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1 Bayes Rule

Consider an individual i who is initially uncertain about two things: a parameter
�, and a variable (or a vector of variables) x. In a second stage i observes x.
Assume x 2 X and � 2 �, with X and � �nite. Even though i cannot

observe �, he is able to assess the conditional probability of each value x 2 X
conditional on each � 2 �, Pr[xj�].
For example, consider an urn of unknown composition. It is only known

that the urn contains between 1 and 10 balls, which may di¤er only in the color,
Black or White. A �rst ball is drawn, its color is observed and then it is put
back into the urn. Then a second ball is drawn (possibly the same as before)
and its color observed. Let � denote the proportion of White balls in the urn.
The set � of possible values of this parameter is �nite:

� =

10[
n=1

�
� : � =

k

n
for some k = 0; :::; n

�
Let Black correspond to number 0 (since black is the absence of light) and
White correspond to number 1. Then X can be identi�ed with the set of all
ordered pairs (x1; x2) with xk 2 f0; 1g, that is, X = f0; 1g2: The probability of
x = (x1; x2) conditional on the proportion of white balls being � is Pr[xj�] =
�x1(1� �)x1�x2(1� �)1�x2 . For example, Pr[(1; 0)j�] = �(1� �).
Mister i also assigns a probability Pr[�] to all the possible values of �. Note

that Pr[xj�] is well de�ned even if i assigns probability 0 to �. For example, for
some reason i may be certain that the urn does not contain more than 5 balls,
and hence Pr[� = 1

10 ] = 0. Yet i thinks that if � were
1
10 then the probability

of x = (0; 0) would be 9
10 �

9
10 , that is, Pr[(0; 0)j

1
10 ] =

81
100 .

The law of conditioning says that for any two events E and F ,

if Pr[F ] > 0, thenPr[EjF ] = Pr[E \ F ]
Pr[F ]

:
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Note that the same condition can be written more compactly as

Pr[E \ F ] = Pr[EjF ] Pr[F ]:

Here we may assume that the space of uncertainty is 
 = � � X. Each x
corresponds to event E = � � fxg, each � corresponds to event F = f�g �X,
each pair (�; x) is the singleton f(�; x)g. Then the joint probability of the pair
(�; x) is

Pr[(�; x)] = Pr[xj�] Pr[�]:

Note that the collection of events fF � 
 : F = f�g �X for some � 2 �g
forms a partition of 
 = � � X. This partition of 
 induces a corresponding
partition of every event E � 
, and in particular of events of the form E =
��fxg. Then we can compute probability of any x (event ��fxg) starting from
the probabilities of the "cells" f(�; x)g = (�� fxg) \ (f�g �X) with � 2 �.
In turn, these probabilities can be obtained from the conditional and prior
probabilities Pr[xj�] and Pr[�], � 2 �. Thus, we obtain the formula expressing
the marginal, or total probability of x as

Pr[x] =
X
�02�

Pr[(x; �0)] =
X
�02�

Pr[xj�0] Pr[�0]: (TotP)

The problem is to derive from these elements Pr[�jx], the probability that
i would assign to each � 2 � upon observing any x 2 X. There are two
possibilities, either Pr[x] = 0 or Pr[x] > 0.
If Pr[x] = 0, Pr[�jx] cannot be derived from the previous data. This does not

mean that i is unable to assess the conditional probability Pr[�jx], it only means
that Pr[�jx] is not determined by the other probabilistic assessments expressed
above.
If Pr[x] > 0, then Pr[�jx] = Pr[(�;x)]

Pr[x] . Substituting Pr[x] with the expression
given by (TotP) we obtain

Pr[�jx] = Pr[(�; x)]P
�02� Pr[xj�

0] Pr[�0]
; (BFor)

(BFor) is known as Bayes Formula, that is, an equation expressing Pr[�jx]
as a function of the conditional probabilities Pr[xj�0] and the prior probabilities
Pr[�0], with �0 2 �.
Bayes Rule says that whenever (BFor) can be applied, then it must be

applied. Since (BFor) can be applied if and only if Pr[x] > 0, we may write
Bayes Rule in the following compact form:

