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Abstract

We bring together the theories of duality and dynamic programming. We show that

the dual of a separable dynamic optimization problem can be recursively decomposed.

We provide a dual version of the principle of optimality and give conditions under

which the dual Bellman operator is a contraction with the optimal dual value function

its unique fixed point. We relate primal and dual problems, address computational

issues and give examples.
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1 Introduction

Many dynamic economic optimization problems have a recursive structure that makes

them amenable to solution via dynamic programming. This structure allows the original

problem to be decomposed into a family of simpler sub-problems linked by state variables.

The set of state variables consistent with a non-empty constraint correspondence is called
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the "effective" state space and is a key component of a problem’s recursive formulation. In

many settings the effective state space is not given explicitly: it must be recovered as part

of the solution to the problem. This complicates the application of dynamic programming

methods and, following Marcet and Marimon (2011), has prompted economists to adopt

recursive formulations that replace or supplement standard "primal" state variables with

"dual" ones. Examples include, inter alia, Kehoe and Perri (2002), Marimon and Quadrini

(2006), Acemoğlu, Golosov, and Tsyvinski (2010), Chien, Cole, and Lustig (2011) and Aiya-

gari, Marcet, Sargent, and Seppälä (2002). Despite their widespread use, thorough analysis

of these methods is limited and their application has often been ad hoc. This paper devel-

ops a new recursive dual approach to dynamic optimization that blends elements of the

theories of duality and dynamic programming. It shows that (i) a large class of dynamic

optimization problems in economics have recursive duals, (ii) such recursive duals relo-

cate the analysis to a more convenient dual state space that is often easy to characterize

and (iii) the associated dual Bellman operator is contractive on an appropriate function

space. Sufficient conditions for the dual and, hence, the recursive dual to characterize the

solution of the original (primal) problem are given. For situations in which these sufficient

conditions are not satisfied, a numerical check of optimality is proposed. Numerical im-

plementation of the recursive dual method is discussed and various economic examples

and applications provided.

The paper begins with a family of recursive (primal) optimizations that encompasses

many economic applications. These optimizations feature objective and constraint func-

tions that can be expressed in terms of recursively-evolving "summaries" of past and future

actions. In the context of particular applications, such summaries have interpretations as

capital, utility promises or inflation; they may be backward-looking (i.e. functions of past

actions and shocks and an initial condition) or forward-looking (i.e. functions of future

actions). In recursive formulations of primal problems, they serve as state variables. Pri-

mal optimization problems may be re-stated using a Lagrangian. In the re-stated problem

a sup-inf operation over choices and Lagrange multipliers replaces a sup operation over

choices alone. By interchanging the sup and inf operations a dual inf-sup problem is ob-

tained. We show that if the correct Lagrangian is chosen, the recursive structure of the

primal is inherited by the dual with, in the latter case, co-states (i.e. multipliers on laws of

motion for primal states) serving as dual state variables.

We use this structure to recover a dual Bellman operator. The dual Bellman updates

candidate value functions via "inf-sup" operations over Lagrange multipliers and actions.

Specifically, at each dual state and current multiplier combination, an "inner" supremum

operation is performed over current actions. Then, at each current dual state, an outer in-
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fimum operation over multipliers gives the updated value function. We show that without

further assumptions the dual Bellman gives necessary conditions for optimal dual values

and policies and, under mild additional restrictions, sufficient conditions for such values

and policies. In short, we recover a dual principle of optimality. The key step in the deriva-

tion is an interchange of an infimum operation over future multipliers with a supremum

operation over current actions. To ensure this interchange does not modify values or solu-

tions (in the absence of further assumptions), it is essential to associate a Lagrangian with

the problem that is rich enough to allow all non-linearities in constraints and in the objec-

tive to be contained in the Lagrangian’s "current" terms. In general this requires explicitly

incorporating laws of motion for primal state variables into the Lagrangian.

An attractive aspect of the recursive dual is that in some important cases, in particular,

when the primal state space is bounded, the "effective" dual state space is readily identified

as all of RN, where N is the number of dual state variables. Thus, for the dual problem,

the difficulty of determining the state space is resolved. In addition, dual value functions

are positively homogenous of degree one. Consequently, in calculations, the dual state

space may be identified with the unit circle (in RN).

The recursive dual features an unbounded value function and an unbounded con-

straint correspondence. This combination creates a challenge for the standard approach

to establishing contractivity of the Bellman operator. For problems with unbounded value

functions, a common procedure following Wessels (1977), is to show that there is a set

of functions closed and bounded with respect to a more permissive weighted sup norm1

that contains the optimal value function and on which the Bellman is a contractive self-

map. However, this approach requires that the continuation state variables and, hence,

the continuation value function cannot vary "too much" on the graph of the constraint

correspondence. Since the dual Bellman operator permits the choice of multipliers from

an unbounded set, this condition is only guaranteed in the dual setting if additional non-

binding constraints on multipliers are found. Instead, we show that the Bellman is contrac-

tive with respect to an alternative metric on a space of functions sandwiched between two

(unbounded) functions.2 We show through examples that such bounding functions are of-

ten available. A further difficulty is that the unboundedness and, hence, non-compactness

of the set of feasible multipliers disrupts the application of the Theorem of the Maximum.

However, it is easy to show that the optimal value function is convex. When it is every-

1A weighted sup norm on a set of functions F with common domain X is a function ‖ · ‖w : F → R of

the form ‖ f‖w = supX

∣

∣

∣

f (x)
w(x)

∣

∣

∣
for some w : X → R++.

2The argument combines the concavity of the dual Bellman, properties of the metric and of the sandwich.
It adapts ideas of Rinćon-Zapatero and Rodríguez-Palmero (2003). The novelty lies in the application of this
argument to the dual setting to which it seems very suited.
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where real-valued as well, appeals can be made to the continuity properties of convex

functions to establish continuity of the optimal value function.

The recursive dual formulation permits solution of the dual rather than the original

primal problem. It remains to relate them. Weak duality results imply that the dual and,

hence, the recursive dual supplies an upper bound for payoffs from the primal problem.

Consequently, with no further assumptions the recursive dual gives welfare bounds for

optimal policies or policy improvements. For concave problems, possibly after relaxation

of the equality constraints describing laws of motion for state variables, we may appeal

directly to known duality results to relate the dual (and, hence, again the recursive dual)

more tightly to the original primal. These results give sufficient conditions on primitives

for dual and primal values and, sometimes, solutions to coincide. When theoretical suf-

ficient conditions for equality of dual and primal values and solutions are not available,

because, for example of non-concavities, we propose a numerical procedure for checking

whether a dual solution solves the original primal problem.

The paper proceeds as follows. After a brief literature review, Section 2 introduces a

general class of stochastic, infinite-horizon problems. Economic examples are given in Sec-

tion 3. Section 4 presents a primal recursive formulation for a sub-class of these problems

and points out difficulties in applying it. In Section 5, the primal problem is paired with

a dual problem and a recursive formulation of the latter obtained. A Bellman-type princi-

ple of optimality for the dual problem is established; Section 6 gives a contraction result

for recursive dual problems. The important class of problems with laws of motion and

constraints that are quasi-linear in (primal) states is considered in Section 7. Section 8 re-

lates primal and dual problems. Numerical implementation is discussed and a numerical

example given in Section 9.

Literature Our method is related to, but distinct from, that of Marcet and Marimon (1999)

(revised: Marcet and Marimon (2011)). These authors propose solving dynamic opti-

mizations by recursively decomposing a saddle point operation. They restrict attention to

concave problems with constraints (including laws of motion) that are linear in forward-

looking state variables. They substitute forward-looking states out of the problem using

their laws of motion and absorb a subset of constraints into a Lagrangian. Laws of motion

for backward-looking primal states (e.g. capital) are left as explicit restrictions. They then

recursively decompose a saddle point of this Lagrangian (on the constraint set defined by

the backward-looking laws of motion).

In contrast, our approach cleanly separates dualization of the primal from recursive

decomposition of the dual and shows that the latter is available under rather weak sep-
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arability conditions, much weaker than those imposed by Marcet and Marimon (2011).

Our theoretical sufficient conditions for equality of optimal dual and primal values and

solutions are stronger than those guaranteeing recursive decomposition. However, even

here we can dispense with several of Marcet-Marimon’s restrictions. The requirements

that constraints are linear in forward-looking state variables and that every continuation

problem has a saddle can be dropped. Moreover, when these theoretical conditions are

not satisfied, we propose a numerical procedure for checking primal optimality of a dual

solution.

For some problems, Marcet and Marimon (2011)’s recursive saddle Bellman operator is

available and resembles our dual Bellman.3 In others, it is not available or is available, but

is quite different from ours. In particular, all of the examples considered in this paper either

cannot be handled by Marcet and Marimon (2011)’s formulation or would be handled

differently. The difference in the handling of backwards-looking state variables across

our approach and that of Marcet and Marimon (2011) is not a detail. Our treatment of

these variables is essential for the contractivity of the dual Bellman. This result relies on

the concavity of the Bellman operator, which is always true for our formulation, but not

theirs.4

Messner, Pavoni, and Sleet (2012b) consider the relationship between primal and dual

Bellman operators. They restrict attention to concave problems without backward-looking

state variables and with laws of motion that are linear in forward-looking ones. Thus,

their setting is much less general than the present one; it excludes many economically rel-

evant problems such as default with capital accumulation, risk sharing with non-expected

utility and optimal monetary policy, all of which are considered here. In addition, they

do not provide contraction results or a numerical implementation. In a similar setting to

Messner, Pavoni, and Sleet (2012b), Cole and Kubler (2012) show how recursive methods

using dual variables may be extended to give sufficient conditions for an optimal primal

solution under weak concavity conditions. In addition, they derive a contraction result

using a weighted sup-norm. They do so by obtaining additional non-binding constraints

on multipliers and, hence, continuation states. However, the restrictions on primitives for

these additional constraints to be non-binding appear strong.

3However, even in these cases, our Bellman operator implements a fairly straightforward inf-sup opera-
tion, whereas theirs involves a more difficult saddle point operation.

4Underpinning this is the fact that our dual formulation relies entirely on dual state variables; Marcet
and Marimon (1999) dualize a subset of constraints and rely on a mixture of dual and primal state variables.
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2 Decision Maker’s Problem

This section describes an abstract recursive choice problem that can be specialized to give

many problems considered in the literature. In particular, it encompasses many dynamic

contracting and optimal policy problems. Concrete examples are given in Section 3.

Shocks and Action Plans Let S = {1, . . . , ns}, with element s, denote a finite set of

shocks.5 Shock histories of length t = 1, . . . , ∞ are denoted st ∈ S t. Let A ⊂ Rna , with

element a, denote a set of actions available to a decision-maker. The decision-maker’s

action choices at each history are collected into an action plan: α = {at}∞
t=0, with a0 ∈ A

and, ∀t ∈ N, at : S t → A. The st-continuation of an action plan α is denoted α|st =

{at+τ(st, ·)}∞
τ=0. Plans are restricted to a set A ⊂ 2A

∞
such that if α ∈ A , then for all t and

st, α|st ∈ A . Let R(S) denote the set of probability distributions on S and Q : S × A →

R(S) a transition that maps current shock-action pairs to probability distributions over

the subsequent period’s shocks. Together Q, a seed shock s0 and an action plan α induce

a probability distribution over shocks and actions in all periods.

Constraints The set A is supplemented with additional constraints involving explicit

functions of actions. These functions depend on recursively evolving "summaries" of

past and future actions. Such summaries serve as states in primal recursive formula-

tions, where they often have concrete economic interpretations as, inter alia, capital stocks,

utility promises or inflation rates. In the dual setting multipliers on the laws of motion for

these summaries will serve as states.

We distinguish between summaries of past and future actions. Let K ⊂ Rnk be a

bounded set. Given a plan α, summaries of past actions and shocks Kt+1(α, st) are con-

structed recursively from a function WK : K ×S ×A → K according to:

Kt+1(α, st) = WK[Kt(α, st−1), st, at(s
t)], (1)

with K0(α, s−1) = k̄ an initial seed state. In the sequel, we call summaries of past actions

and shocks backward-looking state variables. In many economic models physical or human

capital are naturally formalized as a backward-looking state variables.

Summaries of future actions V(st, α|st) ∈ Rnv+1 are constructed recursively from a pair

of functions WV : S × A ×Rnv+1 → Rnv+1 and MV : S × A ×Rns(nv+1) → Rnv+1. The

first is a time aggregator that gives the current summary as a function of current actions

5The restriction to a finite set of shocks streamlines our presentation by avoiding measure-theoretic com-
plications, but is not essential for our main results.
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and a certainty equivalent of future summaries; the second is a stochastic aggregator that

generates the certainty equivalent. Future summaries are given by a function V : S ×A →Rnv+1 satisfying the fixed point condition:

V(st, α|st) = WV [st, at(s
t), MV [st, at(s

t), V ′(α|st)]]. (2)

where V ′(α|st) = {V(s, α|(st, s))}ns
s=1 ∈ R(nv+1)ns is a vector of continuation summaries.

In many examples, V gives the continuation payoffs of a group of agents facing incen-

tive constraints. If these agents have time additive-expected utility preferences, then

WV [s, a, m] = f (s, a) + δm and MV [s, a, v′] = ∑s′∈S v′(s′)Q(s|s′). However, our formu-

lation allows us to accommodate problems in which agents have non-time additive or

non-expected utility preferences or, indeed, problems in which the forward-looking vari-

ables are not payoffs at all (see Section 3).

To ensure the future summaries V(st, α|st) are well defined and that (2) admits a fixed

point in a suitable space of functions, the following restrictions are imposed on WV and

MV .

Assumption 1. WV is increasing and continuous in its third argument. WV [·, ·, 0] is bounded

and there is a δ̄ ∈ [0, 1) such that for all m and m′ ∈ Rnv+1:

sup
S×A

‖WV [s, a, m]− WV [s, a, m′]‖ < δ̄‖m − m′‖,

with ‖ · ‖ the Euclidean metric (on Rnv+1).

If v′ ∈ Rns(nv+1) and κ ∈ Rnv+1, then we will write v′+ κ for v′+ (κ κ · · · κ) ∈ Rns(nv+1).

Assumption 2. For each (s, a) ∈ S × A and κ ∈ Rnv+1, (i) MV [s, a, ·] is increasing, (ii)

MV [s, a, κ] = κ and (iii) MV [s, a, ·] is constant sub-additive: for all v′ ∈ Rns(nv+1), MV [s, a, v′ +

κ] ≤ MV [s, a, v′] + κ.

Existence and uniqueness of a bounded function V satisfying (2) follows from Assump-

tions 1 and 2 and is shown in Appendix A. In the remainder of the paper, summaries of

future actions V(st, α|st) are called forward-looking state variables. Let V := V(S × A ), i.e.

V is the (bounded) codomain of V.

Constraints are constructed from state variables according to for all t ∈ {0} ∪N, st ∈ S

and st ∈ S t,

H[Kt(α, st−1), st, at(s
t), V ′(α|st)] ≥ 0, (3)

7



where H : K × S × A × Vns → Rnh is bounded. In applications these inequalities cap-

ture incentive and resource constraints. We assume throughout that the decision-maker’s

constraint set is non-empty for some combination of initial state variables.

Objective and Problem The decision-maker’s objective, U : S × A → R, is given by an

aggregator over the forward-looking state variables:

U(s0, α) = F[s0, V(s0, α)],

where F[s0, ·] is non-decreasing. For example, V(s0, α) = {Vi(st, α|st)}nv
i=0 ∈ Rnv+1 may

give the payoffs of agents i = 0, . . . , nv and F may attach (possibly state contingent) Pareto

weights to these agents. U is then interpreted as a planner’s payoff.

The decision-maker’s primal problem is:

P∗ = sup F[s0, V(s0, α)] (P)

subject to ∀t, st, (3). We follow the usual convention sup ∅ = −∞.

3 Examples and Variations

Our framework accommodates many examples from the literature. Below we give three

that highlight the scope of our method. The first is a limited commitment problem similar

to that studied by Kocherlakota (1996) except that we assume agents have non-expected

utility Epstein-Zin preferences. Consequently, the law of motion for forward-looking

states, in this case the agents’ utilities, is non-linear in V ′. The next example is a lim-

ited commitment problem with physical capital (and standard preferences); it features a

backward-looking state variable. The third is an optimal monetary policy problem similar

to those considered in Woodford (2003). This problem also features a non-linear law of

motion for the forward-looking state variables. All of these examples are outside of the

formulation of Messner, Pavoni, and Sleet (2012b) (which features no backward-looking

states and linear laws of motion for forward-looking ones) and Marcet and Marimon

(2011) (which allows for backward-looking states, but also assumes linear laws of mo-

tion for forward-looking ones and restricts attention to concave problems). In addition,

Marcet and Marimon (2011) treat backward-looking states quite differently to us.

