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Economic of Information and Macroeconomics

Asymmetric Information is pervasive in economics

Industrial Organization and Market Structure

Financial Crisis: Adverse Selection and Moral Hazard

Designing Institutions:

Firms and Markets
Optimal Taxation and Public Finance

Nobel Prizes: Horowiz, Myerson, and Mirrleese

Macroeconomics Focuses on Dynamic Aspects and Institution
Design
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Economic of Information and Macroeconomics II

Agents can save and borrow

Markets Available to Agents

Questions of Modern (Macro) Public Finance:
1 Capital Taxation
2 Social Insurance and Welfare Programs
3 Labor Income Taxes over the Life Cycle
4 Education Taxes and Subsidies
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Mechanism Design and Bayesian Games

Bayesian Games Γ =< N,T , S ,X ,M,U,P >

N= set of players
Si Strategy agent i : S = ΠiSi
X= set of outcomes

Def. 1: A Comunication Mechanism is a a rule

M : S → ∆(X )

Nature chooses type ti from P (common knowledge)
Preferences: Ui (t, x)

Def. 2: A pure strategy is a function:

σi : Ti → Si

∑
t−i

P(t−i |ti )Ui (t,M(s))
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Bayesian-Nash Equilibrium

Def. 3: σ∗ is a Bayesian-Nash (B-N) Equilibrium of Γ if for each ti
and for all σi (ti ): (Incentive Compatibility)

∑
t−i

P(t−i |ti )Ui (t,M(σ∗i (ti ), σ∗−i (t−i )))

≥∑
t−i

P(t−i |ti )Ui (t,M(σi (ti ), σ∗−i (t−i )))

Example: Auction
X = NxR+ Allocation of goods and payments (w ,m)
Si = R+ Bids
Mechanism=Auction: M(s)→ (w ,m)
w = arg maxi si
m = maxi si (first price); m = maxi 6=w si (second price)
Uw (w ,m) = Vw −m and Uj = 0 if j 6= w
For example, Vi is independent uniform on [0, 1] (T = [0, 1]n)

Exercise 1: Compute optimal strategies and B-N equilibria for first price
auction. [Hint: maxb(V − b)Pr(b > maxj 6=ib

∗(Vj )) ]
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The Revelation Principle

Def. 4: A game ΓD is direct if Si = Ti . A direct mechanism MD is a
mechanism of a direct game

Theorem: (e.g., Myerson (1979-1984))
For any B-N equilibrium σ∗ of a game Γ there exists a direct
game such that truthtelling: σ∗i (ti ) = ti for all i

1 Is a B-N equilibrium
2 Is outcome equivalent to the equilibrium of the original

(indirect) game, that is, for any t ∈ T , M(σ∗(t)) = MD(t)

Proof: Define M(σ∗(t)) = MD(t) and note that deviations in
ΓD are equivalent to deviations to σ∗i (t̂i ) in the game Γ.
Hence IC is always true. QED

Powerful result, especially in implementation theory

Corollary: x is implementable whenever it is IC for the direct game.
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Static Adverse Selection: Set-Up

Static model of optimal income taxation: Mirrlees (1971)

Studies the efficiency-equity tradeoff shaping an optimal
redistributive system

Identical preferences over consumption c ≥ 0 and labor n ≥ 0

Individual welfare: U (c , n)

Agents only differ in their productivity θ ∈ [0, θ̄]

Take labor supply decisions n along the intensive margin

Labor Income: y = f (θ, n)

Distribution of productivities P(·) is continuous

Government unable to observe productivity or labor supply

It only observes labor income y

Sets an incentive compatible tax schedule to maximize social
welfare W subject to resources feasibility



Introduction Notions of Mechanism Design Static Adverse Selection Dynamic Adverse Selection

Static Adverse Selection: Incentive Compatiblity

Assume f is invertible and U additive separable

New preferences: u(c)− v(y , θ) with income y

Assume: vy (y , θ) ≥ 0 and vyy (y , θ) > 0, and vθ(y , θ) ≤ 0.