8x 2 X;8� 2 �, Pr[�jx]
 X
�02�

Pr[xj�0] Pr[�0]
!
= Pr[(�; x)]. (BRule)

Bayes Rule is not violated if either Pr[x] = 0 (both sides of (BRule) are
zero), or Pr[x] > 0 and Pr[�jx] is computed with (BFor). Therefore, whenever
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an assessment of prior and conditional probabilities satis�es (BRule), we say that
it is consistent with Bayes rule. Note that Bayes rule "holds" even if Pr[x] = 0
(another way to express this point is that if the antecedent in the material
implication Pr[x] > 0 ) Pr[(�;x)]P

�02� Pr[xj�0] Pr[�0]
is false, the material implication

holds).1

2 Signaling Games and Perfect Bayesian Equi-
librium

Now assume that � is known to player 1 (female), whose action2 a1 2 A1
is observed by player 2 (male) before he chooses a2 2 A2(a1). The possible
parameter values � 2 � are called types of player 1, the informed player. The
actions of of the informed player are also called signals or messages because
they may reveal her private information. Let A2 =

[
a12A1

A2(a1). The payo¤s

of players 1 and 2 are given by the functions

u1 : ��A1 �A2 ! R,
u2 : ��A1 �A2 ! R.

A behavior strategy for player 1 is an array of probability measures �1 =
(�1(�j�))�2� 2

Q
�2��(A1) = [�(A1)]

�. A behavior strategy for player 2 is an
array of probability measures �2 = �2(�ja1))a12A1

2
Q
a12A1

�(A2(a1)).
Here player 2 has the role of individual i in the previous section, with X =

A1. Player 2 is initially uncertain about (�; a1) and has a prior probability
measure � 2 �(�). We assume for simplicity that 8� 2 �, �(�) > 0. This
prior is an exogenously given element of the model, whereas �1 and �2 are
endogenous, i.e. they have to be determined through equilibrium analysis.
In equilibrium, �1 represents the assessment of player 2 about the probability

of each action of player 1 conditional on each possible parameter value �. Thus,
the probabilistic assessment of player 2 is such that

8� 2 �, Pr[�] = �(�);

8� 2 �;8a1 2 A1, Pr[a1j�] = �1(a1j�), Pr[(�; a1)] = �1(a1j�)�(�);
8a1 2 A1, Pr[a1] =

X
�02�

�1(a1j�0)�(�0):

We let �(�ja1) denote the probability that player 2 would assign to � upon
observing a1. Since player 2 chooses a2 after he has observed a1 in order to
maximize the expectation of u2(�; a1; a2), the system of conditional probabilities

1The material implication p) q is veri�ed if either p is false, or both p and q are true.
2 In some models the set of feasible actions of player 1 depends on � and is denoted by

A1(�). The set of potentially feasible actions of player 1 is A1 =
[
�2�

A1(�).
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� = (�(�ja1))a12A1
is an essential ingredient of equilibrium analysis. In the

technical language of game theory � is called "system of beliefs".
Now, if Pr[a1] =

P
�02� �1(a1j�

0)�(�0) > 0 then Bayes formula applies and

�(�ja1) =
Pr[(�; a1)]

Pr[a1]
=

�1(a1j�)�(�)P
�02� �1(a1j�

0)�(�0)
:

Since �1 is endogenous, also the system of beliefs � is endogenous. Thus we
have to determine through equilibrium analysis the triple (�1; �2; �). In the
technical game-theoretic language (�1; �2; �) (a pro�le of behavioral strategies
plus a system of beliefs) is called "assessment".
For any given assessment (�1; �2; �) we use the following notation to abbre-

viate conditional expected payo¤ formulas:

E�2;a1 [u1j�] : =
X

a22A2(a1)

�2(a2ja1)u1(�; a1; a2);

E�;a2 [u2ja1] : =
X
�2�

�(�ja1)u2(�; a1; a2):

Thus, E�2;a1 [u1j�] is the expected payo¤ for player 1 of choosing action a1 given
that her type is � and assuming that her "conjecture" about the behavior of
player 2 is represented by �2.