Example 1 (Risk sharing with limited commitment and Epstein-Zin preferences). Two agents

share risk. They face shocks to their endowments and to their utility options from separa-
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tion. Let γ : S → R+ give the joint endowment of the agent pair in each shock state and

w : S → R2, w(s) = {wi(s)}i=1,2, their outside utility options. Let A = R2
+ denote a set of

possible consumptions for the agents. There are no backward-looking state variables. The

continuation payoffs of the two agents, Vi(s, α), i = 0, 1, constitute forward-looking state

variables. They evolve according to Equation (2) with aggregators:

WV [s, a, m] =
( 1 − δ

1 − µ
(ai)1−µ + δmi

)

i=0,1
MV [s, v′] =

({

∑
s′∈S

vi′(s′)σQ(s|s′)
}

1
σ
)

i=0,1
.

Boundedness and concavity of these aggregators is assured if µ, σ ∈ (0, 1). The resource

and incentive constraints are collected into a single function:

H[s, a, v′] =

(

WV [s, a, MV [s, v′]]− w(s)

γ(s)− ∑
2
i=1 ai

)

≥ 0.

Finally, the decision-maker is a planner who attaches Pareto weight λi to the i-th agent.

Her objective is F[s0, V(s0, α)] = ∑
1
i=0 λiVi(s0, α). �

Example 2 (Default with capital accumulation). A lender (agent 0) extends credit to a bor-

rower (agent 1) who can accumulate capital and can default. Let a = (a0, a1) ∈ A ⊂R×R+ denote a pair of consumptions for the lender and the borrower. Their (bounded be-

low) utility functions are denoted f i(ai), i = 0, 1. The borrower operates a risky technology

γ : R+ × S → R+ that maps the capital stock and current shock to output. γ is assumed

bounded. The borrower is free to default and take an outside utility w : R+ × S → R
that depends upon the amount of capital she has sunk into the technology and the current

shock. The lender and borrower’s utilities and capital constitute forwards and backwards-

looking state variables with aggregators:

WV [s, a, m] =
(

f i(ai) + δmi
)

i=0,1
MV [s, v′] =

(

∑
s′∈S

vi′(s′)Q(s|s′)
)

i=0,1
;

and

WK[k, s, a] = γ(k, s)− ∑
i=0,1

ai.

The incentive ("no default") constraint is given by:

f 1(a1) + δ ∑
s′∈S

v1′(s′)Q(s|s′)− w(k, s) ≥ 0,
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and the resource constraint by:

WK[k, s, a] ≥ 0.

As in the previous example, these may be collected into a single function H. The objective

is given by the Pareto sum: F[s0, V(s0, α)] = ∑i=0,1 λiVi(s0, α). �

Example 3 (Optimal monetary policy). The government’s social objective over sequences of

output α = {at}∞
t=0 and inflation {∆pt}∞

t=0 is given by ∑
∞
t=0 δtL(at , ∆pt) with L : R2 → R

continuous.6 Output sequences are restricted to A := A∞, with A = [a, a] a bounded

interval. Inflation evolves according to a simple New Keynesian Philips Curve,

∆pt = κat + δ∆pt+1,

with the terminal condition limt→∞ ∑
∞
t=0 δt∆pt = 0. Consequently, given an output plan

α, inflation at t is ∆pt = V1(α|t) := κ ∑
∞
τ=0 δτat+τ and the government’s continuation pay-

off: V0(α|t) := ∑
∞
τ=0 δtL(at+τ , V1(α|t + τ)). The government’s payoff and inflation serve as

forward-looking state variables; there are no backward-looking state variables in this prob-

lem. Adopting our previous notation and letting v = (v0, v1) and v′ = (v0′, v1′) denote,

respectively, current and future pairs of payoff and inflation, the (non-linear) aggregator

WV is given by:

v = WV [a, v′] =
( L(a, κa + δv1′)

κa

)

+ δv′.

There is no H function in this case and the social objective is simply F[V(α)] = V0(α). �

3.1 Variations

Our framework also accommodates dynamic (hidden action) moral hazard problems with

general recursive preferences and the timing assumed in Hopenhayn and Nicolini (1997).7

Small modifications of our basic framework admit other economic problems considered in

the literature. We briefly describe two of these.

6We consider here the deterministic version of the problem as in Woodford (2003). In most of Woodford
(2003)’s examples L is a (concave) quadratic approximation to an underlying objective over primitives. For
now we place no such restrictions on L.

7Under this timing the public signal (a job or unemployment) of a hidden action (job search) is realized
in the period after the action is taken. Alternative timing assumptions are possible after modifications of
our framework. The modifications are similar to those described in the discussion of hidden information
problems below.
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Participation Constraints In some problems constraints are supplemented with addi-

tional restrictions on the initial values of forward-looking variables. For example, con-

tracting problems often place initial participation constraints on agents. Such constraints

are easily incorporated into our basic framework by appending the additional restriction:

WV [s0, a0, MV [s0, a0, V ′(α)]]− v̄ ≥ 0, (4)

where v̄ gives the player’s initial outside payoff option. Our basic formulation omits (4),

but we point out the small modifications needed to incorporate it.

Hidden Information problems In hidden information problems some or all agents pri-

vately observe a shock process. Without loss of generality attention may be restricted to

plans that induce agents to truthfully reveal their current shock. This requires incentive

constraints that "run across" contemporaneous shock states and, hence, the replacement of

H : K ×S ×A× Vns → Rnh with H̃ : K ×Ans ×Vns×ns → Rnh . For example, consider the

simplest case in which a firm induces a worker to reveal whether she is well (s = 1) or sick

(s = 2). The incentive constraints require that well workers reveal their health and are of

the form:

H̃[{at(s
t−1, s)}, {V ′(α|st−1, s)}] = u(1, at(s

t−1, 1)) + δ ∑
s′∈S

V(s′, α|st−1, 1, s′)Q(1, s′)

− u(1, at(s
t−1, 2))− δ ∑

s′∈S

V(s′, α|st−1, 2, s′)Q(1, s′) ≥ 0,

where at(st) ∈ A is now the bundle of consumption and effort prescribed after health

history st. In this case, WV [s, a, m] = u(s, a) + δm and MV [s, v′] = ∑s′∈S v′(s′)Q(s, s′). If

the health shocks are i.i.d., then MV [v′] = ∑s′∈S v′(s′)Q(s′) and it is more convenient to

redefine the forward-looking state as the certainty equivalent of V, i.e. as Ṽ(α|st−1) =

MV [V ′(α|st−1)]. Forward-looking states then evolve according to

Ṽ(α|st−1) = MV [WV [st, at(s
t), Ṽ(α|st)]]

and the constraints become:

H̃[{at(s
t−1, s)}, {Ṽ(α|st−1, s)}] = u(1, at(s

t−1, 1)) + δṼ(α|st−1, 1)

− u(1, at(s
t−1, 2))− δṼ(α|st−1, 2) ≥ 0.

Slightly modified versions of all the results given below hold with H̃ replacing H.
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4 Augmented Primal and a Recursive Primal Problem

We define an augmented primal problem in which state variables are introduced as explicit

choices rather than as functions of past actions. Our motive for introducing this problem

is that it, rather than the original one, is amenable to direct recursive decomposition. We

give a recursive formulation that decomposes the augmented problem into sub-problems

linked by state variables. The difficulties with this formulation motivate our subsequent

dual approach.

4.1 Augmented primal problem

Define a primal process π to be a plan α augmented with a process for backwards and

forward-looking states {kt, vt}∞
t=0. The set of primal processes is given by:

P =

{

π = (α, {kt, vt}
∞
t=0)

∣

∣

∣

∣

∣

α ∈ A , k0 ∈ K, ∀t ∈ N, kt : S t−1 → K,

v0 ∈ V , ∀t ∈ N, vt : S t → V

}

.

The augmented primal problem is:

sup F[s0, v0] (AP)

subject to π ∈ P , k0 = k̄ and ∀t, st,

kt+1(s
t) = WK[kt(s

t−1), st, at(s
t)], (5)

vt(s
t) = WV [st, at(s

t), MV [st, at(s
t), vt+1(s

t)]], (6)

and

H[kt(s
t−1), st, at(s

t), vt+1(s
t)] ≥ 0. (7)

Thus, the augmented primal problem (AP) re-expresses constraints in terms of state pro-

cesses.8 We record the following (obvious) fact.

Proposition 1. If P∗ is the optimal value for (P), then it is also the optimal value for (AP). α∗

solves (P) if and only if there is a state process {k∗t , v∗t }
∞
t=0 such that (α∗, {k∗t , v∗t }

∞
t=0) solves (AP).

8Participation constraints are incorporated by adding v0 ≥ v̄ to the constraint set.
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4.2 Recursive Primal Problem

In this section we give a recursive primal formulation of a principal-agent problem.9 In

such a problem, a committed principal possessing no private information designs a con-

tract to motivate a group of agents. A forward-looking variable V0 defining the principal’s

payoff function is the objective and does not enter the constraints. It is convenient to ex-

ploit this structure by separating the principal’s payoff V0 from the other forward-looking

variables (typically utility promises to agents) and redefining V := {Vi}nv
i=1 to exclude V0.

The problem becomes:

sup V0(s0, α)

subject to ∀t, st, (3) with V (and H, WV and MV) redefined. The augmented version of this

problem is:

sup V0(s0, α) (PA)

subject to π ∈ P , k0 = k̄ ∈ K and (5) to (7) with vt redefined to exclude v0
t , i.e. vt = {vi

t}
nv
i=1.

The aggregators WK, WV and MV may be used to decompose (PA) into a family of

sub-problems linked by elements in S , Rnk and Rnv . It is useful to identify "state spaces"

on which these sub-problems are well-posed (i.e. have non-empty constraint sets). To that

end define the "endogenous state space" X to be the largest subset of K×S ×V satisfying

the recursion:

X =











(k, s, v)

∣

∣

∣

∣

∣

∣

∣

∃(a, k′ , v′) ∈ A×K ×V , k′ = WK[k, s, a],

v = WV [s, a, MV [s, a, v′]], H[k, s, a, v′] ≥ 0,

and ∀s′ ∈ S , (k′, s′, v′(s′)) ∈ X











. (8)

Crucially, while K and V are given exogenously or are easy to find, X is often neither. In

addition, let:

Γ(k, s, v) =

{

(a, k′ , v′) ∈ A×K ×Vns

∣

∣

∣

∣

∣

k′ = WK[k, s, a], v = WV [a, s, MV [a, s, v′]],

H[k, s, a, v′] ≥ 0 and (k′ , s′, v′(s′)) ∈ X

}

.

Define:

V(k, s) = {v : (k, s, v) ∈ X}

9 The principal-agent problem is a special case of (P). The more general problem (P) also has primal
recursive formulations, see Kocherlakota (1996), Rustichini (1998) and, especially, Messner, Pavoni, and Sleet
(2012b), Section 7. However, since our goal here is to briefly review the recursive primal approach and
point out its limitations, we restrict ourselves to a recursive primal treatment of the simpler principal-agent
problem.
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and let WV,0 and MV,0 denote the time and stochastic aggregators for V0.

Proposition 2. Let P∗
0 ∈ R∪ {−∞} be the optimal value for problem (PA). Then:

P∗
0 = sup

V(k̄,s0)

P∗(k̄, s0, v0), (9)

where P∗ satisfies the recursion, for each (k, s, v) ∈ X ,

P∗(k, s, v) = sup
Γ(k,s,v)

WV,0[s, a, MV,0[s, a, P∗(k′, v′)]], (10)

with P∗(k′, v′) = {P∗(k′, s′, v′(s′))}ns
s′=1. In addition, (α∗, {k∗t , v∗t }

∞
t=0) solves (PA) if and only

if (i) k∗0 = k̄ and v∗0 ∈ G∗
0 and (ii) for all t ∈ N, st ∈ S t, (a∗t (s

t), k∗t+1(s
t), v∗t+1(s

t)) ∈

G∗(k∗t (s
t−1), st, v∗t (s

t−1)), where:

G∗
0 := argmax

V(k̄,s0)

P∗(k̄, s0, v) and

G∗(k, s, v) := argmax
Γ(k,s,v)

WV,0[s, a, MV,0[s, a, P∗(k′, v′)]].

Proof. See Appendix B.

Note that the role of the ‘first stage problem’ (9) is to provide an optimal initial condi-

tion v∗0 for the forward-looking state variables; (10) then gives the primal Bellman equation.

As Proposition 2 indicates X is generally part of the solution to the problem along with P∗
0

and P∗. Stokey, Lucas, and Prescott (1989) document problems in which X is determined

exogenously as a primitive of the problem. However, for many other problems, in particu-

lar those with forward-looking state variables, X is given implicitly and recovering it (i.e.

solving the fixed point problem defined by (8)) is a major complication. This motivates the

dual approach.

5 Recursive Dual

We begin this section by defining a Lagrangian for (AP). The Lagrangian involves the

product of constraint values with multipliers. We collect the former into an object called a

constraint process and the latter into an object called a dual process. Definitions of these

follow.

14



5.1 Lagrangians and Dual Problems

As a preliminary, we make a small adjustment to the definition of a primal process. Recall

that backwards-looking state variables kt were previously defined to be st−1-measurable.

To fully exploit the recursive structure in the Lagrangian it is convenient to allow these

variables to be st-measurable and to enforce st−1-measurability via their law of motion.

Thus, from now on, unless further restricted, each t-dated variable (including kt) in a

primal process π = {kt, at, vt}∞
t=0 is st-measurable.

A constraint process evaluates constraint functions inclusive of laws of motion at a

given primal process. For each primal process π, let zK
0 (π) = k̄ − k0 and, for all t ∈ N and

st ∈ S t, let:

zK
t (π)(st) = WK[kt−1(s

t−1), st−1, at−1(s
t−1)]− kt(s

t).

Then {zK
t (π)}∞

t=0 gives the values of the law of motion for backward-looking constraints

(inclusive of the initial condition) at π. Similarly, define for all t ∈ {0} ∪N, st ∈ S t,

zV
t (π)(st) = WV [st, at(s

t), MV [st, at(s
t), vt+1(s

t)]]− vt(s
t)

and zH
t (π)(st) = H[kt(st−1), st, at(st), vt+1(s

t)]. Then {zV
t (π)}∞

t=0 and {zH
t (π)}∞

t=0 give the

values of the forward-looking law of motion and H constraints at π. These terms are col-

lected into the constraint process ζ(π) = {z
j
t(π)}∞

t=0,j∈J , J := {K, V, H}. The boundedness

assumptions placed on primitives and the countable number of constraints ensure that for

all π ∈ P , ζ(π) ∈ ℓ∞.10

A dual process contains summable ("countably additive") multipliers for the various

constraints facing the decision-maker. Let θK = {qK
t }

∞
t=0, with qK

t : S t → Rnk , denote

multipliers (co-states) for the backward-looking law of motion and θV = {qV
t }

∞
t=0, with

qV
t : S t → Rnv+1, multipliers (co-states) for the forward-looking law of motion. Let θH =

{qH
t }∞

t=0, with qH
t : S t → Rnh , denote multipliers for the H-constraints. Collect these

various multipliers into a dual process θ = {θ j}j∈J and define the set of (bounded) dual

processes:

Q =







θ

∣

∣

∣

∣

∣

∣

∑
J

∞

∑
t=0

∑
S t

δ̄t−1‖q
j
t(s

t)‖ < ∞







,

10We use ℓ∞ to denote the set of sup-norm bounded, vector valued sequences: {{xn}∞
n=1|xn ∈Rm, supn∈N ‖xn‖ < ∞}, where ‖ · ‖ is the Euclidean norm on Rm. In our setting, m = ∑j∈J nj + 1 and

xn = {z
j

t(n)
(st(n))}j∈J for some enumeration of histories st(n).
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with δ̄ ∈ (0, 1) the discount from the aggregator WV . Define the Lagrangian:

L (π, θ) =F[s0, v0] + 〈θ, ζ(π)〉,

where 〈θ, ζ(π)〉 = ∑J ∑
∞
t=0 ∑S t δ̄t{q

j
t(s

t) · z
j
t(π)(st)} and · is the usual vector dot product.

The decision-maker’s augmented primal problem (AP) may be re-expressed as a sup-

inf problem:

P∗
0 := sup

P

inf
Q

L (π, θ). (SI)

Its dual interchanges the infimum and supremum operations:

D∗
0 := inf

Q

sup
P

L (π, θ). (IS)

Discussion of the relation between these problems is deferred until Section 8. Instead in

the remainder of this section we pursue a recursive formulation of (IS).11

5.2 Recursive Dual

The recursive dual formulation decomposes (IS) into sub-problems linked by co-state vari-

ables. We introduce some preliminary notation and concepts. We call p = (a, k, v′) a current

primal choice where a ∈ A is a current action, k ∈ K is a current backwards-looking state and

v′ ∈ Vns is a tuple of continuation forward-looking states, one for each future shock s′. Cur-

rent primal choices belong to P = A×K× Vns .12 We call q = (qH , y′) a current dual choice

where qH ∈ Rnh
+ is a current H-constraint multiplier and y′ = (qK′, qV′) ∈ Rns(nk+nv+1) is

a tuple of co-states for the next period’s backward and forward-looking laws of motion.