V (θ̂|θ) := u(c(θ̂))− v(y(θ̂), θ)

IC: for all θ:

V (θ) := V (θ|θ) ≥ V (θ̂|θ) ∀θ̂

FOC is V1(θ|θ) = 0; necessary SOC: V11(θ|θ) ≤ 0.

By envelope FOC is equivalent to: V̇ (θ) = −vθ(y(θ), θ)

Since FOC true for all θ, by totally differentiating FOC, we
get that SOC is equivalent to

V12 = −vθ,y (y(θ), θ)ẏ(θ) ≥ 0.
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Single Crossing

Single-Crossing condition: If for all y and θ, vθ,y (y , θ) < 0

Pictures:

1 V12 ≥ 0 (SOC) is equivalent to ẏ(θ) ≥ 0
2 V̇ (θ) = −vθ(y(θ), θ) and ẏ(θ) ≥ 0 are also sufficient ⇒
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Proof of Sufficiency

We want to show that ẏ ≥ 0 and SCC imply IC.

Fix a generic θ and a θ̂ 6= θ; we have

V (θ|θ)− V (θ̂|θ) =
∫ θ

θ̂
V1(s |θ)ds

=
∫ θ

θ̂
[V1(s |θ)− V1(s |s)] ds

=
∫ θ

θ̂

[∫ θ

s
V12(s |t)dt

]
ds ≥ 0.

1. first equality by definition (assuming integrability of V1(·|θ))
2. second inequality holds since from FOC V1(s |s) ≡ 0

3. third inequality is again by definition (assuming integrability)

4. last true because ẏ(s) ≥ 0 and SCC imply:

V12(s |t) = −vθ,y (y(s), t)ẏ(s) ≥ 0. Q.E.D.
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Static Adverse Selection: Characterization I

Assume: SCC and - in order to get interiority - vy (0, θ) = 0.

From V (θ) := u(c(θ))− v(y(θ), θ), if g = u−1 we get

c(θ) = g (V (θ) + v(y(θ), θ)) .

Resource constraint
∫ θ̄
0 [y(θ)− c(θ)] dP = 0.

max
y (·),V (·)

∫ θ̄

0
W (V (θ); θ) + λ [y(θ)− g (V (θ) + v(y(θ), θ))] p(θ)dθ

s.t. V̇ (θ) = −vθ(y(θ), θ) and ẏ(θ) ≥ 0.

λ > 0 represents the cost of funds

Welfare function. Eg, W (V (θ); θ) = ψ(θ)V (θ), then ψ(θ)
represents the relative Pareto weight given to θ.
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Static Adverse Selection: Characterization II

No Bunching case, i.e., if ẏ(θ) > 0.

Integrating by parts the Lagrangian, FOC:

y : p(θ)λ

[
1− vy (y(θ), θ)

u′(c(θ))

]
= µ(θ)[−vθ,y (y(θ), θ)]

V : p(θ)

[
W ′ (V (θ); θ)− λ

u′(c(θ))

]
= µ̇(θ)

Transv. : µ(0) = µ(θ̄) = 0.
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Static Adverse Selection: Characterization III

1. Recall that we have ẏ(θ) > 0, and V̇ (θ) > 0 (Info. Rents)

2. From the transversalities
∫

µ̇dθ = µ(θ̄)− µ(0) = 0, we have

E

[
λ

u′(c)

]
= E

[
W ′(V , ·)

]
.

Change u(c(θ)) by ε to all agents and kip all y(θ) the same.

3. Recall IC: u′(c(θ))ċ(θ) = vy (y(θ), θ)ẏ(θ). Hence u′(c) > 0
and ẏ(θ) ≥ 0 implies ċ(θ) ≥ 0.

4. Claim: If W is concave and W12 ≤ 0 then µ(θ) ≥ 0.
Proof: Since µ(0) = 0, if µ(θ) < 0 it must be that µ̇(s) < 0
for s ≤ θ. From FOC w.r.t. V , using ċ(θ), V̇ (θ) ≥ 0, and
W11,W12, u′′ < 0, µ̇(θ) decreases with θ. This implies that
µ(θ′) ≤ µ(θ) < 0 for all θ′ ≥ θ. Contradicts µ(θ̄) = 0.

