe that this amounts to say that R (t, Q) = t − L (−t;Q,P ), where L (w;Q,P ) is the generalized
distance between probability measures considered by Bellini and Frittelli (2002) and corresponding to an
initial endowment w and a utility −` (−·).

Proof. Observe that ` (R) is an open half line (l,∞), with l = infx∈R ` (x). Then `−1 can be extended to
an extended-valued continuous and monotone function from [−∞,∞] to [−∞,∞] by setting `−1 (x) = −∞
if x ≤ l and `−1 (∞) =∞. For all (t, Q) ∈ R×M1,

R (t, Q) = inf
{
`−1 (EP (` (−X))) : EQ (−X) = t

}
= `−1 (inf {EP (` (−X)) : EQ (−X) = t}) .

Set φ (·) = −` (−·). Then

inf {EP (` (−X)) : EQ (−X) = t} = inf {−EP (−` (−X)) : EQ (−X) = t}

= − sup {EP (φ (X)) : EQ (X) = −t} .

25See, e.g., Hardy, Littlewood, and Pólya (1934, Theorem 215).
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But, the function Φ (X) = EP (φ (X)) for all X ∈ L∞ is concave, continuous, and monotone. Then, it
follows immediately from Lemma 19 of Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio (2008b)
and Corollary 2A of Rockafellar (1971) that

sup {EP (φ (X)) : EQ (X) = −t} = min
x≥0

[x (−t)− Φ∗ (xQ)] = min
x≥0

[
x (−t)− EP

(
φ∗
(
x
dQ

dP

))]
.

Thus,

R (t, Q) = −φ−1

(
min
x≥0

[
x (−t)− EP

(
φ∗
(
x
dQ

dP

))])
= `−1

(
max
x≥0

[
xt− EP

(
`∗
(
x
dQ

dP

))])
,

as wanted. �

5.2 Robust Mean Value Premium Principle

We conclude by introducing a new class of law-invariant quasiconvex risk measures. Consider a supervising
agency whose decisions are taken by several supervisors 1, ..., k, all of them using the mean value premium
principle to rank risks. The cautious nature of the supervising task suggests that:

“a reserve for position X is deemed acceptable if and only if all supervisors agree.”

Clearly, the minimum reserve that complies with this criterion is

ρ (X) = min
{
m ∈ R : m ≥ `−1

i (EP (`i (−X))) ∀i = 1, ..., k
}

= max
i=1,...,k

`−1
i (EP (`i (−X))) .

In light of this observation, in this section we study the quasiconvex risk measures defined by

ρL (X) = max
`∈L

`−1 (EP (` (−X))) ∀X ∈ L∞

where L is a compact convex (or finite) set of strictly increasing and convex loss functions.26

Proposition 13 Let L be a nonempty compact and convex set of strictly increasing and convex functions.
Then ρL : L∞ → R has the following properties:

(a) it is a well defined, continuous with respect to bounded pointwise convergence, and quasiconvex risk
measure that satisfies constancy and preserves second order stochastic dominance;

(b) for each X ∈ L∞, ρL (X) = max`∈ext(L) `
−1 (EP (` (−X))), where ext (L) is the set of extreme points

of L;

(c) RL (t, Q) = max`∈L `−1
(

maxx≥0

[
xt− EP

(
`∗
(
xdQdP

))])
for all (t, Q) ∈ R×M1.

Proof. Given a closed and convex set C in L∞. Consider the function z : C × L → R defined by

z (X, `) = `−1 (EP (` (−X))) ∀ (X, `) ∈ C × L.

When C = L∞, then ρL (X) = max`∈Lz (X, `) for all X ∈ L∞.

26Here, C (R) is endowed with the compact convergence topology, defined by the family of seminorms ϕK (f) =

maxx∈K |f (x)| where K ranges over all compact subsets of R. This locally convex topology is metrizable by d (f, g) =
∞∑
n=1

maxx∈[−n,n] |f (x)− g (x)|
2n
(
1 + maxx∈[−n,n] |f (x)− g (x)|

) . Subsets of C (R) are endowed with the inherited topology.
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Step 1. For each X ∈ C the function z (X, ·) : L → R is continuous and quasiaffine.27