Current dual choices belong to Q = Rnh
+ ×Rns(nk+nv+1). Let y = (qK , qV) ∈ Y := Rnk+nv+1

denote a pair of co-state variables on current laws of motion.

The Lagrangian in (IS) may be expanded as:

D∗
0 = inf

Q

sup
P

F[s0, v0]− qV
0 · {v0 − WV [s0, a0, MV [s0, a0, v1]}+ qK

0 · (k̄ − k0)

+ δ̄ ∑
s1∈S

〈θ, ζ(π)|s1〉, (11)

with 〈θ, ζ(π)|s1〉 = ∑J ∑
∞
t=0 ∑S t δ̄tq

j
t+1(s1, st) · z

j
t+1(π)(s1, st) the continuation of 〈θ, ζ(π)〉

11An initial participation constraint may be incorporated by appending zV
−1 = v0 − v̄ and multiplier qV

−1 to
the constraint and dual process respectively.

12Our notation convention is to use calligraphic letters P for sets of current actions and script letters P

for sets of stochastic processes.
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after the realization of the first period shock s1. Removing F[s0, v0]− qV
0 · v0 + qK

0 · k̄ from

(11) and fixing the initial co-states y0 = (qK
0 , qV

0 ) gives the following continuation dual prob-

lem:

D∗(s0, y0) = inf
Q(y0)

sup
P(v0)

−qK
0 · k0 + qV

0 · WV [s0, a0, MV [s0, a0, v1]] (12)

+ qH
0 · H[k0, s0, a0, v1] + δ̄ ∑

s1∈S

〈θ, ζ|s1〉,

where Q(y0) omits y0 = (qK
0 , qV

0 ) from Q, P(v0) omits v0 from P . Collecting terms in (12)

involving the initial current primal choice p0 = (a0, k0, v1) gives the current "dual" payoff

J:

J(s0, y0; q0, p0) = −qK
0 · k0 + qV

0 · WV [s0, a0, MV [s0, a0, v1]] + qH
0 · H[k0, s0, a0, v1]

− δ̄ ∑
s1∈S

qV
1 (s1) · v1(s1) + δ̄ ∑

s1∈S

qK
1 (s1) · WK[k0, s0, a0]. (13)

Note that the terms in the second line of (13) are extracted from δ̄ ∑s1∈S
〈θ, ζ|s1〉 in (12).

Below we give explicit economic interpretations of the terms in J in the context of exam-

ples. Proposition 3 relates D∗
0 , D∗ and J and gives the key dynamic programming result

for dual value functions.

Proposition 3 (Value functions). The value D∗
0 satisfies:

D∗
0 = inf

Y

sup
V

F[s0, v]− qV · v + qK · k̄ + D∗(s0, qK, qV), (14)

with for all (s, y) ∈ S ×Y ,

D∗(s, y) = inf
Q

sup
P

J(s, y; q, p) + δ̄ ∑
s′∈S

D∗
(

s′, y′(s′)
)

, (15)

where y′(s′) = (qK′, qV′)(s′).

Proof. See Appendix C.

The first stage problem (14) generates the initial co-states; (15) then gives the dual

Bellman equation. Moving from the dual problem (IS) to the recursive dual problems (14)

and (15) involves interchanging an infimum operation over future dual variables with a

supremum operation over current primal ones. In general interchanging such operations

alters optimal values. But here the additive separability of the Lagrangian in these two
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sets of variables ensures that it does not. See the proof of Proposition 3 for details. Note if

the laws of motion for backward or forward-looking states are non-linear in these states,

then it is necessary to work with the Lagrangian of the augmented primal to ensure this

separability.

Remark 1. The function J may be interpreted as an augmented Hamiltonian. Suppose that

WV [s, a, m] = u(s, a) + δ̄m, MV [s, a, v′] = ∑S v′(s′)Q(s|s′) and H = 0, then J reduces to:

J(s, y; q, p) =
{

δ̄ ∑
S

qK′(s′)− qK
}

· k + δ̄ ∑
S

{

qV Q(s|s′)− qV′(s′)
}

· v′(s′)

+ qV · u(s, a) + δ̄ ∑
S

qK′(s′) · {WK[k, s, a]− k}.

The terms in the second line isolate the current action and correspond to a classical Hamil-

tonian. J augments this with additional terms involving adjustments to the shadow value

of backward and forward-looking states. Assuming differentiability of WK and differenti-

ating with respect to k gives a discrete time analogue of the co-state equation from optimal

control. In our more general setting, current resource and incentive conditions are explic-

itly incorporated into J via the H function and linearity of J in the forward-looking states

is not assumed.

Remark 2. Our recursive dual formulation relies entirely dual co-state variables yt to sum-

marize the past. This contrasts with Marcet and Marimon (2011) who dualize a subset of

constraints and make use of a mixture of primal and dual variables to summarize histories.

Remark 3. The primal "state" variables k and v continue to appear in the recursive dual

problem. This allows us to accommodate non (quasi-)linear laws of motion for such vari-

ables in our framework. However, they are no longer passed between sub-problems in the

recursive dual setting and in this sense no longer function as state variables.13

Definition 1. Let F denote the set of proper functions D : S × Y → R ∪ {∞} that are not

everywhere infinite valued. Define the dual Bellman operator B : F → F , ∀(s, y) ∈ S × Y ,

B(D)(s, y) = inf
Q

sup
P

J(s, y; q, p) + δ̄ ∑
s′∈S

D
(

s′, y′(s′)
)

.

The following theorem recasts D∗ as a fixed point of B. It is an immediate corollary of

Proposition 3.

13Notice also that they are restricted to the exogenous K × Vns and not the endogenous X . Choices of
primal states inconsistent with X are (finitely) penalized via the Lagrangian.
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Theorem 1. D∗ = B(D∗).

To make the preceding discussion concrete we revisit the examples.

Example 1 (Risk sharing with limited commitment and Epstein-Zin preferences). This example

lacks backward-looking state variables. The initial period problem is:

D∗
0 = infR2

sup
V

λ · v0 − qV · v0 + D∗(s0, qV),

where recall λ is a pair of exogenous Pareto weights, qV is a pair of initial co-states and

v0 is a pair of utility promises drawn from the exogenous feasibility set V . The recursive

dual problem is as in (15), but without backward-looking states or co-states and with the

current dual function:

J(s, qV ; q, p) = ∑
i=0,1

(qV,i + qH,i)







1 − δ

1 − µ
(ai)1−µ + δ

(

∑
s′∈S

vi′(s′)σQ(s|s′)

)
1
σ







(16)

− ∑
i=0,1

qH,iwi(s)− qH,2

(

∑
i=0,1

ai − γ(s)

)

− δ ∑
s′∈S

qV′(s′) · v′(s′).

The function, J incorporates the "shadow value" of delivering utility to the agents (in-

clusive of relaxation of the incentive constraints) less the shadow costs of resources and

continuation utility promises. �

Example 2 (Default with capital accumulation). In this case,

D∗
0 = infR3

sup
V

λ · v0 − qV · v0 + qK · k̄ + D∗(s0, qK, qV).

The recursive dual problem is as in (15), but now with current dual function:

J(s, qK , qV ; q, p) =− qK · k + qV,0
{

f 0(a0) + δ ∑
s′∈S

v0′(s′)Q(s|s′)
}

(17)

+ (qV,1 + qH,1)
{

f 1(a1) + δ ∑
s′∈S

v1′(s′)Q(s|s′)
}

− qH,1w(k, s)

+ (δ ∑
s′

qK′(s′) + qH,2)
(

γ(k, s)− ∑
i=0,1

ai
)

− δ ∑
s′∈S

qV′(s′) · v′(s′).

Many of the terms in (17) have similar interpretations to those in (16). In addition,

−qK · k is the shadow cost of using k of the backward-looking state in the present and

δ ∑s′∈S qK′(s′)(γ(k, s) − ∑i=0,1 ai) is the shadow benefit of delivering γ(k, s) − ∑i=0,1 ai of
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this state variable into the future. �

Example 3 (Optimal monetary policy). In this case, the period 0 dual period value is given

by:

D∗
0 = infR2

sup
V

v0
0 − qV · v0 + D∗(qV),

where v0 = (v0
0, v1

0) is the period 0 government payoff and inflation, while the current dual

function specializes to:

J(qV ; q, p) =qV,0
{

L(a, κa + δv1′) + δv0′
}

+ qV,1
{

κa + δv1′
}

− δqV′ · v′. (18)

Here J incorporates the shadow value of delivering payoff to the government and inflation

less the cost of shadow cost of future payoff and inflation promises. �

State Spaces Specialized to the principal-agent case Proposition 3 supplies a dual ana-

logue of the value function component of Proposition 2 (the policy function component

follows below). It relocates the dynamic programming to a state space of dual co-state

variables. As previously emphasized, determining the endogenous set of feasible states

in the recursive primal setting is problematic and adds another layer of calculation. The

next result shows that in the dual setting (with bounded primal variables), the dual value

function D∗ is finite-valued on all of S × Y (= S ×Rnk+nv+1). Thus, the effective dual

state space, on which choice sets are non-empty and value functions finite, is immediately

determined.

Proposition 4. D∗ : S × Y → R.

Proof. See Appendix C.

The immediate determination of the state space is an important advantage of the dual

approach. In addition, it is easily verified that each D∗(s, ·) is positively homogenous of

degree one (see Lemma 1 below). This has the advantage that once the dual value functions

D∗(s, ·) are determined on the unit circle C = {y ∈ Y|‖y‖ = 1}, then they are determined

everywhere via positive scaling. From a practical point of view, the state space may be

identified with S × C. To make this concrete, consider Example 2. In this example, there

are two co-states (associated with capital and borrower payoffs) and the effective dual state

space is simply S copies of the unit circle in R2. In contrast, in the primal formulation of

the problem the state space is an implicit subset of R+ ×R describing the set of incentive-

feasible capitals and borrower payoffs. This would have to be calculated separately adding

an extra layer of calculation. We take up the issue of how to approximate value functions
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on C in Section 9. Less positively the homogeneity of candidate value functions combined

with the unboundedness of the current dual set Q (i.e. the set of current dual choices in

(15)) disrupts the conventional approach to proving that B is a contraction. We address

this issue in Section 6.

Policies We now turn to policies. For arbitrary sets C and E and function g : C × E → R,

define the argminmax operation

argminmax
C|E

g =

{

(c∗, e∗)

∣

∣

∣

∣

∣

c∗ ∈ argmin
C

sup
E

g(c, e) and e∗ ∈ argmax
E

g(c∗, e)

}

.

The solution to the sequential dual (IS) is given by:

ΛIS := argminmax
Q|P

L (π, θ).

On the other hand, the solution to the recursive dual is described by a set:

GIS
0 = argminmax

Y|V

F[s0, v]− qV · v + qK · k̄ + D∗(s0, qK, qV)

and a correspondence

GIS(s, y) = argminmax
Q|P

J(s, y; qH , y′, p) + δ̄ ∑
s′∈S

D∗
(

s′, y′(s′)
)

.

Any element (θ∗, π∗) in ΛIS ⊂ Q × P implies an initial (v∗0 , y∗0) = (v∗0 , qK∗
0 , qV∗

0 ) and a

sequence of multipliers and choices {q∗t , p∗t }
∞
t=0, with q∗t = (qH∗

t , y∗t+1) = (qH∗
t , qK∗

t+1, qV∗
t+1).

On the other hand, such a sequence can be recovered from GIS
0 and GIS: (y0, v0) ∈ GIS

0 and

(qt(s
t), pt(s

t)) ∈ GIS(st, yt(s
t)) for each t, st. The next proposition relates policies from the

dual and the recursive dual.

Proposition 5 (Policy functions). (θ∗, π∗) ∈ ΛIS only if (qK∗
0 , pV∗

0 ) ∈ GIS
0 and for each t ∈ N,

st ∈ S t, (qH∗
t (st), y∗t+1(s

t), p∗t (s
t)) ∈ GIS(st, y∗t (s

t)). Conversely, (θ∗, π∗) ∈ ΛIS if (qK∗
0 , pV∗

0 ) ∈

GIS
0 , for each t ∈ N, st ∈ S t, (qH∗

t (st), y∗t+1(s
t), p∗t (s

t)) ∈ GIS(st, y∗t (s
t)) and:

lim
T→∞

δ̄T+1 ∑
ST+1

D∗(sT+1, y∗T+1(s
T+1)) ≥ 0. (T)

Proof. Appendix C.
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Example 1 (Risk sharing with limited commitment and Epstein-Zin preferences; Policies). From

(15) and (16) it follows that the consumptions a = (a0, a1) are chosen to solve the "Pareto

problems":

maxR+

(qV,i + qH,i)
1 − δ

1 − µ
(ai)1−µ − qH,2ai, i = 0, 1.

It is easily shown that:

ai =
ri

1 + ri
γ(s),

where ri =
(

qV,i+qH,i

qV,j+qH,j

)
1
µ
, j = 0, 1, j 6= i. The continuation forward-looking states are chosen

to solve:

max
V

∑
i=0,1

(qV,i + qH,i)

(

∑
s′∈S

vi′(s′)σQ(s|s′)

)
1
σ

− ∑
i=0,1

∑
s′∈S

qV,i′(s′)vi′(s′). (19)

If the boundaries implied by V are non-binding, then (19) implies that the co-states (en-

dogenous Pareto weights) evolve as:

[

∑
s′∈S

(

qV,i′(s′)

Q(s′|s)

)

σ
σ−1

Q(s′|s)

]

σ−1
σ

= qV,i + qH,i,

i.e. the stochastic aggregator of an agent’s (normalized) continuation Pareto weights is

adjusted upwards if the multiplier on her incentive constraint qH,i is positive.14 If σ ∈

(0, 1), then the stochastic aggregator is concave and increments to low valued continuation

utilities are more valuable than increments to high valued ones. Consequently, in contrast

to the standard expected utility case, following a binding incentive constraint (a positive

qH,i value), the agent’s continuation Pareto weight is increased more in low continuation

utility states than in high, i.e. the incremental reward to keep the agent inside the risk

sharing arrangement is skewed towards these states. To see this note that the sub-problem

(19) implies (absent binding boundaries):

qV,i′(s′)

Q(s|s′)
= (qV,i + qH,i)

(

vi′(s′)

{∑s′′∈S vi′(s′′)σQ(s|s′′)}
1
σ

)σ−1

. �

An explicit solution to Example 1 is computed in Section 9. Solutions to the other

14Note that the utility certainty equivalent uses the power σ, but the Pareto weight aggregator uses the
dual or conjugate exponent to σ, σ

σ−1 .
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examples are discussed in Section 7 where we exploit or impose additional structure.

6 Contraction

This section establishes sufficient conditions for B to be contractive on an appropriate

space of functions. The combination of an unbounded dual value function and an un-

bounded dual constraint correspondence15 is an obstacle to conventional approaches to

proving contractivity.16 Following Thompson (1963), Marinacci and Montrucchio (2010)

and especially Rinćon-Zapatero and Rodríguez-Palmero (2003), we pursue a different ap-

proach. The basic idea is to restrict attention to spaces of functions having a certain scaling

property. Specifically, for any distinct pair g1, g2, scaleability requires a positive number

b ∈ R+ satisfying bg1 ≥ g2. Distances between function pairs (g1, g2) are then identi-

fied with the log of the smallest scaling factor b such that both bg1 ≥ g2 and bg2 ≥ g1.

Scaleability of a set of candidate value functions is ensured via a renormalization involving

bounding value functions that are themselves scaleable (after renormalization). Since the

optimal dual value function is convex and positively homogenous (see below) in co-states,

we restrict attention to candidate value functions with these properties. Consequently, it

is sufficient for us to have scaleability on the unit circle in the co-state space (i.e. on a

compact set) and to define our distance measures accordingly. The interval of convex, pos-

itively homogenous functions between the bounding value functions is a complete metric

space. If B is a self-map on this interval, then contractivity follows from monotonicity and

concavity of B, the properties of the bounding value functions and the homogeneity of

candidate value functions.17

The following definition is useful.

Definition 2. A function D : Y → R is sub-linear if (i) D(·) is convex and (ii) D(·) is

positively homogeneous of degree 1. A function D : S × Y → R is sub-linear if each

D(s, ·) is sub-linear.

Lemma 1 indicates the importance of the previous definition for our setting.

Lemma 1. (i) D∗ is sub-linear. (ii) If D : S × Y → R is sub-linear, then B(D) is sub-linear.

Proof. See Appendix D.

15The current dual choice set is Q = Rnh
+ ×Rns(nk+nv+1).

16When the optimal value function is unbounded and the constraint correspondence compact-valued it is
often possible to prove contractivity on a space of weight norm bounded functions. In the dual setting, this
approach is disrupted by the unboundedness of the constraint correspondence (for multipliers and co-states).