3 Similarly, E�;a2 [u2ja1] is the expected payo¤ for
player 2 of choosing action a2 given that he has observed a1 and assuming the
her conditional beliefs about � are represented by � .
In equilibrium, an action of player i can have positive (conditional) proba-

bility only if it maximizes the (conditional) expected payo¤ of i. Furthermore,
the equilibrium assessment must be consistent with Bayes rule. Therefore we
obtain three equilibrium conditions for the three "unknowns" (�1; �2; �):

De�nition. Assessment (�1; �2; �) is a perfect Bayesian equilibrium (PBE)
if satis�es the following conditions:

8� 2 �;Supp�1(�j�) � arg max
a12A1

E�2;a1 [u1j�] (BR1)

8a1 2 A1;Supp�2(�ja1) � arg max
a22A2(a1)

E�;a2 [u2ja1] (BR2)

8a1 2 A1;8� 2 �; �(�ja1)
X
�02�

�1(a1j�0)�(�0) = �1(a1j�)�(�): (CONS)

Clearly (CONS), consistency with Bayes rule, can also be expressed as

8a1 2 A1;8� 2 �,X
�02�

�1(a1j�0)�(�0) > 0) �(�ja1) =
�1(a1j�)�(�)P

�02� �1(a1j�
0)�(�0)

.

3There is no loss of generality in representing a conjecture of player 1 as a behavioral
strategy of player 2. If player 1 had a conjecture of the form �2 2 �(S2), where S2 is the set
of pure strategies of player 2, then we could derive from �2 a realization-equivalent behavioral
strategy. A similar argument holds for the conjecture of player 2 about player 1.

4



Note that each equilibrium condition involves two out of the three vectors
of endogenous variables �1, �2 and �: (BR1) says that that each mixed action
�1(�j�) 2 �(A1) (� 2 �) is a best reply to �2, (BR2) says that each mixed
action �2(�ja1) 2 �(A2(a1)) (a1 2 A1) is a best reply to the conditional belief
�(�ja1) 2 �(�), and (CONS) says that �1 and � (together with the exogenous
prior �) are consistent with Bayes rule.
It should be emphasized that, for some action a1, Pr[a1] =

P
�02� �1(a1j�

0)�(�0)
may be zero. For example, suppose that for each � 2 �, there is some action
a1(�) such that E�2;a1(�)[u1j�] > E�2;a1 [u1j�]. Then action/message a1 must
have zero probability because it is not a best reply for any �. Yet we assume
that the belief �(�ja1) is well de�ned and player 2 takes a best reply to this belief.
This is a perfection requirement analogous to the subgame perfection condition
for games with observable actions and complete information. A perfect Bayesian
equilibrium satis�es perfection and consistency with Bayes rule.
Furthermore, even if �(�ja1) cannot be computed with Bayes formula, it may

still be the case that the equilibrium conditions put constraints on the possible
values of �(�ja1). The following example illustrates this point.

(0; 3)
l f 12g r %

(1; 1)  � � � 1 � � �! 2
�0 : &

: (0; 0)
:
:
: (2; 0)

�00 : %
(1; 1)  � � � 1 � � �! 2

l f 12g r &
(0; 1)

The payo¤s of player 1 are in bold. A2(l) is a singleton and therefore the
action of player 2 after l is not shown. If player 1 goes right (r) then player 2
can go up (u) or down (d), i.e. A2(r) = fu; dg.
Note that action r is dominated for type �0. Therefore �1(rj�0) = 0 in every

PBE. Now we show that in equilibrium we also have �1(rj�00) = 0. Suppose,
by way of contradiction, that �1(rj�00) > 0. Then Bayes formula applies and
�(�00jr) = 1. But then the best reply of player 2 is down, �2(djr) = 1, and
the best reply of type �00 is left, �1(lj�00) = 1� �1(rj�00) = 1, contradicting our
initial assumption.
We conclude that in every PBE r is chosen with probability zero and �(�jr)

cannot be determined with Bayes formula. Yet the equilibrium conditions put a
constraint on �(�jr): in equilibrium d must be (weakly) preferred to u (if player
2 chooses u after r then type �00 chooses r and we have just shown that this
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cannot happen in equilibrium). Therefore