Proof of Step 1. In order to prove the statement, it is enough to prove that, for each c ∈ R, the sets
{` ∈ L : z (X, `) ≥ c} and {` ∈ L : z (X, `) ≤ c} are closed and convex. Notice that, if ` ∈ L,

z (X, `) ≥ c⇔ `−1 (EP (` (−X))) ≥ c⇔ EP (` (−X)) ≥ ` (c) . (24)

Assume that `n ∈ {z (X, ·) ≥ c} for all n ∈ N and `n → `. Then `n (c) → ` (c) and EP (`n (−X)) →
EP (` (−X)).28 This, matched with (24), implies that EP (` (−X)) ≥ ` (c) and ` ∈ {z (X, ·) ≥ c}. Thus
{z (X, ·) ≥ c} is closed. Next, consider `1, `2 ∈ {z (X, ·) ≥ c} and λ ∈ (0, 1). By (24), EP (`1 (−X)) ≥ `1 (c)
and EP (`2 (−X)) ≥ `2 (c), then

EP ((λ`1 + (1− λ) `2) (−X)) = λEP (`1 (−X)) + (1− λ) EP (`2 (−X))

≥ λ`1 (c) + (1− λ) `2 (c) = (λ`1 + (1− λ) `2) (c)

that is, λ`1 + (1− λ) `2 ∈ {z (X, ·) ≥ c}. Thus, {z (X, ·) ≥ c} is convex. The same arguments yield closure
and convexity of {z (X, ·) ≤ c}. �

Step 2. ρL is a well defined risk measure that satisfies constancy and that preserves second order stochastic
dominance.

Proof of Step 2. Let C = L∞, and arbitrarily choose X ∈ L∞. Since L is compact and z (X, ·) is continuous,
then ρL (X) = max`∈Lz (X, `) is well defined. If m ∈ R then `−1 (EP (` (−m))) = −m for all ` ∈ L and
hence ρL (m) = −m. Finally, if X %ssd Y , then −X -icx −Y , and `−1 (EP (` (−X))) ≤ `−1 (EP (` (−Y )))
for all ` ∈ L so that ρL (X) ≤ ρL (Y ). This implies that ρL preserves second order stochastic dominance
(and a fortiori ρL is decreasing and hence a risk measure). �

Step 3. For each ` ∈ L the function z (·, `) : C → R is continuous and quasiconvex.

The proof is trivial. Moreover, taking C = L∞, since suprema of lower semicontinuous and quasiconvex
functions are lower semicontinuous and quasiconvex, thus Step 3 implies the following.

Step 4. ρL is lower semicontinuous and quasiconvex.

Step 5. ρL is continuous with respect to bounded pointwise convergence.

Proof of Step 5. By Proposition 9, Step 2, and Step 4, it is enough to prove that ρL is continuous from below.
If Xn ↗ X, the Dominated Convergence Theorem guarantees that z (Xn, `)↘ z (X, `) for all ` ∈ L. This
is equivalent to say that z (Xn, ·) ↘ z (X, ·) pointwise on L. By Step 1 and Dini’s Theorem [2, Theorem
2.66], z (Xn, ·) → z (X, ·) uniformly on L and, in particular, max`∈Lz (Xn, `) → max`∈Lz (X, `), that is
ρL (Xn)→ ρL (X). �

Step 6. For each X ∈ L∞, ρL (X) = max`∈ext(L) `
−1 (EP (` (−X))), where ext (L) is the set of extreme

points of L.

Proof of Step 6. The statement follows from the Bauer Maximum Principle [2, Corollary 7.75], after observing
that z (X, ·) is explicitly quasiconvex. In fact, z (X, `1) < z (X, `2) implies z (X,λ`1 + (1− λ) `2) <

z (X, `2) for all `1, `2 ∈ L and λ ∈ (0, 1). Specifically, `−1
1 (EP (`1 (−X))) < `−1

2 (EP (`2 (−X))) implies

EP (`1 (−X)) < `1
(
`−1
2 (EP (`2 (−X)))

)
27That is both quasiconvex and quasiconcave.
28Take a version of X such that −X (Ω) ⊆ [a, b], since `n → ` uniformly on [a, b], then 0 ≤

∫
|`n (−X)− ` (−X)| dP ≤

supω∈Ω |`n (−X (ω))− ` (−X (ω))| ≤ supx∈[a,b] |`n (x)− ` (x)| → 0.
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thus