17Thus, Blackwell’s Theorem is avoided.
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Once again, let C = {y ∈ Y|‖y‖ = 1} denote the unit circle in Rnk+nv+1. The key

assumption ensuring contractivity is the following.

Assumption 3 (Bounds). There is a triple of functions D : S × Y → R, D : S × Y → R and

D : S × Y → R and a pair of numbers ε0, ε1 > 0 such that for each s, D(s, ·) is continuous

and positively homogeneous of degree 1, both D(s, ·) and D(s, ·) are continuous and for all (s, y) ∈

S ×C, (i) D(s, y)+ ε0 ≤ D(s, y) ≤ D(s, y), (ii) D(s, y) ≤ B(D)(s, y) and B(D)(s, y) ≤ D(s, y)

and (iii) D(s, y) + ε1 < B(D)(s, y).

We discuss the selection of bounding functions in the context of specific examples

below. Note, however, if D satisfies Assumption 3 (iii) and D ≤ D∗ ≤ D, then, from the

monotonicity of B and Theorem 1, for all (s, y) ∈ S × C,

D(s, y) + ε < B(D)(s, y) ≤ B(D∗)(s, y) = D∗(s, y) ≤ D(s, y).

Thus, if each B(D)(s, ·) is continuous, then D may be set equal to B(D). Given a triple of

functions D, D and D satisfying Assumption 3, let:

G = {D : S × Y → R|D is sub-linear and D ≤ D ≤ D}.

Define the "Thompson-like" metric d : G × G → R+ according to:

d(D1, D2) = sup
S×C

∣

∣

∣

∣

∣

ln

(

D1(s, y)− D(s, y)

D(s, y)− D(s, y)

)

− ln

(

D2(s, y)− D(s, y)

D(s, y)− D(s, y)

)∣

∣

∣

∣

∣

≤ sup
S×C

ln

(

D(s, y)− D(s, y)

D(s, y)− D(s, y)

)

< ∞,

where the finiteness stems from Assumption 3.18 That (G , d) is complete metric space is

shown next.

Lemma 2. (G , d) is a complete metric space.

Proof. See Appendix D.

Proposition 6 verifies that B is contraction on G . It relies on the concavity (and mono-

tonicity) of B rather than any discounting-type conditions. This makes it well suited to the

present setting where concavity of B is easy to show, but discounting (with respect to a

suitable bounding norm) is not.

18In particular, it follows from D(s, y) ≥ D(s, y) ≥ D(s, y) + ε0, the compactness of C and the continuity

of the functions D, D and D.
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Proposition 6. Let Assumption 3 hold. There is a ρ ∈ [0, 1) such that for all D1, D2 ∈ G ,

d(B(D1), B(D2)) ≤ ρd(D1, D2), i.e. B is a contraction on (G , d) with modulus of contraction ρ.

Proof. See Appendix D.

Application of the contraction mapping theorem yields that B admits a unique fixed

point in G .

Theorem 2. Let Assumption 3 hold and assume that D ≤ D∗ ≤ D. D∗ is the unique fixed

point of B in G . Also, there is a ρ ∈ [0, 1) such that for any D0 ∈ G , Bn(D0)
d
→ D with

d(Bn(D0), D∗) ≤ ρnd(D0, D∗) ≤ ρnd(D, D).

Proof. D∗ is sub-linear by Lemma 1 and bounded below by D and above by D by assump-

tion. Thus, D∗ ∈ G . Also by Lemma 1, if D ∈ G , then B(D) is sub-linear and by the

montonicity of B and Assumption 3 it is bounded below by D and above by D. Thus,

B : G → G . By Proposition 6, it is contractive on G . The results in the theorem then stem

from the contraction mapping theorem.

Application of Theorem 2 requires bounding functions satisfying Assumption 3. Such

functions are often easy to derive in the context of particular applications using actions

and "large" values from the bounding set of state variables that strictly satisfy current

constraints. The following examples illustrate.19

Example 1 (Risk sharing with limited commitment and Epstein-Zin preferences). Let V = [v, v]2

and assume there is a resource-feasible consumption profile that gives each agent strictly

more than autarky if combined with autarkic continuation payoffs and strictly less than

the best possible payoff if combined with best possible continuation payoffs, i.e. an ã ∈ Ans

and a ξ > 0 such that for each s ∈ S , γ(s) > ∑
1
i=0 ãi(s), and for each s ∈ S and i ∈ {0, 1},

v − ξ ≥
1 − δ

1 − µ
(ãi(s))1−µ + δv >

1 − δ

1 − µ
(ãi(s))1−µ + δ

{

∑
s′∈S

wi′(s′)σQ(s|s′)
}

1
σ
> wi(s) + ξ.

(20)

19For application of Theorem 2, it is sufficient to know (i) that bounding functions satisfying Assumption 3
exist and (ii) that a given function D0 lies between them and can thus serve as an initial condition in a value
iteration. Explicit calculation of the bounding functions is unnecessary. This contrasts with results relying
on monotone (not contractive) operators, which require an upper or lower bound to the true value function
as an initial condition. In addition, as always, the contraction result allows us to calculate error bounds
and rates of convergence and is, thus, an improvement on results relying only on monotone iterations and
pointwise convergence of iterates.
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Set:

D(s, qV) = ∑
i=0,1

qV,iφi(qV,i, s), φi(qV,i, s) :=







v qV,i ≥ 0

v qV,i < 0

and

D(s, qV) = ∑
i=0,1

{qV,iψi(qV,i, s) + |qV,i|ξ}, ψi(qV,i, s) :=







w(s) qV,i ≥ 0

v qV,i < 0.

It is easy to see that D is sub-linear, D is continuous and positively homogenous and for

all (s, qV) ∈ S × C, D(s, qV) < D(s, qV). In addition, for v large enough, these definitions

and (20) also ensure D < D∗ ≤ D. In Appendix D, we show that given (20), there exists

an ε > 0 such that for all (s, qV) ∈ S × C, D(s, qV) + ε < B(D)(s, qV). D may be set equal

to B(D) and the conditions of Assumption 3 are satisfied. �

Example 2 (Default with capital accumulation). We give mild conditions that ensure the

existence of bounding functions satisfying Assumption 3 for the default problem. To

economize on space we do so only for the problem without shocks: γ(k, s) ≡ γ(k) and

w(k, s) ≡ w(k). Assume a k̄ such that γ(k̄) = k̄ > 0. Let V = [v0, v0]× [v1, v1], [0, k̄] ⊂ K

and A = A0 ×A1, with Ai the action set of agent i. Suppose there is a small ξV > 0 and

an ã1 ∈ A1 such that the following inequalities are satisfied:

v1 − ξV ≥ f 1(ã1) + δv1
> f 1(ã1) + δw(k̄) > f 1(ã1) + δw(0) ≥ w(k̄) > w(0) + ξV . (21)

In addition, for some small ξK > 0, suppose that a0 = −ã1 − ξK and a0 = γ(k̄)− ã1 − ξK ,

are in A0 and, hence, feasible for agent 0. Note that negative values for a0 are natural if

agent 0 is a risk neutral lender. Assume also that for ã0 ∈ {a0, a0}, v0 − ξV ≥ f 0(ã0)+ δv0
>

f 0(ã0) + δv0 > v0 + ξV . Let:

ψK(qK) :=







−k̄ qK ≥ 0

0 qK < 0,
ψ0(qV,0) :=







v0 qV,0 ≥ 0

v0 qV,0 < 0,
ψ1(qV,1) :=







w(0) qV,1 ≥ 0

v1 qV,1 < 0.

In Appendix D we show that the following are valid bounding functions:

D(qK, qV) = ∑
i=0,1

qV,iφV,i(qV,i) + qKψK(−qK), φV,i(qV,i) :=







vi qV,i ≥ 0

vi qV,i < 0,
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D(qK , qV) = ∑
i=0,1

{qV,iψV,i(qV,i) + |qV,i|ξV}+ qKψK(qK)− |qK|ξK .

�

Example 3 (Optimal monetary policy). Let V = ∏i=0,1[v
i, vi] denote a set of possible govern-

ment payoffs and inflation rates. Assume an ã ∈ A = [a, a] and ξ > 0 such that:

(

v0 − ξ

v1 − ξ

)

≥

(

L(ã, κã + δv1)

κã

)

+ δ

(

v0

v1

)

≥

(

L(ã, κã + δv1)

κã

)

+ δ

(

v0

v1

)

>

(

v0 + ξ

v1 + ξ

)

. (22)

It may be verified that:

D(qV) =
1

∑
i=0

qV,iφi(qV,i), φi(qV,i) =







vi qV,i ≥ 0

vi qV,i < 0,

D(qV) =
1

∑
i=0

{qV,iψi(qV,i) + |qV,i|ξ}, ψi(qV,i) =







vi qV,i ≥ 0

vi qV,i < 0.

and D = B(D) satisfy all desired conditions.20
�

7 Quasi-linearity in backward and forward state variables

Many problems have aggregators and constraint functions that are quasi-linear in k or v

or both.21 Exploiting this structure can lead to considerable simplification. Specifically, it

is possible to work with the dual of the original rather than the augmented problem, i.e.

(P) rather than (AP). Backward and forward primal states kt and vt are then removed from

the analysis along with the equality constraints describing their evolution. In addition, the

co-state variables qV
t are no longer explicit choices (they are determined as functions of qH

multipliers). All of this simplifies optimizations. Below we describe the modified recursive

dual problems that emerge, first for problems in which all laws of motion are quasi-linear

in primal states and then, via an example, for those in which some are.

20The verification is similar to that given for the limited commitment case in Appendix D.
21For example, Messner, Pavoni, and Sleet (2012b) only considers simplified problems of this sort.
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7.1 Fully quasi-linear problems

Assume that WK is quasi-linear in k:

WK[k, s, a] = A(s)k + B(s, a),

for some functions A : S → Rnk
+ and B : S ×A → Rnk . The functions Kt+1 are defined to

be consistent with this aggregator:

Kt+1(k̄, α|st) =
t

∑
τ=0

t

∏
j=τ+1

A(sj)B(sτ , aτ(s
τ)) +

t

∏
j=0

A(sj)k̄, (23)

where in what follows it is useful to make the dependence of backward-looking states on

the initial value k̄ ∈ K ⊂ Rnk explicit. The requirement that the Kt functions and K are

bounded is no longer imposed.22

Assume that the shock transition is independent of any action: Q : S → R(S) and let

Qt(s0, st) denote the induced probability over history st given seed shock s0. Turning to

forward-looking states, assume that WV is quasi-linear in m:

WV [s, a, m] = f (s, a) + δm, (24)

with f : S ×A → Rnv+1 a bounded function and δ a non-negative nv + 1 diagonal matrix

with elements bounded by δ̄. Assume that MV is linear in v′:

MV [s, v′] = ∑
s′∈S

v′(s′)Q(s, s′). (25)

V is now defined to be consistent with these aggregators:

V(s0, α) =
∞

∑
t=0

δt ∑
st∈S t

f (st, at(s
t))Qt(s0, st).

The composition of WV and MV is quasi-linear in v′. The constraint function H is obtained

from an nh × nk matrix NK, a function h : K× S ×A → Rnh and a family of nh × (nv + 1)

matrices NV(s, s′):

H[k, s, a, v′] = NK(s)k + h(s, a) + ∑
s′∈S

NV(s, s′)v′(s′)Q(s, s′).

22In many applications Kt is capital and K = Rnk
+ .
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Finally, F is assumed to be linear in forward states v: F[s, v] = qV
0 · v. Combining these

assumptions, (P) becomes:

sup qV
0 · V(s0, α) (QL-P)

subject to α ∈ A and for all t, st,

NK(st)Kt(k̄, α|st−1) + h(st, at(s
t)) + ∑

s′∈S

NV(s, s′)V(s′, α|st, s′)Q(st, s′) ≥ 0.

Various problems satisfy these types of assumptions.

Example 2 (Default with capital accumulation, AK version). We specialize Example 2 to place

it within the quasilinear framework. Since WK[k, s, a] = γ(k, s) − ∑i=0,1 ai, quasi-linearity

of WK in k follows if the production function is specialized to γ(k, s) = γ(s)k. Quasi-

linearity of the incentive ("no default") constraint in k and v follows if the default value

is given by w(k, s) = w(s)k.23 Then our general notation specializes to: A(s) = γ(s),

B(a) = − ∑i=0,1 ai,

NK(s) =

(

−w(s)

γ(s)

)

; h(a) =

(

f (a1)

− ∑i=0,1 ai

)

; and NV =
( δ

0

)

.

�

Note that a small modification of the assumptions in Example 2 that removes capital and

incorporates an incentive constraint for agent 0 gives the limited commitment model of

Kocherlakota (1996). On the other hand, the removal of the incentive constraints gives a

standard AK growth model.

Since (QL-P) incorporates only the H-function constraints, the constraint process is

given simply by ζH(k, α) = {zH
t (k, α)}∞

t=0, with

zH
t (k, α)(st) = NK(st)Kt(k, α|st) + h(st, at(s

t)) + ∑
s′∈S

NV(s, s′)V(s′, α|st, s′)Q(st, s′).

Because neither the Kt functions nor the h function need be bounded, constraint processes

need not belong to the normed space ℓ∞. However, we assume that B, A, h and A are

such that for all k ∈ K and α ∈ A , ζH(k, α) satisfies supt,st ‖zH
t (k, α)(st)‖/Mt(st) < ∞ for

some positive-valued process {Mt}.24 Consequently, the constraint process normalized by

23This assumption on default values is made in Cooley, Marimon, and Quadrini (2004).
24In bounded problems with Ā := maxS A(s) ≤ 1 and h bounded, the natural candidate for {Mt} is the

constant process ∀t, st, Mt(st) = 1. In growth models with positive valued A process and Ā := maxS A(s) >
1, the natural candidate is ∀t, st, Mt(st) = At(st) := ∏

t
j=0 A(sj).
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{Mt} is in ℓ∞.

The Lagrangian

L(α, θH) =qV
0 · V(s0, α) + 〈θH , ζH(k̄, α)〉

allows the following dual problem to be associated with (QL-P):

D∗
0 = inf

Q

sup
A

L(α, θH), (26)

with Q = {θH |qH
t (st) ≥ 0, ∑

∞
t=0 ∑S t qH

t (st)Mt(st) < ∞}. Crucially, the quasi-linearity of

the aggregators ensures that this Lagrangian has the necessary separability for a recursive

dual approach.

As a first step, we recover the continuation dual problem from (26). The definition of

ζH , (23) and straightforward algebra implies that the dual problem (26) can be rewritten

as:

D∗
0 = inf

Q

sup
A

∞

∑
t=0

∑
S t

qH
t (st) · NK(st)At(st) · k̄ + qV

0 · V(s0, α) + 〈θH , ζH(0, α)〉

= infRnk

{

qK
0 · k̄ + inf

Q|qK
0

sup
A

qV
0 · V(s0, α) + 〈θH , ζH(0, α)〉

}

, (27)

where Q|qK
0 = {θH ∈ Q|qK

0 := T (θH)} and T is the linear map T (θH) = ∑
∞
t=0 ∑S t{qH

t (st) ·

NK(st)At(st)}. In the first line of (27) terms involving k̄ are factored out of the Lagrangian,

while in the second line the infimum over dual processes is broken into two steps: an

infimum over a co-state for the backward-looking state followed by a (more) constrained

infimum over dual processes. Equation (27) motivates the following choice of continuation

dual problem, for each y ∈ Y = {(qK , qV) ∈ Rnk ×Rnv+1 : Q|qK 6= ∅},

D∗(s, y) = inf
Q|qK

sup
A

qV · V(s, α) + 〈θH , ζH(0, α)〉. (28)

Now the dual co-state space Y = {(qK , qV) ∈ Rnk ×Rnv+1 : Q|qK 6= ∅} = {qK ∈ Rnk :

Q|qK 6= ∅} ×Rnv+1 may be a proper subset of Rnk ×Rnv+1. In particular, to guarantee a

continuation dual problem with a non-empty constraint set qK must be in the range of the

linear map T on Q, i.e. there must be a non-negative valued process θH ∈ Q such that

qK = T (θH). Since Q is a cone and T is linear, the range of R is also a cone and in several
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relevant applications is easy to find. 25

We now turn to the recursive form of (28). This is modified in several ways from

previous sections. First, the terms {kt, vt} are substituted out of the problem; second, the

co-state variable qV is no longer chosen directly, rather it evolves as a function of initial

values and accumulated multipliers qH . On the other hand, in general, qK′ must still

be picked: it is a forward-looking variable and is not (generally) determined by past qH

multipliers. Define the current dual correspondence Q : Rnk → 2Rnh+nsnk ,

Q(qK) =
{

(qH , qK′) ∈ Rnh
+ ×Rnk×ns

∣

∣

∣
qK = qH · NK(s) + A(s)∑

S

qK′(s′)
}

,

and the current dual objective J : S ×Rnv+1 ×Rnh
+ ×Rnk×ns ×A → R,

J(s, qV ; qH, qK′, a) =qV · f (s, a) + ∑
s′∈S

qK′(s′) · B(s, a) + qH · h(s, a).