�(�00jr) � 3�(�0jr)

or �(�00jr) � 3

4
:

The set of equilibrium assessments is�
(�1; �2; �) : �1(lj�0) = �1(lj�00) = 1; �2(djr) = 1; �(�00jr) >

3

4

�
[
�
(�1; �2; �) : �1(lj�0) = �1(lj�00) = 1; �2(djr) �

1

2
; �(�00jr) = 3

4

�
:

These assessments are examples of "pooling" equilibria. A pooling equi-
librium is a PBE assessment where all types of player 1 choose the same pure
action with probability one: there exists a�1 2 A1 such that 8� 2 �, �1(a�1j�) = 1.
In this case Bayes rule implies that the posterior on � conditional on the equi-
librium action a�1 is the same as the prior: �(�ja�1) = �(�).
The polar case is when di¤erent types choose di¤erent pure actions: a sep-

arating equilibrium is a PBE assessment such that each type � of player 1
chooses some action a1(�) with probability one (�1(a1(�)j�) = 1) and a1(�0) 6=
a1(�

00) for all �0 and �00 with �0 6= �00. A separating equilibrium may exist only
if A1 has at least as many elements as �. If A1 and � have the same number
of elements (cardinality) then in a separating equilibrium each action is chosen
with positive probability (because �(�) > 0 for each � 2 �) and the action of
player 1 perfectly reveals her private information (if A1 has more elements than
� then the actions that are chosen by some type are perfectly revealing, the
others need not be revealing).
The following signaling game provides an example of separating equilibrium

(the payo¤s of the informed player are in bold, call the downward action of
player 2 a and the upward action f ):

(1; 0) (0; 0)
- s f 910g w %

2  � � � 1 � � �! 2
. : �s : &

(2; 1) : : (1; 1)
: :
: :

(0; 1) : : (1; 1)
- : �w : %

2  � � � 1 � � �! 2
. s f 110g w &

(1; 0) (2; 0)

The game can be interpreted as follows: a truck driver (player 1) enters in a
pub where an aggressive customer (player 2) has to decide whether to start a
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a �ght (f, upward) or acquiesce (a, downward). There are two types of truck
drivers: 90% of them are surly (�s) and like to eat sausages (s) for breakfast;
the remaining 10% are wimps (�w) and prefer a dessert with whipped cream
(w). Each type of truck driver receives a utility equal to 2 from her favorite
breakfast and a utility equal to 1 from the other breakfast. Furthermore both
types incur a loss of 1 util if they have to �ght. Player 2 prefers to �ght with a
wimp and to avoid the �ght with a surly driver.
This game has only one "reasonable" PBE and it is separating.4 Indeed, the

payo¤s are such that for each type of driver it is weakly dominant to have her
preferred breakfast thus iterated deletion of weakly dominated actions yields
the equilibrium �1(sj�s) = 1 = �1(wj�w), �2(ajs) = 1 = �2(f jw), �(�sjs) = 1 =
�(�wjw).
The game has also two sets of pooling equilibria (meaning that one type of

player 1 chooses a weakly dominated action). In the �rst set of assessments
each type has sausages for breakfast and player 2 would �ght if and only he
observed a whipped-cream breakfast: �1(sj�s) = 1 = �1(sj�w), �2(ajs) = 1 =
�2(f jw), �(�sjs) = 9

10 , �(�
wjw) � 1

2 . In the second set of assessments each
type has whipped cream for breakfast and player 2 would �ght if and only if he
observed a sausage breakfast: �1(wj�s) = 1 = �1(wj�w), �2(ajw) = 1 = �2(f js),
�(�sjw) = 9

10 , �(�
wjs) � 1

2 .

4Actually, this example is a modi�cation of a well-known game where the cost of a �ght
is larger than the marginal bene�t from having the preferred breakfast and all equilibria are
pooling.
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