EP ((λ`1 + (1− λ) `2) (−X)) = λEP (`1 (−X)) + (1− λ) EP (`2 (−X))

< λ`1
(
`−1
2 (EP (`2 (−X)))

)
+ (1− λ) `2

(
`−1
2 (EP (`2 (−X)))

)
= (λ`1 + (1− λ) `2)

(
`−1
2 (EP (`2 (−X)))

)
hence (λ`1 + (1− λ) `2)−1 EP ((λ`1 + (1− λ) `2) (−X)) < `−1

2 (EP (`2 (−X))), as wanted. �

Step 7. RL (t, Q) = max`∈L `−1
(

maxx≥0

[
xt− EP

(
`∗
(
xdQdP

))])
for all (t, Q) ∈ R×M1.

Proof of Step 7. By Step 2, Step 4, Step 5, and Lemma 4, it follows that

RL (t, Q) = inf {ρL (Y ) : EQ (−Y ) = t} ∀ (t, Q) ∈ R×M1.

By Step 1, Step 3, the Sion Minimax Theorem [47, Corollary 3.3], and Proposition 12, it follows that

RL (t, Q) = inf
X∈{Y ∈L∞:EQ(−Y )=t}

max
`∈L

z (X, `) = max
`∈L

inf
X∈{Y ∈L∞:EQ(−Y )=t}

z (X, `)

= max
`∈L

inf
X∈{Y ∈L∞:EQ(−Y )=t}

`−1 (EP (` (−X))) = max
`∈L

`−1

(
max
x≥0

[
xt− EP

(
`∗
(
x
dQ

dP

))])
.

�

Finally, (a) follows from Steps 2, 4, and 5, (b) is Step 6, (c) is Step 7. �

In particular, observe that the case where L finite is encompassed by point (b).

6 Final Remarks

Though for mathematical convenience we considered quasiconvex risk measures defined on L∞ (Ω,A, P ), a
parallel analysis can be carried out in any function space with unit,29 like for example the space B (Ω,A) of
bounded and measurable functions and the space Cb (Ω) of bounded and continuous functions (provided Ω
is a topological space).

A more delicate case is the one of quasiconvex risk measures defined on Lp (Ω,A, P ) for p ∈ [1,∞); here
the results of Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio (2008b) no longer apply directly. In
view of the importance of these spaces in mathematical finance, in Appendix A we show that a more general
version of the key Lemma 4 can be proved for these spaces. This is another novel technical contribution of
this paper.

A Unbounded Random Variables

In this appendix we generalize Lemma 4 to any Lp space with p ≥ 1. The generalization goes in two
directions: unbounded random variables are allowed and the requirement of upper semicontinuity is relaxed.

We adhere to the notation and terminology previously used. For p ∈ [1,∞), the topological dual
Lp (Ω,A, P )∗ of Lp (Ω,A, P ) is isometrically isomorphic to Lq (Ω,A, P ) with q−1 + p−1 = 1, which in
turn can be identified with the subspace of all countably additive set functions on A that are absolutely
continuous with respect to P and whose Radon-Nykodim derivative is q-integrable. The subset of countably
additive probabilities with q-integrable density is denoted by

M1,q =
{
Q ∈M1 :

dQ

dP
∈ Lq

}
∀p ∈ [1,∞)

29That is, in any Riesz space of functions with order unit and endowed with the supnorm. This is the general setup of

Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio (2008b).
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while M1,q = M1,f if p = ∞. Like in the p = ∞ case, given X ∈ Lp (Ω,A, P ) and µ ∈ Lp (Ω,A, P )∗, we

indifferently write: µ (X),
∫
Xdµ

(
=
∫
X
dµ

dP
dP

)
, or even Eµ (X) if µ can be identified with an element of

M1,q (Ω,A, P ).
A subset C of Lp, is evenly convex if and only if for each X̄ 6∈ C there exists a linear and continuous

functional µ on Lp such that
µ
(
X̄
)
< µ (X) ∀X ∈ C.

Clearly, evenly convex sets are convex and the intersections of evenly convex sets are evenly convex. Moreover,
by standard separation results, it follows that if a set is open (or closed) and convex, then it is evenly convex.