Finally, define the law of motion for co-states qV :

φ(s, qV ; qH)(s′) =
1

δ̄

{

δ · qV + qH NV(s, s′)
}

.

The recursive dual problem for this case is described in the following proposition.

Proposition 7 (Value functions). The value function D∗
0 satisfies:

D∗
0 = infRnk

D∗(s0, qK, qV
0 ) + qK · k̄. (29)

with for all (s, qK, qV) ∈ S ×Rnk
+ ×Rnv+1,

D∗(s, qK, qV) = inf
Q(qK)

sup
A

J(s, qV ; qH, qK′, a) + δ̄ ∑
s′∈S

D∗(s′, qK′(s′), φ(s, qV ; qH)(s′))Q(s, s′).

(30)

The proof is essentially the same as Proposition 3 and is omitted. Notice that in (29)

the initial condition for the costate qK is picked, whilst that for qV is pinned down by the

parameter qV
0 ;26 (30) gives the dual Bellman. Comparison of Propositions 3 and 7 and

25For example, in AK growth models, for all s, NK(s) = 1, and T (Q) = Rnk
+ . In limited commitment

models without capital, for all s, NK(s) = 0 and T (Q) = {0} (and backward-looking state variables and
their co-states may be omitted). In Example 2, NK(s) = (−w(s) γ(s)), T (Q) = Rnk and Y = Rnk+nv+1

once more. The function D∗ remains sub-linear. Hence, for practical purposes the effective state space can
be identified with C ∩ T (Q).

26Thus, the co-state qK for the backward-looking state k is forward-looking and the the co-state qV for the
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the terms defining the Bellman in each (for example, comparison of the corresponding J

functions) reveals how exploitation of quasilinearity simplifies matters.

Example 2 (Default with capital accumulation, AK version). To make the preceding discussion

concrete, consider again the default model with linear production. Applying (30), the dual

Bellman is:

D∗(s, qK, qV) = inf
Q(qK)

sup
A

qV,0 f 0(a0) + (qV,1 + qH,1) f 1(a1)−
(

∑
s′∈S

qK′(s′) + qH,2
)

∑
i=0,1

ai

+δ ∑
s′∈S

D∗(s′, qK′(s′), φ(s, qV ; qH)(s′))Q(s, s′).

with Q(qK) = {(qH , qK′)|qK = −qH,1w(s) +
(

qH,2 + ∑S qK′(s′)
)

γ(s)} and

φ(s, qV ; qH)(s′) =

(

qV,0

qV,1 + qH,1

)

.

Thus, the weights on the borrower’s current utility f (a1) and, via the updating function φ,

future utility are augmented by the multiplier on her incentive constraint qH,1. The con-

straint set Q(qK) reveals the evolution of the co-state qK, the shadow value of capital. This

value is depressed to the extent that capital tightens the incentive constraint −qH,1w(s),

but enhanced to the extent that capital relaxes the current resource constraint or augments

the future capital stock (qH,2 + ∑S qK′(s′))γ(s). �

Remark 4. In Example 2, the weight on the lender’s payoffs qV,0 remains constant at its

initial value. This is typical of (principal agent) problems in which one forward-looking

state variable v0 does not enter the H-constraint. For these problems, the corresponding

co-state qV,0 may be removed as an explicit state variable and the state space reduced in

dimension from Rnk+nv+1 to Rnk+nv . The cost is that positive homogeneity of the value

function is lost.

7.2 Partially quasi-linear problems

The preceding analysis extends to problems in which aggregators are quasi-linear in a

subset of state variables. Rather than developing this in full, we describe the application

to Example 3 (the optimal monetary policy problem). Recall that in this example, there are

forward-looking state v is backward-looking.
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only forward-looking states and the aggregator WV is given by:

( v0

v1

)

= WV
[

a,
( v0′

v1′

)]

=
( L(a, κa + δv1′) + δv0′

κa + δv1′

)

,

with v0 the government’s payoff, v1 inflation and a output. The forward-looking state

describing the government’s future payoff v0′ enters WV in a quasi-linear way and can

be substituted out. In contrast, the forward-looking state describing inflation v1′ enters

non-linearly and cannot be so removed. After substitution of v0, the problem becomes:

sup
∞

∑
t=0

δtL(at , κat + δv1
t+1)

subject to, for all t, v1
t = κat + δv1

t+1. This leads to the dual problem:

D∗
0 = inf

Q

sup
P

∞

∑
t=0

δtL(at , κat + δv1
t+1) +

∞

∑
t=0

δtqV,1
t {κat + δv1

t+1 − v1
t }, (31)

where Q is the set of inflation co-state sequences {qV,1
t } and P the set of inflation-output

sequences {v1
t , at}∞

t=0. Notice that in (31) the co-state on the government’s payoff qV,0 is

initialized to and remains at 1. This is a principal-agent type problem. Using arguments

similar to before the initial problem specializes to:

D∗
0 = infR sup

V1

−qV,1
0 v1

0 + D∗(1, qV,1
0 ),

where V1 = κ
1−δ [a, a] is the set of possible inflations, while the dual Bellman equation

becomes:

D∗(1, qV,1) = infR sup
A×V1

L(a, κa + δv1′) + qV,1(κa + δv1′)− qV,1′v1′ + δD∗(1, qV,1′).

In the latter the inner supremum is over current output-inflation pairs (a, v1), while the

infimum operation is over the future inflation co-state qV,1′.

Quadratic Case If (the negative of) the loss function L is specialized to be quadratic, an

explicit closed form solution of the dual problem is available. Let a = 0, and

L(x, z) = −
1

2

{

x2 + λz2
}

,
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with λ > 0. Then, a standard ‘guess and verify’ exercise confirms that the value function

for this problem satisfies:

D∗(1, qV,1) =
1

2χ
(max{0, qV,1})2,

with χ > 0 the positive root of a quadratic equation.27 Optimal dual policy functions are

then easily obtained. For qV,1 ≥ 0, they are linear in the dual co-state and are given by:







qV′(qV,1)

a(qV,1)

π′(qV,1)






=







1
κ
λ
1
χ






ξqV,1,

with ξ = 1

1+ κ2

λ + δ
χ

∈ (0, 1). For qV,1 < 0, qV,1′(qV,1) = qV,1, and a(qV,1) = v1(qV,1) = 0.

The problem is strictly concave and policies are single valued. Hence, from Proposition 9

below and the subsequent discussion, the solution to the dual problem delivers necessary

and sufficient conditions for the solution to the original problem.

8 Relating Primal and Dual

The preceding sections established that optimal dual values and solutions may be recov-

ered from the recursive dual. They also showed that the dual Bellman operator was con-

tractive. Consequently, if the dual supplies an optimal value and optimal policies for

the original primal problem, then the recursive dual does as well and the primal may

be solved via dual value iteration. In this section, we briefly discuss conditions for the

sequential dual and primal problems to have common values and policies.

8.1 Saddles and recursive dual policies

Without further restriction, classical weak duality implies that the optimal dual value

bounds the optimal primal value: D∗
0 ≥ P∗

0 . Thus, with no further assumptions the re-

cursive dual gives welfare bounds for optimal policies or policy improvements.

A well known sufficient condition for equality of optimal values, albeit not on prim-

27It solves: χ =
1−δ+ κ2

λ +

√

(

1−δ+ κ2
λ

)2
+4 κ2

λ δ

2 κ2
λ

.
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itives, is that the Lagrangian admits a saddle point.28 Saddle existence also ensures that

the dual policy set includes all primal solutions. However, the converse is not true: addi-

tional restrictions are required to ensure that the "finite penalization" implicit in the dual

problem is "sharp enough" to pin down only primal solutions. The following propositions

summarize the situation for the general problem considered in Section 5.29

Proposition 8 (Policy functions; Necessity). Assume that the Lagrangian L admits a saddle

point. Then: (i) (Equality of values) D∗
0 = P∗

0 . (ii) (Necessity conditions for policies) If π∗ solves

(AP), then there is a corresponding optimal dual sequence θ∗ such that (qK∗
0 , qV∗

0 , v∗0) ∈ GIS
0 and

for all t and st, (qH∗
t (st), y∗t+1(s

t), p∗t (s
t)) ∈ GIS

t (st, y∗t (s
t)).

Proof. See Appendix E.

Proposition 8 only requires that L admits a saddle point. It does not require that the

Lagrangian associated with every (st, yt(st))-continuation problem has a saddle, as is the

case in Marcet and Marimon (2011). Proving, or numerically checking, the existence of a

saddle for L , while non-trivial, is less demanding than doing so for all possible histories.

Sufficiency of (recursive) dual policies for primal attainment requires additional as-

sumptions. We say that a set of primal processes P ′ shares a plan α if for each π ∈ P ′

there is a process {vt, kt}
∞
t=0 such that π = (α, {vt, kt}

∞
t=0).

Proposition 9 (Policy functions; Sufficiency). Assume that Q∗ ×P∗, the set of saddle points of

L , is non-empty and that for each θ∗ ∈ Q∗, the set of primal processes argmax
P

L (·, θ∗) shares a

plan α∗. Then: (i) α∗ is the unique solution of (P) and (ii) if a pair (π, θ) with π = (α, {kt, vt}∞
t=0)

satisfies (qK
0 , qV

0 , v0) ∈ GIS
0 , for all t and st, (qH

t (st), yt+1(s
t), pt(s

t)) ∈ GIS
t (st, yt(s

t)) and (T),

then α solves (P) (and equals α∗).

Proof. See Appendix E.

We apply Proposition 9 in Section 9 to show that recursive dual policies are sufficient

for primal optimality in a parameterized version of Example 1.

28For a real-valued function defined on a product set g : C × E → R, the set of saddle points is:

saddle
C|E

g =

{

(c∗, e∗)

∣

∣

∣

∣

∣

c∗ ∈ argmin
C

g(c, e∗) and e∗ ∈ argmax
E

g(c∗, e)

}

.

29Similar results hold for the quasi-linear case considered in the preceding section (see Messner, Pavoni,
and Sleet (2011), Section 3 for details).
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8.2 Concave Problems

The literature gives various sufficient conditions on primitives ensuring equality of opti-

mal values and saddle existence.30 Consider for a moment the original (non-augmented)

optimization (P). This problem omits laws of motion for primal states and is written en-

tirely in terms of plans rather than primal processes. The constraints may be collected

together as:

ζH(α) = {H(Kt(α, st), at(s
t), V(α, st))}t,st ≥ 0.

Since there are a countable number of constraints and H is bounded, ζH : A → ℓ∞. We

may associate a Lagrangian L̃ with this problem:

L̃(α, θH) = F[s0, V(s0, α)] + 〈qH , ζH(α)〉, (32)

where qH belongs to ℓ⋆∞, the dual space of ℓ∞ and 〈qH , ζH(α)〉 is the evaluation of qH at

ζH(α).31 The Lagrangian L̃ can be used to define primal and dual problems for (P) directly.

A well known sufficient condition for these problems to have equality of optimal values

and a minimizing dual multiplier (so called "strong duality") is that (i) the objective and

constraints are concave and (ii) the evaluation of the constraints at some primal choice lies

in the interior of the constraint space’s closed non-negative cone (a Slater condition).32 If,

in addition, a solution to (P) exists then it and the minimizing multiplier constitute a saddle

point. Since the objective and constraints are constructed from compositions of functions,

a standard assumption guaranteeing concavity is that F, H, WK, WV and MV are jointly

concave in their arguments and either quasi-linear or non-decreasing in the primal states k

and v′. Stronger strict concavity restrictions ensure uniqueness of the primal solution and

sufficiency of the dual solution for primal optimality.

A difficulty is that the preceding result guarantees the existence of a minimizing multi-

plier qH in ℓ⋆∞. It is much more convenient to establish such existence in ℓ1 ⊂ ℓ⋆∞, the space

of summable sequences {{qH
t } : ∑

∞
t=0 ∑S t ‖qH

t (st)‖ < ∞}, and, hence, to obtain existence

of a saddle point of the Lagrangian:

L(α, θH) = F[s0, V(s0, α)] +
∞

∑
t=0

∑
S t

qH
t (s

t) · H(Kt(α, st), at(s
t), V(α, st)). (33)

30Luenberger (1969) and Rockafellar (1974), especially Section 7, are good references for the theory in
infinite dimensional settings.

31We discuss ℓ⋆∞ briefly below. It is the space of bounded continuous functionals on ℓ∞ and, as is well
known, equals the space of all signed charges of bounded variation on the power set 2N.

32And the constraint space, i.e. the codomain of ζH , has a non-negative cone with non-empty interior
because it is the set ℓ∞.
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In fact, following an argument of Ponstein (1981), the structure of the constraints enables

us to do this and, hence, obtain saddle existence for L rather than L̃ under the conditions

given above.33

Such saddle existence results are directly applicable to the quasi-linear case discussed

in Section 7.34 However, as noted, for more general problems with laws of motion that

are non-linear in states L is not suitable for dual recursive decomposition. Instead the

Lagrangian L from the augmented problem is needed. An apparent difficulty is that L

incorporates (possibly non-linear) equality constraints for the laws of motion for states.

Thus, standard conditions for saddle existence are not applicable.35 If, however, H is non-

decreasing in k and v′, then the equality constraints can be relaxed to inequalities. The

relaxation does not modify optimal values or solutions. Strong duality for the relaxed

problem is then established under the standard concavity and monotonicity assumptions

on F, H, WK, WV and MV described previously. For more details on relaxation including

weaker conditions for its validity, see Appendix F.36

8.3 Ex Post Check

The following elementary proposition gives a sufficient condition for primal optimality in

terms of the optimal dual value. Importantly, the condition does not rely on any concav-

ity assumption on the problem. We call a process (π̂, θ̂) = (α̂, {k̂t, v̂t}
∞
t=0, θ̂) a candidate

plan if it is obtained from the policy correspondence: (qK
0 , qV

0 , v0) ∈ GIS
0 , and ∀ t and st,

(qH
t (st), yt+1(s

t), pt(s
t)) ∈ GIS

t (st, yt(s
t)).

Proposition 10. Suppose a candidate plan (π̂, θ̂) satisfies: (i) F[s0, V(s0, α̂)] ≥ D∗
0 and (ii) π̂ is

feasible for (AP). Then π̂ is optimal for (AP) and D∗
0 = P∗

0 . If in addition to (i)-(ii), (π̂, θ̂) satisfies

condition (T), then (π̂, θ̂) is a saddle for the Lagrangian associated with problem (AP).

Proof. See Appendix E.

Despite its simplicity, Proposition 10 is the basis of a useful ex post check of primal

optimality. Suppose the recursive dual problem has been solved and a fixed point D̂ of

the operator B obtained. If the conditions of Assumption 3 hold and D̂ lies between the

33We defer this technical argument to Messner, Pavoni, and Sleet (2013).
34With the slight modification that the constraint space is set to {{xt} : sup ‖xt(st)‖/Mt(st) < ∞} and the

multiplier space to {{qH
t } : ∑

∞
t=0 ∑S t ‖qH

t (st)Mt(st)‖ < ∞} to accommodate unbounded H functions.
35Even if the constraints stemming from the laws of motion are re-expressed as pairs of inequalities, the

Slater condition and, unless these laws of motion are linear, concavity is lost.
36The dual and recursive dual of the relaxed problem are slightly modified to restrict co-states to be

non-negative.
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bounding functions D and D, then D̂ = D∗. Consequently, the value D∗
0 and a candidate

plan π̂ may be recovered. Proposition 10 then provides sufficient conditions for π̂ to be a

solution to (AP) and for the existence of a saddle point of the associated Lagrangian.

In practice, D∗
0 , GIS

0 and GIS must be approximated via, say, a numerical implementa-

tion of the value iteration described in Theorem 2, and the conditions (i) and (ii) in Propo-

sition 10 checked numerically to within some acceptable level of tolerance. We describe a

numerical implementation of the value iteration next.

9 Numerical Implementation

We use Example 1 (limited commitment risk sharing) to illustrate the numerical imple-

mentation of the recursive dual problem.

Applicability of the Recursive Dual If the agent’s initial Pareto weights are non-negative,

λ = (λ1, λ2) ∈ R2
+, then without loss of generality the law of motion for utility promises

may be relaxed to an inequality in either the augmented primal problem or its dual:

1 − δ

1 − µ
(ai

t(s
t))1−µ + δ

(

∑
s′∈S

(vi
t+1(s

t, s′))σQ(st|s
′)
)

1
σ
− vi

t(st) ≥ 0.

Given µ, σ ∈ (0, 1), the functions describing these constraints (and the limited commitment

constraints) are strictly concave. If a primal solution exists and there is a primal process

strictly satisfying all constraints, then standard results and an argument of Ponstein (1981),

establishes the existence of a saddle point for the Lagrangian L with co-states restricted

to be non-negative. Consequently, by our previous results, the recursive dual gives the

optimal primal value and necessary and sufficient conditions for optimal primal policies.