A risk measure now is a decreasing function ρ : Lp → [−∞,∞] and we consider the following quasicon-
vexity property:

Even Quasiconvexity The set {X ∈ Lp : ρ (X) ≤ α} is evenly convex for all α ∈ R.

Clearly, evenly quasiconvex risk measures are quasiconvex and it is easy to show that quasiconvex upper
semicontinuous risk measures (the ones considered in Lemma 4) are evenly quasiconvex.

In order to provide a generalization of Lemma 4, we have to introduce a new class of functions: R (R×M1,q)
for all q ∈ [1,∞]. Set R� = R \ {0}. A subset C of R ×M1,q is �-evenly convex if and only if for each(
t̄, Q̄

)
∈ (R×M1,q) \ C there exists (s,X) ∈ R� × Lp such that

t̄s+ EQ̄ (X) < ts+ EQ (X) ∀ (t, Q) ∈ C.

Analogously, a functionR : R×M1,q → [−∞,∞] is �-evenly quasiconcave if and only if the set {(t, Q) ∈ R×M1,q : R (t, Q) ≥ α}
is �-evenly convex for all α ∈ R. Finally, R (R×M1,q) denotes the class of functions R : R×M1,q →
[−∞,∞] that are �-evenly quasiconcave, increasing in the first component, and such that inft∈R R (t, Q) =
inft∈R R (t, Q′) for all Q,Q′ ∈M1,q.30

We are now ready to state the anticipated generalization of Lemma 4. Let us remark that while the case
p =∞ follows from the results of Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio (2008b), this is
not the case if p ∈ [1,∞).

Theorem 14 A function ρ : Lp → [−∞,∞] is an evenly quasiconvex risk measure if and only if there exists
R ∈ R (R×M1,q) such that

ρ (X) = sup
Q∈M1,q

R (EQ (−X) , Q) ∀X ∈ Lp. (25)

The function R ∈ R (R×M1,q) for which (25) holds is unique and satisfies

R (t, Q) = inf {ρ (X) : EQ (−X) = t} ∀ (t, Q) ∈ R×M1,q. (26)

Proof. If p =∞, notice that L∞ is a normed Riesz space with order unit IΩ, M1,f is the positive unit ball
of its topological dual, and −ρ is an evenly quasiconcave, and monotone increasing function. The statement
then follows from Lemma 8 and Theorem 2 of Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio
(2008b).

Else, if p ∈ [1,∞), then Lp is a normed Riesz space, but it does not admit an order unit and M1,q is
not the positive unit ball of its topological dual. Therefore, we cannot invoke the previous results. Next we
provide a direct proof.

30For p =∞, R
(
R×M1,f

)
⊇ R0

(
R×M1,f

)
⊇ R1

(
R×M1,f

)
.
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“Only if.” Suppose ρ is evenly quasiconvex and define R by (26). By the argument we used in footnote
21,

R (t, Q) = inf {ρ (Y ) : EQ (−Y ) ≥ t} ∀ (t, Q) ∈ R×M1,q.

In particular, for each X ∈ Lp

ρ (X) ≥ R (EQ (−X) , Q) ∀Q ∈M1,q (27)

thus
ρ (X) ≥ sup

Q∈M1,q

R (EQ (−X) , Q) ∀X ∈ Lp. (28)

Fix X̄ ∈ Lp. If X̄ is not a global minimum, then there is a sequence {rn}n∈N ⊆ R that tends to ρ
(
X̄
)

and
such that X̄ /∈ {ρ ≤ rn} 6= ∅ for all n ∈ N. Let k ∈ N. Since {ρ ≤ rk} is evenly convex, there exists µk in the
topological dual of Lp such that µk

(
X̄
)
< µk (X) for all X ∈ {ρ ≤ rk}. Without loss of generality, µk can

be identified with an element Qk ofM1,q.31 It follows that, {ρ ≤ rk} ⊆
{
X ∈ Lp : EQk

(−X) < EQk

(
−X̄

)}
,

that is, {ρ > rk} ⊇
{
X ∈ Lp : EQk

(−X) ≥ EQk

(
−X̄

)}
. Thus, R

(
EQk

(
−X̄

)
, Qk

)
≥ rk and

ρ
(
X̄
)
≥ sup
Q∈M1,q

R
(
EQ
(
−X̄

)
, Q
)
≥ R

(
EQk

(
−X̄

)
, Qk

)
≥ rk

for all k ∈ N. Passing to the limits, this implies equality in (28).
It only remains to show that R ∈ R (R×M1,q). Let Q ∈M1,q. If t ≥ t′ then {X ∈ Lp : EQ (−X) ≥ t} ⊆