Value iteration and function approximation We limit attention to value functions de-

fined on a domain of shocks and non-negative co-states ("Pareto weights"), S ×R2
+ and

modify definitions accordingly.37 The bounding value functions D, D and D are as in

Section 6, but restricted to this domain. The definitions of G and B become:

G = {D : S ×R2
+ → R|D is sublinear, each D(s, ·) is continuous and D ≤ D ≤ D}.

37This restricts us to concave and economically interesting continuation problems in which no agent gets
a negative weight.
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and

B(D)(s, y) = inf
Q+

sup
P

J(s, y; q, p) + δ ∑
s′∈S

D(s′, y′(s′)),

with Q+ = R4
+ replacing R2

+ × R2 and J as in (16). Theorem 2, very slightly modified

to incorporate the domain restriction, ensures that D∗ may be calculated via an iteration

of B from any D0 ∈ G . Implementation of this iteration requires approximation of the

value functions. Our approximation procedure exploits the sub-linearity of dual value

functions.38

If g : R2
+ → R is sub-linear, then for all y ∈ R2

+,

g(y) = max{m · y|∀y′ ∈ C+, m · y′ ≤ g(y′)}.

Let Ĉ I
+ := {yi}

I
i=1 ⊂ C+ denote a set of I > 1 distinct points in C+. Then g is bounded

above by ĝI , where ĝI is defined by the less restricted problem:

g(y) ≤ ĝI(y) := max{m · y|∀yi ∈ Ĉ I
+, m · yi ≤ g(yi)}. (34)

The function ĝI is continuous and sub-linear and ĝI(yi) = g(yi) at each yi ∈ C I
+. In

addition, ĝI(y) is easily found by solving the simple linear programming problem in (34).

A sequence of sets Ĉ I
+, I = 2, 3, . . ., may be constructed with Ĉ I

+ ⊂ Ĉ I+1
+ and Ĉ∞

+ = ∪I Ĉ
I
+

dense in C+.39 If g is also continuous, then it is readily verified that the corresponding

sequence of approximating functions ĝI converges pointwise to g from above.40 Moreover,

by Dini’s theorem it converges uniformly on C+ and, hence, in the Thompson-like metric

d to g.

This procedure may be used to approximate sub-linear functions D ∈ G from above. It

is easy to implement, may be integrated into the value iteration and involves approxima-

tion on a simple state space.

Remark 5. As we have previously remarked Example 1 is outside the scope of Marcet

38For facts about sub-linear functions used below consult Florenzano and Van (2001)
39For example, the set of points in C+ with rational coordinates is dense in C , see Schmutz (2008) for an

explicit construction.
40 It clearly converges at all points in Ĉ∞ and if (1, 0) and (0, 1) are in Ĉ∞

+ at these two points. Choose

a point y ∈ C+∩ int R2
+. Let y1

n and y2
n be two sequences in ∪I Ĉ

I
+ converging to y and such that y =

λnany1
n + (1 − λn)bny2

n, with λn ∈ (0, 1), an, bn ∈ R+ and an, bn ↓ 1, i.e. any1
n and bny2

n lie either side
of y on the tangent to C+ passing through y. There is a sequence {In} such that ĝIn(y1

n) = g(y1
n) and

ĝIn(y2
n) = g(y2

n). By the sub-linearity of g and each ĝIn , we have g(y) ≤ gIn(y) ≤ λn ĝIn(any1
n) + (1 −

λn)ĝIn(bny2
n) = λnan ĝIn(y1

n) + (1 − λn)bn ĝIn(y2
n) = λnang(y1

n) + (1 − λn)bng(y2
n). Since g is continuous,

yi
n → y and an, bn ↓ to1, it follows that the last term in the string of inequalities converges to g(y). Thus, the

sequence of functions converges pointwise on C+ and by the positive homogeneity of the functions on R2
+.
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and Marimon (2011). Recursive primal formulations of limited commitment problems are

available. Such problems (without Epstein-Zin preferences) have often been handled nu-

merically by maximizing the payoff to one player subject to incentive and utility promise-

keeping constraints. This leads to a Bellman-type operator in which the continuation value

function of the maximized player enters the constraint set. Although this Bellman oper-

ator has monotonicity properties it is not a contraction. Such a problem also involves an

endogenous state space of utility promises. With only two players, this state space is an

interval and, therefore, easy to approximate. But as more players are introduced represen-

tation and approximation of this set becomes more difficult.

Our function approximation procedure is similar to Judd, Yeltekin, and Conklin (2003)’s

outer approximation method. They use piecewise linear approximations to support func-

tions of payoff sets in their analysis of repeated games.

Numerical Example Figure 1 illustrates value and policy functions from a numerical

example. In the example, the discount factor δ is set to 0.8. The preference parameters

µ and σ are set to 0.5 and 0.8 respectively. Two shock states are assumed with Markov

transition Q(1, 1) = Q(2, 2) = 0.8. Two agents are assumed. In the first state, agent 1’s

outside option is 0 and agent 2’s is set to 1.25. These are reversed in state 2. Output

is constant at 1 across the states. These parameters determine D and D. The bounding

function D is set equal to D − ε. The dual Bellman is a contraction and ε chosen to ensure

that it has a modulus of contraction of ρ = 0.9 with respect to the implied Thompson-like

metric.

Figure 1a gives the value function on R2
+. In each iteration this function is evaluated

at a finite number of points and then approximated on its entire domain as described

above. The remainder of the figure shows optimal policies for agent 1 as a function of

the shock s and co-state/Pareto variable qV,1, with qV,2 set so that 1 =
√

(qV,1)2 + (qV,2)2

and (qV,1, qV,2) is in C+. As Figure 1c shows, the agent’s incentive multiplier is positive

in state 2 for low co-state/Pareto weight values qV,1, otherwise, it is zero. Only for this

combination of a high outside option (state 2) and a low Pareto weight, does the agent’s

incentive constraint bind. As Figure 1b shows, the agent’s consumption is 0.4 (i.e. 40%

of the endowment) for this combination. In contrast, in state s = 1, the agent receives

a share of the endowment that becomes arbitrarily small as the agent’s Pareto weight

becomes small. On other hand in this state, the agent’s share of the endowment reaches a

maximum value of 0.6 for larger values of her Pareto weight (and correspondingly smaller

values of the other agent’s Pareto weight). For these values, agent 2’s incentive constraint

binds. Implications for agent 1’s next period Pareto weight are illustrated in Figure 1d.
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(d) Co-state Policy Functions

Figure 1: Value and Policy Functions for the Limited Commitment Problem

10 Conclusion

In many settings the (primal) state space of a dynamic economic problem is defined im-

plicitly and must be recovered as part of the solution to the problem. This complicates the

application of recursive methods. Associated dual problems have recursive formulations

in which co-states are used to keep track of histories of past or feasible future actions. If the

primal state space is bounded, then the dual (co-)state space is immediately determined

as RN (or, perhaps, RN
+). Despite the unboundedness of the dual value functions and the

lack of a bounded constraint correspondence, contractivity of the dual Bellman operator

(with respect to the modified Thompson metric) may be established if suitable bounding

functions are available. In many problems they are.
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Appendix

A Construction of Payoffs

A function g : S × A → Rnv+1 is bounded if ‖g‖∞ := supS×A
‖g(s, α)‖. Let G denote the

set of bounded functions g : S × A → Rnv+1. For g ∈ G, define TV(g)(s, α) according to:

TV(g)(s, α) = WV [s, a0, MV [s, a0, g′(α)]],
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where g′(α) = {g(s′ , α|s′)}ns
s′=1.

Lemma 3. TV : G → G and is contractive.

Proof. Let g ∈ G. The monotonicity of MV and the fact that MV [s, a, ·] maps constant-
valued random variables to their constant values implies:

sup
S×A

|MV [s, a, g′(α)]| ≤ ‖g‖∞ I,

where I is the nv + 1-unit vector. The boundedness and discounting properties of WV

imply:

sup
S×A

‖WV [s, a, MV [s, a, g′(α)]]‖ ≤ sup
S×A

‖WV [s, a, 0]‖+ δ̄‖g‖∞ < ∞.

We deduce that T(g) ∈ G. Monotonicity of T follows from monotonicity of each WV [s, a, ·]
and MV [s, a, ·]. Let g, g̃ ∈ G, then from the monotonicity and sub-additivity of MV :

MV [s, a, g′(α)] − MV [s, a, g̃′(α)] ≤ MV [s, a, g̃′(α) + ‖g − g̃‖∞]− MV [s, a, g̃′(α)] ≤ ‖g − g̃‖∞.

By the monotonicity and discounting properties of WV , for each (s, a, α),

WV [s, a,MV [s, a, g′(α)]] − WV [s, a, MV [s, a, g̃′(α)]]

≤ WV [s, a, MV [s, a, g̃′(α)] + ‖g̃ − g‖∞]− WV [s, a, MV [s, a, g̃′(α)]] ≤ δ̄‖g̃ − g‖∞.

Hence, TV satisfies a discounting property and, by Blackwell’s theorem, is a contraction
on G.

It follows from Lemma 3, the completeness of G and the contraction mapping theorem
that TV has a unique fixed point on G. V is identified with this function. By placing
additional continuity restrictions on WV and MV , the previous result may be strengthened
to show that V, the unique fixed point on G, is continuous.

B Proofs for Section 4

Proof of Proposition 2. For (k, s, v) ∈ X , let:

Ω(k, s, v) =















π ∈ P

∣

∣

∣

∣

∣

∣

∣

∣

k0 = k, s0 = s, v0 = v,
kt+1(s

t) = WK[kt(st−1), st, at(st)],
vt(st) = WV [st, at(st), MV [st, at(st), vt+1(s

t)]],
H[kt(st−1), at(st), vt+1(s

t)] ≥ 0















.

It follows from definitions that Ω(k, s, v) = {π|k0 = k, v0 = v, (a0, k1, v1) ∈ Γ(k, s, v), π|s′ ∈
Ω(k1, s′, v1(s

′))}, where π|s′ is the continuation of π after s1 = s′. For (k, s, v) ∈ X , let
P∗(k, s, v) = supΩ(k,s,v) V0(s, α). Define B on the domain F = {P : X → R} as, for P ∈ F

and (k, s, v) ∈ X , B(P)(k, s, v) = supΓ(k,s,v) WV,0[s, a, MV,0[s, a, P′(k′ , v′)]], with P′(k′v′) =
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{P(k′ , s′, v′(s′))}s′∈S . We verify that for (k, s, v) ∈ X , P∗(k, s, v) = B(P∗)(k, s, v). Suppose
P∗(k, s, v) > supΓ(k,s,v) WV,0[s, a, MV,0[s, a, P∗′(k′ , v′)]]. Since (k, s, v) ∈ X , Ω(k, s, v) 6= ∅ and

there is a π ∈ Ω(k, s, v) with V0(s, α) > supΓ(k,s,v) WV,0[s, a, MV,0[s, a, P∗′(k′, v′)]]. But π ∈

Ω(k, s, v), thus (a0, k1, v1) ∈ Γ(k, s, v) and π|s′ ∈ Ω(k1, s′, v1(s
′)). From the monotonicity of

WV,0 in its third argument and the definition of P∗, V0(s, α) = WV,0[s, a0, MV,0[s, a0, V0′(α)]]
≤ WV,0[s, a0, MV,0[s, a0, P∗′(k1, v1)]] ≤ supΓ(k,s,v) WV,0[s, a, MV [s, a, P∗′(k′ , v′)]]. This is a

contradiction and so P∗(k, s, v) ≤ B(P∗)(k, s, v). Next suppose that P∗(k, s, v) < supΓ(k,s,v)

WV,0[s, a, MV,0[s, a, P∗′(k′, v′)]]. Then, since (k, s, v) ∈ X , Γ(k, s, v) is non-empty and there
is a triple (a, k′ , v′) ∈ Γ(k, s, v) with P∗(k, s, v) < WV,0[s, a, MV,0[s, a, P∗′(k′ , v′)]]. Since WV,0

and MV,0 are continuous in their third arguments, there is a family π|s′ with for each π|s′ ∈
Ω(k′ , s′, v′) and with associated plans α|s′ satisfying P∗(k, s, v) < WV,0[s, a, MV,0[s, a, V0′(α)]]
= V0(s, α). But the definition of Ω(k, s, v) implies that π = (k, v, a, {π|s′}) ∈ Ω(k, s, v).
Hence, V0(s, α) ≤ supΩ(k,s,v) V(s, α′) = P∗(k, s, v), another contradiction. Thus, P∗(k, s, v) ≥

B(P∗)(k, s, v). Combining inequalities and noting that (k, s, v) was arbitrary in X , it follows
that P∗ = B(P∗) as required. By a very similar argument, P∗

0 = supV(k̄,s0)
P∗(k̄, s0).

Similar reasoning to that above establishes that any solution to (PA) satisfies (i) and (ii)
from the proposition. Conversely, let π∗ = (α∗, {k∗t , v∗t }) be a primal process satisfying (i)
and (ii) in the proposition. Feasibility of π∗ for (PA) is immediate. Also,

|P∗(k∗0 , s0, v∗0)− V0(s0, α∗)| = |WV,0[s0, a∗0 , MV,0[s0, a∗0 , {P∗(k∗1(s0), s1, v∗1(s0))}s1∈S ]]

− WV,0[s0, a∗0 , MV,0[s0, a∗0 , {V0(s1, α∗|s1)}s1∈S ]]|

≤ δ max
s1∈S

|P∗(k∗1(s0), s1, v∗1(s0))− V0(s1, α∗|s1)|

≤ . . . ≤ δt max
st∈S

|P∗(k∗t (s
t−1), st, v∗t (s

t−1))− V0(st, α∗|st)|, (35)

where the first equality uses property (ii) in the proposition and (10), the first inequality
uses the sub-additivity of MV,0 and the discounting property of WV,0. The final inequality
follows from an iteration of these arguments. The boundedness of P∗ and V0 and δ ∈
(0, 1) then implies that the final term in (35) converges to 0 as t converges to ∞. Hence,
P∗(k∗0 , s0, v∗0) = V0(s0, α∗). Then using property (i) in the proposition and (9), we have that
P∗

0 = P∗(k∗0 , s0, v∗0) = V0(s0, α∗) and π∗ is a solution to (PA).

45



C Proofs for Section 5

Proof of Proposition 3. We have:

D∗
0 = inf

Q

sup
P

L (π, θ)

= inf
Q

sup
P

F[s0, v0] + qK
0 · (k̄ − k0) + qV

0 · (WV [s0, a0, MV [s0, a0, v1]]− v0)

+ qH
0 · H[k, s0, a0, v1] + δ̄ ∑

s1∈S

〈θ, ζ(π)|s1〉

= inf
Y

sup
V

qK
0 · k̄ + F[s0, v0]− qV

0 · v0

+ inf
Q(qK

0 ,qV
0 )

sup
P(v0)

−qK
0 · k0 + qV

0 · WV [s0, a0, MV [s0, a0, v1]]

+ qH
0 · H[k, s0, a0, v1] + δ̄ ∑

s1∈S

〈θ, ζ(π)|s1〉,

which combined with the definition of D∗ gives the first equality in the proposition. For
each (s, y) = (s, qK, qV) ∈ S ×Y ,

D∗(s, y) = inf
Q(y)

sup
P(v0)

−qK · k0 + qV · WV [s, a0, MV [s, a0, v1]]

+ qH
0 · H[k0, s, a0, v1] + δ̄ ∑

s′∈S

〈θ, ζ(π)|s′〉

= inf
Q(y)

sup
P(v0)

−qK · k0 + qV · WV [s, a0, MV [s, a0, v1]] + qH
0 · H[k0, s, a0, v1]

− δ̄ ∑
s′∈S

qV
1 (s

′) · v1(s
′) + δ̄ ∑

s′∈S

qK
1 (s

′) · {WK[k0, s, a0]− k1(s
′)}

+ δ̄ ∑
s′∈S

{

qV
1 (s

′) · WV [s′, a1(s
′), MV [s′, a1(s

′), v2(s
′)]]

+ qH
1 (s′) · H[k1, s′, a1(s

′), v2(s
′)] + δ̄ ∑

s′′∈S

〈θ, ζ(π)|s′ , s′′〉
}

.

Note that once q0 = (qH
0 , qK

1 , qV
1 ) is chosen, p0 = (k0, a0, v1) is independent of the remaining

dual variables. Consequently, conditional on q0 = (qH
0 , qK

1 , qV
1 ), the infimum over these dual
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variables and the supremum over p0 may be interchanged to give:

D∗(s, y) = inf
Q

sup
P

−qK
0 · k0 + qV

0 · WV [s, a0, MV [s, a0, v1]]

+ qH
0 · H[k0, s, a0, v1]− δ̄ ∑

s′∈S

qV
1 (s

′)v1(s
′) + ∑

s′∈S

qK
1 (s

′) · WK[k0, s, a0]

+ δ̄ ∑
s′∈S

inf
Q(y1(s′))

sup
P(v1(s′))

{

− qK
1 (s

′) · k1(s
′) + qV

1 (s
′) · WV [s′, a1(s

′), MV [s′, a1(s
′), v2(s

′)]]

+ qH
1 (s′) · H[k1, s′, a1(s

′), v2(s
′)] + δ̄ ∑

s′′∈S

〈θ, ζ(π)|s′ , s′′〉
}

.

= inf
Q

sup
P

−qK
0 · k0 + qV

0 · WV [s, a0, MV [s, a0, v1]] + qH
0 · H[k0, s, a0, v1]

− δ̄ ∑
s′∈S

qV
1 (s

′) · v1(s
′) + δ̄ ∑

s′∈S

qK
1 (s

′) · WK[k0, s, a0] + δ̄ ∑
s′∈S

D∗
(

s′, y1(s
′)
)

.

Combining the last equality with the definition of J gives the second equality in the propo-
sition.

Proof of Proposition 4. Choose an arbitrary (s, y) = (s, qK, qV) ∈ S × Y = S × Rnk+nv+1.
Since 0 ∈ Q is a feasible multiplier choice for the infimum in the continuation problem
(12):

D∗(s, y) = inf
Q(y)

sup
P(v0)

−qK · k0 + qV · WV [s, a0, MV [s, a0, v1]]

+ qH · H[k0, s, a0, v1] + ∑
s′∈S

〈θ, ζ(π)|s′〉

≤ sup
P

−qK · k0 + qV · W[s, a0, M[s, a0, v1]] < ∞,

where the last inequality uses the boundedness of K × V . On the other hand, for a fixed
feasible primal process π′ ∈ P and an arbitrary dual process in Q,

sup
P

− qK · k0 + qV · WV [s, a0, MV [s, a0, v1]] + qH · H[k0, s, a0, v1] + ∑
s′∈S

〈θ, ζ(π)|s′〉

≥ −qK · k′0 + qV · WV [s, a′0, MV [s, a′0, v′1]] > −∞.

And so, D∗(s, y) ≥ −qK · k′0 + qV · WV [s, a′0, MV [s, a′1, v′1]] > −∞. Hence, D∗(s, y) is real
and, since (s, y) was arbitrary, D∗ is real-valued on S × Y .

Proof of Proposition 5. (Only if) Let J0(y0, v0) = F[s0, v0]− qV
0 · v0 + qK

0 · k̄. Using this defini-
tion and that of J implies:

L (π, θ) = J0(y0, v0) +
∞

∑
t=0

δ̄t ∑
S t

J(st, yt(s
t); qt(s

t), pt(s
t)).
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Thus, if (θ∗, π∗) ∈ ΛIS, then:

π∗ ∈ argmax
P

J0(y
∗
0 , v0) +

∞

∑
t=0

δ̄t ∑
S t

J(st, y∗t (s
t); q∗t (s

t), pt(s
t)).

The above maximization can be decomposed into a collection of static maximizations
with v∗0 ∈ argmaxV J0(y

∗
0 , v0) and p∗t (s

t) ∈ argmaxP J(st, y∗t (s
t); q∗t (s

t), pt(st)). Let J∗0 (y) =
supV J0(y, v0) and J∗(s, y; q) = supP J(s, y; q, p). Then:

D∗
0 = J∗0 (y

∗
0) +

∞

∑
t=0

δ̄t ∑
S t

J∗(st, y∗t (s
t); q∗t (s

t))

≤ J∗0 (y0) +
∞

∑
t=0

δ̄t ∑
S t

J∗(st, yt(s
t); qt(s

t)), θ ∈ Q.

In particular, the inequality holds for all θ with initial element y∗0 and so, since D∗(s, y) =
infQ(y) ∑

∞
t=0

δ̄t ∑S t J∗(st, yt(st); qt(st)),

D∗
0 = J∗0 (y

∗
0) +

∞

∑
t=0

δ̄t ∑
S t

J∗(st, y∗t (s
t); q∗t (s

t)) ≤ J∗0 (y
∗
0) + D∗(s0, y∗0).

Conversely, since the continuation of θ∗ lies in Q(y), the reverse inequality holds: D∗
0

= J∗0 (y
∗
0) + ∑

∞
t=0

δ̄t ∑S t J∗(st, y∗t (s
t); q∗t (s

t)) ≥ J∗0 (y
∗
0) + D∗(s0, y∗0). Hence D∗

0 = J∗(y∗0) +

D∗(s0, y∗0) and y∗0 attains the minimum in (14). Consequently, (y∗0 , v∗0) ∈ GIS
0 . Pursuing the

same argument at successive histories gives (q∗t (s
t), y∗t+1(s

t)) attains the minimum in (15)

at (st, y∗t (s
t)) and so (q∗t (s

t), p∗t (s
t)) ∈ GIS(st, y∗t (s

t)).
(If) Suppose (π∗, θ∗) is such that (qK∗

0 , pV∗
0 , v∗0) ∈ GIS

0 and for each t ∈ N, st ∈ S t,

(qH∗
t (st), y∗t+1(s

t), p∗t (s
t)) ∈ GIS(st, y∗t (s

t)). The definitions of GIS
0 and GIS imply that

J0(y
∗
0 , v∗0) = supV J0(y

∗
0 , v0) and J(st, y∗t (s

t); q∗t (s
t), p∗t (s

t)) = supP J(st, y∗t (s
t); q∗t (s

t), pt(st)).
Hence, for arbitrary π ∈ P ,

L (π∗, θ∗) = J0(y
∗
0 , v∗0) +

∞

∑
t=0

δ̄t−1 ∑
S t

J(st, y∗t (s
t); q∗t (s

t), p∗t (s
t))

≥ J0(y
∗
0 , v0) +

∞

∑
t=0

δ̄t−1 ∑
S t

J(st, y∗t (s
t); q∗t (s

t), pt(s
t))

= L (π, θ∗).

And so π∗ ∈ argmax
P

L (π, θ∗). Let J∗0 (y) = supV J0(y, v0) and J∗(s, y; q) = supP J(s, y; q, p).
Then:

D∗
0 = inf

Q

sup
P

L (π, θ) = inf
Q

J∗0 (y
∗
0) +

∞

∑
t=0

δ̄t−1 ∑
S t

J∗(st, y∗t (s
t); q∗t (s

t))
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The definitions of GIS
0 and GIS imply:

D∗
0 = J∗0 (y

∗
0) + D∗(s0, y∗0)

and
D∗(st, y∗t (s

t)) = J∗(st, y∗t (s
t); q∗t (s

t)) + δ̄ ∑
s′∈S

D∗(s′, y∗t+1(s
t, s′)).

Consequently, we have:

D∗
0 = J∗0 (y

∗
0) +

T

∑
t=0

δ̄t ∑
S t

J∗(st, y∗t (s
t); q∗t (s

t)) + δ̄T+1 ∑
ST+1

D∗(sT+1, y∗T+1(s
T+1)).

Taking the limit as T goes to infinity and using the condition in the proposition implies
that

D∗
0 ≥ J∗0 (y

∗
0) +

∞

∑
t=0

δ̄t ∑
S t

J∗(st, y∗t (s
t); q∗t (s

t)).

But since θ∗ ∈ Q and so is feasible for the minimization defining ΛIS, the reverse inequality
holds and θ∗ attains the minimum as required.

D Proofs for Section 6

Proof of Lemma 1. We begin with simple general result. Let Ψ, Φ and Ω denote vector
spaces and L : Ψ × Φ × Ω → R a real-valued function. Assume that for each ω ∈ Ω,
L(·, ·, ω) is sub-linear. For ψ ∈ Ψ, let: Λ(ψ) = inf

Φ

sup
Ω

L(ψ, φ, ω). We prove that Λ is sub-

linear. To begin with we first show that Λ is convex. Let ψ1 and ψ2 be elements of Ψ and
λ ∈ [0, 1]. Let ψλ = λψ1 + (1− λ)ψ2. Assume that the infimum defining Λ is attained at ψi

by some φ∗
i , i = 1, 2. This assumption simplifies the exposition and can easily be dropped.

Let φ∗
λ = λφ∗

1 + (1 − λ)φ∗
2 . Then:

λΛ(ψ1) + (1 − λ)Λ(ψ1) = λ inf
Φ

sup
Ω

L(ψ1; φ, ω) + (1 − λ) inf
Φ

sup
Ω

L(ψ2; φ, ω)

= λ sup
Ω

L(ψ1; φ∗
1 , ω) + (1 − λ) sup

Ω

L(ψ2; φ∗
2 , ω)

≥ sup
Ω

{λL(ψ1; φ∗
1 , ω) + (1 − λ)L(ψ2; φ∗

2 , ω)}

≥ sup
Ω

L(ψλ; φ∗
λ, ω) ≥ inf

Φ

sup
Ω

L(ψλ; φ, ω) = Λ(ψλ),

where the second inequality uses the convexity of L(·, ·, ω). Thus, Λ is convex. Next we
show homogeneity. Suppose that ψ ∈ Ψ and λ > 0. Then:

Λ(λψ) = inf
Φ

sup
Ω

L(λψ; φ, ω) = λ inf
Φ

sup
Ω

L(ψ; φ/λ, ω) = λΛ(ψ),
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where the second equality uses the positive homogeneity of L(·, ·, ω). Thus, Λ is positively
homogenous of degree 1 and, combining results, sub-linear.

(i) For fixed s0 ∈ S , define the "continuation Lagrangian":

M(y0; qH
0 , {θ|s1}, p, {ζ(π)|s1}) = −qK

0 · k0 + qV
0 · WV [s0, a0, MV [s0, a0, v1]]

+ qH
0 · H[k0, s0, a0, v1] + δ̄ ∑

s1∈S

〈θ, ζ(π)|s1〉,

Setting ψ = y0, Ψ = Y , φ = (qH
0 , {θ|s1}s1∈S), Φ = Q(y0), ω = (q, {π|s1}s1∈S), Ω = P(v0)

and L(ψ; φ, ω) = M(y0; qH
0 , {θ|s1}, p, {ζ|s1}), it follows that for each ω, L(·; ·, ω) is linear

and, hence, sub-linear. Applying the general result from the first part of the proof, D∗(s0, ·)
is sub-linear. Since s0 was arbitrary in S , D∗ is sub-linear.

(ii) It is easy to verify that for each (s, p), J(s, ·; ·, p) is linear and, hence, sub-linear.
Assume that D is sub-linear. Then for each (s, p), J(s, ·; ·, p) + δ̄ ∑s′∈S D (s′, ·) is sub-linear.
Consequently, the logic from the first part of the proof establishes that B(D)(s, ·),

B(D)(s, y) = inf
Q

sup
P

J(s, y; q, p) + δ̄ ∑
s′∈S

D
(

s′, y′(s′)
)

,

is sub-linear. Since s was arbitrary in S , B(D) is sub-linear.

Proof of Lemma 2. Evidently, (G , d) is a metric space. Let {Dn} be a Cauchy sequence in
G . Thus, as n, m → ∞,

d(Dn, Dm) = sup
S×C

∣

∣

∣

∣

∣

ln

(

Dn(s, y)− D(s, y)

D(s, y)− D(s, y)

)

− ln

(

Dm(s, y)− D(s, y)

D(s, y)− D(s, y)

)∣

∣

∣

∣

∣

→ 0.

For each n ∈ N, define gn : S × C → R according to: gn(s, y) = ln
(

Dn(s,y)−D(s,y)

D(s,y)−D(s,y)

)

,

(s, y) ∈ S × C. Let g = 0 and g = ln{(D − D)/(D − D)}. It follows that {gn} is Cauchy
with respect to the sup-norm and that for each n, g ≤ gn ≤ g. By the completeness of the

continuous, bounded functions from C to R, {gn} converges in the sup-norm to a function
g∞, with each g∞(s, ·) continuous and bounded and g ≤ g∞ ≤ g. Use g∞ to define the
homogeneous function D∞ as:

D∞(s, y) = ‖y‖

{

D

(

s,
y

‖y‖

)

+ exp

{

g∞

(

s,
y

‖y‖

)}(

D

(

s,
y

‖y‖

)

− D

(

s,
y

‖y‖

))}

.

By construction D ≤ D∞ ≤ D and Dn
d
→ D∞. Since D∞ is the pointwise limit of a sequence

of sub-linear and, hence, convex functions, it too is convex. Hence, it is in G .

Proof of Proposition 6. Let G0 denote the interval of real-valued functions between D and

D. Let D1 and D2 be any pair of functions in G0 and let λ ∈ [0, 1]. Define for each
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(s, y, q) ∈ S × Y ×Q, J∗(s, y, q) = supP J(s, y; q, p). Then, for each (s, y) ∈ S × Y ,

B(λD1 + (1 − λ)D2)(s, y) = inf
Q

J∗(s, y, η, y′) + ∑
s′∈S

{λD1

(

s′, y′(s′)
)

+ (1 − λ)D2

(

s′, y′(s′)
)

}

= inf
Q

λ
{

J∗(s, y, η, y′) + ∑
s′∈S

D1

(

s′, y′(s′)
)

}

+ (1 − λ)
{

J∗(s, y, η, y′) + ∑
s′∈S

D2

(

s′, y′(s′)
)

}

≥ λ inf
Q

{

J∗(s, y, η, y′) + ∑
s′∈S

D1

(

s′, y′(s′)
)

}

+ (1 − λ) inf
Q

{

J∗(s, y, η, y′) + ∑
s′∈S

D2

(

s′, y′(s′)
)

}

= λB(D1)(s, y) + (1 − λ)B(D2)(s, y).

Thus, B is concave on G0. Let D1, D2 ∈ G ⊂ G0. By definition of d, for each (s, y) ∈ S × C,

ln

(

D2(s, y)− D(s, y)

D − D

)

≤ ln

(

D1(s, y)− D(s, y)

D(s, y)− D(s, y)

)

+ d(D1, D2).

Taking the exponential of each side and rearranging gives:

exp{−d(D1, D2)}

(

D2(s, y)− D(s, y)

D(s, y)− D(s, y)

)

≤

(

D1(s, y)− D(s, y)

D(s, y)− D(s, y)

)

.

But, by Assumption 3 (i), D − D > 0 and so, after rearrangement,

D1(s, y) ≥ exp{−d(D1, D2)}D2(s, y) + (1 − exp{−d(D1, D2)})D(s, y). (36)

Since D1, D2 and D are positively homogeneous of degree 1, this inequality holds at all
(s, y) ∈ S ×Y . Then, by monotonicity and concavity of B (on G0),

B(D1) ≥ B(exp{−d(D1, D2)}D2 + (1 − exp{−d(D1, D2)})D)

≥ exp{−d(D1, D2)}B(D2) + (1 − exp{−d(D1, D2)})B(D). (37)

By assumption there is a ε1 > 0 such that for each (s, y) ∈ S × C, B(D)(s, y) > D(s, y) + ε1.
For (s, y) ∈ S × C, define:

λ(s, y) :=
ε1

D(s, y)− D(s, y)
.

Since D(s, y) ≥ B(D)(s, y) ≥ B(D)(s, y) > D(s, y) + ε1, λ(s, y) ∈ (0, 1). Now, for each

s ∈ S , D(s, ·) and D(s, ·) are continuous. Thus, λ(s, ·) is continuous and since C is compact,
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there is a λ∗ = minS×C λ(s, y) ∈ (0, 1). Then, for all (s, y) ∈ S × C,

B(D)(s, y) > D(s, y) + ε1 = λ(s, y)D(s, y) + (1 − λ(s, y))D(s, y)

≥ λ∗D(s, y) + (1 − λ∗)D(s, y)

≥ λ∗B(D2)(s, y) + (1 − λ∗)D(s, y), (38)

where the first inequality is by assumption, the first equality uses the definition of λ(s, y),
the second inequality uses the definition of λ∗ and D ≥ D and the final inequality uses

D ≥ B(D) ≥ B(D2). Combining (37) with (38) gives for all (s, y) ∈ C,

B(D1)(s, y) ≥ exp{−d(D1, D2)}B(D2)(s, y) + (1 − exp{−d(D1, D2)})

× [λ∗B(D2)(s, y) + (1 − λ∗)D(s, y)].

Letting r := exp{−d(D1, D2)}+ (1 − exp{−d(D1, D2)})λ
∗ , then gives for (s, y) ∈ S × C:

B(D1)(s, y)− D(s, y)

D(s, y)− D(s, y)
≥r

B(D2)(s, y)− D(s, y)

D(s, y)− D(s, y)
.

Hence, taking logs, for (s, y) ∈ S × C,

ln

(

B(D1)(s, y)− D(s, y)

D(s, y)− D(s, y)

)

≥ ln r + ln

(

B(D2)(s, y)− D(s, y)

D(s, y)− D(s, y)

)

.

But from the definition of r and Jensen’s inequality:

ln r ≥ (1 − λ∗) ln exp{−d(D1, D2)}+ λ∗ ln 1 = −(1 − λ∗)d(D1, D2).