{X ∈ Lp : EQ (−X) ≥ t′}. This implies thatR (t, Q) ≥ R (t′, Q). Next, observe thatR (t, Q) ≥ infX∈Lp ρ (X)
for all (t, Q) ∈ R × M1,q. Hence, inft∈R R (t, Q) ≥ infX∈Lp ρ (X) for all Q ∈ M1,q. Conversely, con-
sider {Xn}n∈N ⊆ Lp such that ρ (Xn) ↓ infX∈Lp ρ (X). For all Q ∈ M1,q, ρ (Xn) ≥ R (EQ (−Xn) , Q) ≥
inft∈R R (t, Q) for all n ∈ N. This implies that inft∈R R (t, Q) ≤ infX∈Lp ρ (X) for all Q ∈ M1,q. It follows
that

inf
t∈R

R (t, Q) = inf
X∈Lp

ρ (X) = inf
t∈R

R (t, Q′) ∀Q,Q′ ∈M1,q.

Finally, we show that (t, Q) 7→ R (t, Q) is �-evenly quasiconcave. Fix α ∈ R and define

Uα = {(t, Q) ∈ R×M1,q : R (t, Q) ≥ α} .

Suppose that Uα is neither empty nor R ×M1,q. Pick
(
t̄, Q̄

)
∈ R ×M1,q such that

(
t̄, Q̄

)
/∈ Uα. Then, it

follows that R
(
t̄, Q̄

)
< α. This implies that there exists X̄ ∈ Lp such that EQ̄

(
−X̄

)
≥ t̄ and ρ

(
X̄
)
< α.

But R (t, Q) ≥ α for all (t, Q) ∈ Uα, which implies that EQ
(
−X̄

)
< t for all (t, Q) ∈ Uα.32 This, in turn,

implies that
t̄+ EQ̄

(
X̄
)
≤ 0 < t+ EQ

(
X̄
)
∀ (t, Q) ∈ Uα

as wanted.

“If.” Suppose (25) holds. We first prove that ρ is evenly quasiconvex. Pick α ∈ R. We prove that
{ρ ≤ α} is evenly convex. If {ρ ≤ α} = Lp or {ρ ≤ α} = ∅ then there is nothing to prove. Otherwise,
let X̄ /∈ {ρ ≤ α}. By (25), there exists Q̄ ∈ M1,q for which R

(
EQ̄
(
−X̄

)
, Q̄
)
> α. Let X ∈ {ρ ≤ α}.

Suppose, by contradiction, that EQ̄ (X) ≤ EQ̄
(
X̄
)
. Then, since R is increasing in the first component,

ρ (X) ≥ R
(
EQ̄ (−X) , Q̄

)
≥ R

(
EQ̄
(
−X̄

)
, Q̄
)
> α, a contradiction. In other words, there exists Q̄ ∈ M1,q

such that EQ̄
(
X̄
)
< EQ̄ (X) for all X ∈ {ρ ≤ α}. Next, suppose that X,Y ∈ Lp and X ≥ Y . Then,

31First, observe that µk is a positive linear functional. Let X ∈ {ρ ≤ rk}, for each Y ∈ Lp+ and all n ∈ N, ρ (X + nY ) ≤ ρ (X)

and X + nY ∈ {ρ ≤ rk}. Therefore, µk
(
X̄
)
< µk (X + nY ) = µk (X) + nµk (Y ) for all n ∈ N. This implies µk (Y ) ≥ 0.

Moreover, denoting by dµk/dP the Lq representative of µk, µk 6= 0 implies µk (IΩ) =
∫
Ω (dµk/dP ) dP = ‖dµk/dP‖1 > 0.

Finally, set Qk = µk/µk (IΩ).
32EQ′

(
−X̄

)
≥ t′ for some (t′, Q′) ∈ Uα would imply R (t′, Q′) ≤ ρ

(
X̄
)
< α, a contradiction.
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EQ (X) ≥ EQ (Y ) for all Q ∈ M1,q and R (EQ (−X) , Q) ≤ R (EQ (−Y ) , Q) for all Q ∈ M1,q. By (25),
ρ (X) ≤ ρ (Y ), proving that ρ is a risk measure.

Finally, assume that ρ admits representation (25) for some R ∈ R (R×M1,q). In order to prove unique-
ness it is sufficient to show that R satisfies (26).

Claim. For each
(
t̄, Q̄

)
∈ R×M1,q,

R
(
t̄, Q̄

)
= sup
Q∈M1,q

(
inf

X∈{Y ∈Lp:EQ̄(−Y )≥t̄}
R (EQ (−X) , Q)

)
. (29)

Proof of the Claim. Consider the program

π
(
Q, Q̄, t̄

)
= inf
X∈{Y ∈Lp:EQ̄(−Y )≥t̄}

R (EQ (−X) , Q)

with Q ∈ M1,q. It is sufficient to show that π
(
Q, Q̄, t̄

)
≤ π

(
Q̄, Q̄, t̄

)
= R

(
t̄, Q̄

)
for all Q ∈ M1,q. For the

second equality just notice that, since R is increasing in the first component,

π
(
Q̄, Q̄, t̄

)
= inf
X∈{Y ∈Lp:EQ̄(−Y )≥t̄}

R
(
EQ̄ (−X) , Q̄

)
≥ R

(
t̄, Q̄

)
.

Furthermore, since Q̄ ∈ M1,q, there exists Ȳ ∈ Lp such that EQ̄
(
−Ȳ
)

= t̄ implying the inverse inequality.
Next, fix Q ∈M1,q. We have two cases:

• Suppose Q ∈ span
(
Q̄
)
. Then, Q = αQ̄ for some α ∈ R. Since Q, Q̄ ∈ M1,q, we have that α = 1. It

follows that Q = Q̄ and π
(
Q, Q̄, t̄

)
= π

(
Q̄, Q̄, t̄

)
= R

(
t̄, Q̄

)
.

• Suppose Q 6∈ span
(
Q̄
)
. By the Fundamental Theorem of Duality (see, e.g., Aliprantis and Border,

2006), ker
(
Q̄
)

* ker (Q). That is, there exists Z ∈ Lp such that EQ̄ (Z) = 0 and EQ (Z) 6= 0. Choose
Ȳ ∈ Lp such that EQ̄

(
Ȳ
)

= −t̄, then the straight line Ȳ + αZ is thus included into the hyperplane{
Y ∈ Lp : EQ̄ (−Y ) = t̄

}
. Hence, since R belongs to R (R×M1,q),

π
(
Q, Q̄, t̄

)
≤ inf
α∈R

R
(
EQ
(
−Ȳ − αZ

)
, Q
)

= inf
t∈R

R (t, Q) = inf
t∈R

R
(
t, Q̄

)
≤ R

(
t̄, Q̄

)
.

In sum, π
(
Q, Q̄, t̄

)
≤ R

(
t̄, Q̄

)
for all Q ∈M1,q and π

(
Q̄, Q̄, t̄

)
= R

(
t̄, Q̄

)
. �

Let
(
t̄, Q̄

)
∈ R×M1,q. Observe that

inf
{
ρ (X) : EQ̄ (−X) = t̄

}
= inf

{
ρ (X) : EQ̄ (−X) ≥ t̄

}
= inf
X∈{Y ∈Lp:EQ̄(−Y )≥t̄}

sup
Q∈M1,q

R (EQ (−X) , Q) .

By the Claim, R
(
t̄, Q̄

)
= supQ∈M1,q

(
infX∈{Y ∈Lp:EQ̄(−Y )≥t̄}R (EQ (−X) , Q)

)
. The general maxmin in-

equality implies

R
(
t̄, Q̄

)
= sup
Q∈M1,q

inf
X∈{Y ∈Lp:EQ̄(−Y )≥t̄}

R (EQ (−X) , Q) ≤ inf
X∈{Y ∈Lp:EQ̄(−Y )≥t̄}

sup
Q∈M1,q

R (EQ (−X) , Q) ,

(30)
it remains to prove the converse inequality. If R

(
t̄, Q̄

)
= sup(t,Q)∈R×M1,q

R (t, Q), the equality in (30)
is easily checked. Otherwise, set α = R

(
t̄, Q̄

)
. We have α < ∞. Moreover, for each scalar β > α,

Uβ = {(t, Q) ∈ R×M1,q : R (t, Q) ≥ β} is �-evenly convex and
(
t̄, Q̄

)
6∈ Uβ . If β is small enough then Uβ is

neither empty nor R×M1,q.33 Therefore, there are X̄ ∈ Lp and s 6= 0 such that

st+ EQ̄
(
X̄
)
< st+ EQ

(
X̄
)