Thus, for (s, y) ∈ S × C,

(1 − λ∗)d(D1, D2) ≥ − ln r ≥ ln

(

B(D2)(s, y)− D(s, y)

D(s, y)− D(s, y)

)

− ln

(

B(D1)(s, y)− D(s, y)

D(s, y)− D(s, y)

)

.

(39)
Repeating the argument with D1 and D2 interchanged and combining with (39) implies
that for all (s, y) ∈ S × C,

(1 − λ∗)d(D1, D2) ≥

∣

∣

∣

∣

∣

ln

(

B(D2)(s, y)− D(s, y)

D(s, y)− D(s, y)

)

− ln

(

B(D1)(s, y)− D(s, y)

D(s, y)− D(s, y)

)∣

∣

∣

∣

∣

.

Consequently, letting ρ := (1 − λ∗) ∈ (0, 1),

ρd(D1, D2) ≥ sup
S×C

∣

∣

∣

∣

∣

ln

(

B(D2)(s, y)− D(s, y)

D(s, y)− D(s, y)

)

− ln

(

B(D1)(s, y)− D(s, y)

D(s, y)− D(s, y)

)∣

∣

∣

∣

∣

= d(B(D1), B(D2))
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as desired.

Bounding value functions for Example 1 Assume as in the main text an ã ∈ Ans and a
ξ > 0 such that for each s ∈ S , γ(s) > ∑

1
i=0 ãi(s), and for each s ∈ S and i ∈ {0, 1},

v − ξ ≥
1 − δ

1 − µ
(ãi(s))1−µ + δv >

1 − δ

1 − µ
(ãi(s))1−µ + δ

{

∑
s′∈S

wi′(s′)σQ(s|s′)
}

1
σ
> wi(s) + ξ.

Set:

D(s, qV) =
1

∑
i=0

qV,iφi(qV,i, s), φi(qV,i , s) =

{

v qV,i ≥ 0

v qV,i < 0

and

D(s, qV) =
1

∑
i=0

{qV,iψi(qV,i, s) + |qV,i|ξ}, ψi(qV,i, s) =

{

wi(s) qV,i ≥ 0

v qV,i < 0.

Given qV′ = {qV′,i(s′)}, define ψ(qV′) = {ψi(qV′,i(s′), s)} and note that the above defini-
tions imply for each s and qV′, H[s, ã(s), ψ(qV′)] ≥ 0.

B(D) is given by, for all (s, qV) ∈ S ×Y ,

B(D)(s, qV) = inf
Q

sup
P

∑
i=0,1

(qV,i + qH,i)







1 − δ

1 − µ
(ai)1−µ + δ

(

∑
s′∈S

vi′(s′)σQ(s|s′)

)
1
σ







− ∑
i=0,1

qH,iwi(s)− qH,2

(

∑
i=0,1

ai − γ(s)

)

− δ ∑
s′∈S

qV′(s′) · v′(s′) + δ ∑
s′∈S

D(s′, qV′(s′)).

Setting D = D, using the definition of v and v and noting that the dual variables (qH , qV′)
can always be chosen equal to 0 in the infimum, we have B(D)(s, qV) ≤ D(s, qV). On the
other hand, setting D = D and noting that for any s and choice of (qH , qV′), (ã(s), ψ(qV′))

is a feasible choice for the supremum with H[s, ã(s), ψ(qV′)] ≥ 0, we have:

B(D)(s, qV) ≥ inf
Q

∑
i=0,1

(qV,i + qH,i)







1 − δ

1 − µ
(ãi(s))1−µ + δ

(

∑
s′∈S

ψi(qV′i(s′), s′)σQ(s|s′)

) 1
σ







− ∑
i=0,1

qH,iwi(s)− qH,2

(

∑
i=0,1

ãi(s)− γ(s)

)

≥ inf
Q

∑
i=0,1

qV,i







1 − δ

1 − µ
(ãi(s))1−µ + δ

(

∑
s′∈S

ψi(qV′i(s′), s′)σQ(s|s′)

)
1
σ






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If qV,i ≥ 0, then

inf
qV′i

qV,i







1 − δ

1 − µ
(ãi(s))1−µ + δ

(

∑
s′∈S

ψi(qV′i(s′), s′)σQ(s|s′)

)
1
σ







≥ qV,i







1 − δ

1 − µ
(ãi(s))1−µ + δ

(

∑
s′∈S

wi(s′)σQ(s|s′)

)
1
σ







≥ qV,i(wi(s) + ξ),

with the inequality strict if qV,i > 0. Similarly, if qV,i < 0, then

inf
qV′i

qV,i







1 − δ

1 − µ
(ãi(s))1−µ + δ

(

∑
s′∈S

ψi(qV′i(s′), s′)σQ(s|s′)

) 1
σ







≥ qV,i

{

1 − δ

1 − µ
(ãi(s))1−µ + δv

}

> qV,i(v − ξ).

Thus, for all (s, qV) ∈ S × C, B(D)(s, qV) > D(s, qV). The continuity of each B(D)(s, ·) fol-
lows from the assumptions on D and an argument of Rockafellar and Wets (1998) (Theorem
1.17, p. 16-17). The continuity of each D(s, ·) and B(D)(s, ·) and the compactness of C then

implies that there is a ε > 0 such that for all (s, qV) ∈ S × C, B(D)(s, qV) > D(s, qV) + ε as
required. �

Bounding value functions for Example 2 The verification of Assumption 3 is very simi-
lar to Example 1. The main differences are in showing that B(D) > D + ε, ε > 0, on C. We
detail the steps below. In the deterministic version of the default model, B(D) takes the
form:

B(D)(qK , qV) = inf
qK′,qV′,qH

sup
k,a,v′

− qK · k + qV ·
(

f (a) + δv′
)

+ qH,1
(

f 1(a1) + δv1′ − w(k)
)

−δqV′ · v′ +
(

δqK′ + qH,2
)

(

γ(k) − ∑
i=0,1

ai

)

+ δD
(

qV′, qK′
)

.

Let D = D and define ã(qK′) = (ã0(qK′), ã1), with ã0(qK′) = a0 if qK′ > 0 and ã0(qK′) =

a0 otherwise. Note that given (qK, qV) and (qH , qK′, qV′), (k̄, ã(qK′), ψ(qV′)) is a feasible
choice for the supremum that satisfies the no default constraint. Also, for all possi-
ble qK′, the component δqK′(γ(k̄)− ∑i=0,1 ãi(qK′)) in the objective function exactly offsets

δqK′
ψK(qK′) + |qK|ξK , the K component of D. Consequently,

B(D)(qK , qV) ≥ inf
qK′,qV′

−qK k̄ + qV ·
(

f (ã(qK′)) + δψi(qV′i)
)

.

Fix (qK , qV) ∈ C. The conditions placed on a0, a0 and ã1 in the main text and the
same line of argument used in the preceding example establishes that: infqK′,qV′ qV ·

54



(

f (ã(qK′)) + δψi(qV′i)
)

≥ ∑i=0,1{ψV,i(qV,i) + |qV,i|ξV}, with the inequality strict whenever

qV 6= 0. Also:
−qK k̄ ≥ qKψK(qK)− |qK|ξK .

Where the last inequality is strict whenever qK 6= 0: if qK < 0, then (−qK)k̄ > 0 > ψK(qK)−
|qK|ξK = qKξK; if qK > 0, then −qK k̄ > qKψK(qK)− |qK|ξK = −qK k̄ − qKξK . Hence, for all
y ∈ C, B(D)(y) > D(y). As before, the continuity of each B(D)(·) follows from the
assumptions on D and an argument of Rockafellar and Wets (1998). The continuity of
each D(·) and B(D)(·) and the compactness of C then implies that there is a ε > 0 such
that for all y ∈ S × C, B(D)(y) > D(y) + ε as required. �

E Proofs for Section 8

Proof of Proposition 8. Equality of values follows from the proof of Luenberger (1969), The-
orem 2, p. 221, following a small extension to accommodate equality constraints. If π∗

solves (AP) and L admits a saddle point, then, again by a small extension to the proof of
Luenberger (1969), Theorem 2, p. 221, there is a θ∗0 that attains the infimum in (IS) and is
such that π∗ maximizes L . The result then follows from Proposition 5.

Proof of Proposition 9. Part (i). Since for each θ∗ ∈ Q∗, every element of P∗ is maximal
for L (·, θ∗) and since all elements of argmax

P
L (·, θ∗) share a plan α∗, it follows that all

elements of P∗ share a plan α∗. That α∗ is a solution for (P) then follows from Luenberger
(1969), Theorem 2, p. 221 and Proposition 1. That α∗ is the unique solution of (P) follows
from Proposition 1 and the fact that all solutions to (AP) belong to P∗ and, hence, all
share the plan α∗. Part (ii). Suppose (π, θ) = (α, {kt, vt}∞

t=0) satisfies the condition in part
(ii) of the proposition. Then, by Proposition 5, (π, θ) solves (IS). In addition, θ ∈ Q∗ and
since π ∈ argmax

P
L it follows that α = α∗ and is optimal for (P).

Proof of Proposition 10. Condition (i) and the weak duality inequality imply F[s0, V(s0, α̂)] ≥
D∗

0 ≥ P∗
0 . On the other hand, Condition (ii) implies P∗

0 ≥ F[s0, V(s0, α̂)] and, hence π̂

solves (AP) and D∗
0 = P∗

0 . In addition, from Proposition 5, if (π̂, θ̂) satisfies Condition (T),

then it is a solution to the dual problem (IS). Also, L (π̂, θ̂) = supπ L (π, θ̂) = D∗
0 = P∗

0 =

infθ L (π̂, θ), where the first and second inequalities use the fact that (π̂, θ̂) solves the dual,
the third uses D∗

0 = P∗
0 and the fourth the fact that π̂ solves (AP) and, hence, maximizes

infθ L (π, θ) and attains P∗
0 . Thus, π̂ solves max L (π, θ̂) and θ̂ solves min L (π̂, θ) and

(π̂, θ̂) is a saddle fof L .

F Relaxation

We first consider the augmented problem without backward-looking state variables. The
relaxed version of this problem is:

sup F[s0, v0] (R-AP)
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subject to π ∈ P and ∀t, st,

WV [st, at(s
t), MV [st, at(s

t), vt+1(s
t)]] ≥ vt(s

t), (40)

H[st, at(s
t), vt+1(s

t)] ≥ 0. (41)

If F[s0, ·] is concave in v0, for each s, WV [s, ·, ·] is jointly concave in (a, m) (recall that by
assumption it is increasing in m), MV [s, ·, ·] and H[s, ·, ·] are jointly concave in (a, v′) and
a Slater condition holds, then equality of primal and dual values and existence of a min-
imizing multiplier in the dual is established by standard arguments. Assumption 4 gives
sufficient conditions for relaxation to leave optimal values and primal solutions unaffected.
Below for x, x′ ∈ Rn, we write x > x′ if x ≥ x′ and x 6= x′. Also, for v ∈ Vns ⊂ Rnsnv and
d ∈ Rnv , let v +s′ d denote the addition of d to the (s′ − 1)nv + 1 to s′nv elements of v.

Assumption 4. For all (s, a, v) ∈ S × A × Vns and (s′, a′, v′) ∈ S × A × Vns such that
(i) H[s, a, v], H[s′, a′, v′] ≥ 0 and (ii) WV [s′, a′, MV [s′, a′, v′]] > v(s′), there is a pair of di-
rections (d1, d2) ∈ Rnv

+ × Rna , d1 > 0, such that (i) (v(s′) + d1, a′ + d2) ∈ V × A, (ii)

H[s, a, v +s′ d1] ≥ H[s, a, v] and H[s′, a′ + d2, v′] ≥ H[s′, a′, v′], (iii) WV [s, a, MV [s, a, v +s′

d1]] > WV [s, a, MV [s, a, v]], (iv) WV [s′, a′ + d2, MV [s′, a′ + d2, v′]] ≥ v(s′) + d1.

Proposition 11. If (AP) features no backward-looking state variables and Assumption 4 holds,
then the optimal value from the relaxed problem (R-AP) equals that from (AP) and any solution to
(AP) also solves the relaxed problem. If F[s0, ·] is increasing then, in addition, any solution to the
relaxed problem also solves (AP).

Proof. Let π be feasible for the relaxed problem and suppose at some ŝt = (ŝt−1, ŝt),
WV [ŝt, at(ŝt), MV [ŝt, at(ŝt), vt+1(ŝ

t)]] > vt(ŝt). By Assumption 4, there is a feasible per-
turbation (d1t, d2t), d1t > 0, such that:

WV [ŝt−1, at−1(ŝ
t−1),MV [ŝt−1, at−1(ŝ

t−1), vt(ŝ
t−1) +ŝt d1t]]

> WV [ŝt−1, at−1(ŝ
t−1), MV [ŝt−1, at−1(ŝ

t−1), vt(ŝ
t−1)]] ≥ vt−1(ŝ

t−1).

Reset vt(ŝt) to vt(ŝt) + d1t and at(ŝt) to at(ŝt) + d2t. After this adjustment

WV [ŝt−1, at−1(ŝ
t−1), MV [ŝt−1, at−1(ŝ

t−1), vt(ŝ
t−1)]] > vt−1(ŝ

t−1).

Repeating the argument at successively shorter histories, there is a (d11, d21), d11 > 0, such
that:

WV [s0, a0,MV [s0, a0, v1 +ŝ1
d11]] > WV [s0, a0, MV [s0, a0, v1]] ≥ v0.

Reset v0 to equal WV [s0, a0, MV [s0, a0, v1 +ŝ1
d11]]. Applying this argument at all histories

such that WV [st, at(st), MV [st, at(st), vt+1(s
t)]] > vt(st) holds, a primal process feasible for

(AP) is constructed with initial forward-looking state variable v0 greater than that of the
original process. Since F[s0, ·] is assumed non-decreasing the new primal process has
a payoff no less than the original process. Consequently, the optimal payoff from (AP)
equals that from the relaxed problem and any solution to (AP) also solves the relaxed
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problem. On the other hand, if F[s0, ·] is increasing, then the constructed process has a
payoff strictly above the original process and so any solution to the relaxed problem must
be feasible and, hence, optimal for the original problem.

The simplest situation in which Assumption 4 is satisfied occurs when H is increasing
in its third argument. Then d2 may be set equal to 0 and d1 = WV [s′, a′, MV [s′, a′, v′]] −
v(s′) > 0. Since WV [s′, a′, MV [s′, a, v′]] ∈ V(s), (i) is satisfied. Since H is increasing in its
third argument (ii) is satisfied. The monotonicity properties of WV and MV imply that (iii)
holds and (iv) holds by construction. These conditions are satisfied in standard limited
commitment problems such as the Epstein-Zin example in Section 3.

The analysis may be extended to problems with backward-looking states. In relaxed
problems with backward-looking states, the law of motion for such states is replaced
with the inequalities WK[kt(st−1), st, at(st)] ≥ kt+1(s

t) (and the law of motion for forward-
looking states is relaxed as in (40)). Modify Assumption 4 as in Assumption 5 below.

Assumption 5. For all (k, s, a, v) ∈ K × S × A × Vns and (k′ , s′, a′, v′) ∈ K × S × A × Vns

such that (i) H[k, s, a, v′], H[k′, s′, a′, v′] ≥ 0 and (ii) either WV [s′, a′, MV [s′, a′, v′]] > v(s′) or
WK[k, s, a] > k′, there is a triple (d0, d1, d2) ∈ Rnk × Rnv × Rna such that (i) H[k, s, a, v +s′

d1] ≥ H[k, s, a, v] and H[k′+ d0, s, a′+ d2, v′] ≥ H[k′, s′, a′, v′] (ii) WV [s, a, MV [s, a, v+s′ d1]] >
WV [s, a, MV [s, a, v]], (iii) WV [s′, a′ + d2, MV [s′, a + d2, v′]] > v(s′) + d1 and (iv) WK[k, s, a] >
k′ + d0 and WK[k′ + d0, s′, a′ + d2] > WK[k′, s′, s′].

The proof of the following proposition is similar to Proposition 11.

Proposition 12. If (AP) satisfies Assumption 5, then the optimal value from the relaxed problem
(with both backward and forward-looking state variables) equals that from (AP) and any solution
to (AP) also solves the relaxed problem. If F[s0, ·] is increasing then, in addition, any solution to
the relaxed problem also solves (AP).

Proposition 12 is directly applicable to the contracting problem in Cooley, Marimon,
and Quadrini (2004). This is a limited commitment problem with default in which the
production function is strictly concave, but the outside option affine in capital (e.g. the
entrepreneur can sell off some capital after default). The law of motion for capital can
be relaxed without affecting the optimal solution (since it will never be optimal to throw
resources away, they can always be used to raise consumption of the entrepreneur or the
lender). Similarly, the law of motion for utility promises can be relaxed since the constraint
H is increasing in such promises (or, since the law of motion is quasi-linear in agent utility
promises, it may be substituted out).
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