∀ (t, Q) ∈ Uβ . (31)

33Take (t′, Q′) such that R (t′, Q′) > R
(
t̄, Q̄

)
and set γ = R (t′, Q′). For all β ∈ (α, γ), (t′, Q′) ∈ Uβ and

(
t̄, Q̄

)
/∈ Uβ .
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Since R is increasing in the first component, it is easy to see that s > 0.34 Set λ = −t̄ − EQ̄
(
s−1X̄

)
and

X̂ = s−1X̄ + λ. It follows that EQ̄
(
X̂
)

= −t̄, and for each (t, Q) ∈ Uβ

st+ EQ
(
X̄
)
> st+ EQ̄

(
X̄
)

=⇒ EQ
(
s−1X̄ + λ

)
+ t > EQ̄

(
s−1X̄ + λ

)
+ t̄

=⇒ EQ
(
X̂
)

+ t > EQ̄
(
X̂
)

+ t̄

=⇒ EQ
(
X̂
)

+ t > 0.

Therefore, it follows that if 0 ≥ EQ
(
X̂
)

+ t then (t, Q) 6∈ Uβ . For each Q ∈ M1,q, set tQ = EQ
(
−X̂

)
,

then EQ
(
X̂
)

+ tQ = 0. Therefore, (tQ, Q) =
(
EQ
(
−X̂

)
, Q
)
6∈ Uβ for all Q ∈ M1,q. This implies

R
(
EQ
(
−X̂

)
, Q
)
< β for all Q ∈M1,q. Since X̂ ∈

{
Y ∈ Lp : EQ̄ (−Y ) ≥ t̄

}
, we have that

α ≤ inf
X∈{Y ∈Lp:EQ̄(−Y )≥t̄}

sup
Q∈M1,q

R (EQ (−X) , Q) ≤ sup
Q∈M1,q

R
(
EQ
(
−X̂

)
, Q
)
≤ β.

This is true for each β in a right neighborhood of α, thus infX∈{Y ∈Lp:EQ̄(−Y )≥t̄} supQ∈M1,q
R (EQ (−X) , Q) =

α, as desired. �
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[30] G. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge University Press, Cambridge, 1934.

[31] E. Jouini, W. Schachermayer, and N. Touzi, Law invariant risk measures have the Fatou property,
Advances in Mathematical Economics, 9, 49–71, 2006.

27



[32] E. Jouini, W. Schachermayer, and N. Touzi, Optimal risk sharing for law invariant monetary utility
functions, Mathematical Finance, 18, 269–292, 2008.

[33] M. Kupper and W. Schachermayer, Representation results for law invariant time consistent functions,
preprint, Vienna Institute of Finance, Vienna, 2008.

[34] A. N. Kolmogorov, Sur la notion de la moyenne, Atti della R. Accademia Nazionale dei Lincei, 12,
388–391, 1930.

[35] S. Kusuoka, On law invariant coherent risk measures, Advances in Mathematical Economics, 3, 83–95,
2001.

[36] J. Leitner, A short note on second-order stochastic dominance preserving coherent risk measures, Math-
ematical Finance, 15, 649–651, 2005.

[37] W. A. J. Luxemburg, Rearrangement-invariant Banach function spaces, Queen’s Papers in Pure and
Applied Mathematics, 10, 83–144, 1967.

[38] F. Maccheroni, M. Marinacci, and A. Rustichini, Ambiguity aversion, robustness, and the variational
representation of preferences, Econometrica, 74, 1447–1498, 2006.

[39] M. Marinacci and L. Montrucchio, Introduction to the mathematics of ambiguity, in Uncertainty in
Economic Theory, ed. by I. Gilboa, Routledge, New York, 2004.

[40] A.W. Marshall and I. Olkin, Inequalities: Theory of Majorization and its Applications, Academic Press,
New York, 1979.
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