5. From [4.] and FOC w.r.t. y (SCC): 1− vy (y (θ),θ)
u′(c(θ)) > 0, i.e.,

τ(θ) > 0. Non-monotone: τ(0) = τ(θ̄) = 0.
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6. Bunching and Interpretation

Bunching:
If ẏ(θ) = 0 from IC we have ċ(θ) = 0.

The multiplier, i.e., the value of relaxing agent θ IC constraint:
From the transversality, we have;

µ(θ) = [1− P(θ)]E

[
λ

u′(c(s))
−W ′(V (s); s)|s ≥ θ

]
> 0

We distort agent θ’s labor supply whenever we give - on average -
a lower social weight W ′(V ; ·) to agents with skill s ≥ θ compared
to their cost of funds λ

u′(c) of increasing the utility to these agents.

This is so since if we want to increase y(θ) we have to decrease
taxes not only to agent θ we also have to increase the utility (at
the margin by increasing consumption lump sum) of all agents with
higher skill than him otherwise they will not tell the truth
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Variational Interpretation

If we rewrite the FOC with the expression for µ(θ) we have

p(θ)λ

[
1− vy (y(θ), θ)

u′(c(θ))

]
= µ(θ)

[
−vθ,y (y(θ), θ)

]
⇒

⇒ p(θ)λ

[
1− vy (y(θ), θ)

u′(c(θ))

]
= [1− P(θ)]E

[
λ

u′(c(s))
−W ′(V (s); s)|s ≥ θ

][
−vθ,y (y(θ), θ)

]
Consider an increase in c(θ) and y(θ) such that V (θ) is constant

A change expressed in utils (i.e., u (c(θ)) changes by one unit)

To keep IC with ↑ y(θ) V̇ (θ) must increase by −vθ,y (y(θ), θ)

This increases U(s) for all s > θ and we can do it by increasing
consumption c(s) for all s > θ while keeping y(s) constant

The change increases u (c(s)) uniformly, hence ↑ c(s) by 1
u′(c(s))
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The Taxation Principle

In the real world, taxes are based on income, not on skill level.

Each individual faces the same tax schedule T : Y → R:

max
y

y − T (y)− v
(y

θ

)
Proposition For each allocation {(c∗(·), y ∗(·))} that solves
the incentive compatibility constraints, we can construct a tax
schedule T (·) such that any individual with skill θ ∈ Θ
confronted with it, optimally chooses the pair (c∗(θ), y ∗(θ)).

Proof. Incentive constraints become:

y(θ)− T (θ)− v

(
y(θ)

θ

)
≥ y − T (y)− v

(y
θ

)
for all y .

For all θ set T (y ∗(θ)) = y ∗(θ)− c∗(θ) and if @θ such that
y = y ∗(θ), set T (y) = ∞. The taxation principle only
requires the presence of a large enough punishment for
incompatible choices. �
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Static Adverse Selection: A Formula for Taxes I

Assume f (θ, n) = θn; W (V ; ·) ≡ V
⇒ v(y , θ) = v( yθ ); −vθ(y , θ) = n

θ v
′(n) ⇒ V̇ (θ) = n

θ v
′(n).

The FOCs for n are (those for V are as above with W ′ ≡ 1)(
θ − v ′(n(θ))

u′(c(θ))

)
λp(θ) = µ(θ)

v ′(n(θ)) + n(θ)v ′′(n(θ))

θ

From FOC of agent with net wage w we have v ′(n)
u′(c) = w and

Frisch elasticity w.r.t. w

εn(θ) :=
dn

dw |c̄

w

n
=

u′(c)w

v ′′(n)n
=

v ′(n)

v ′′(n)

Let c := θn−T (θn), from agent’s FOC, the net wage equals:

w(θ) :=
(
1− T ′(y(θ))

)
θ
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Static Adverse Selection: A Formula for Taxes II

Hence θ − v ′(n(θ))
u′(c(θ)) = T ′(y(θ))θ and

v ′(n(θ)) + n(θ)v ′′(n(θ))

θ
= u′(c(θ))

(
1− T ′(y(θ))

) (
1 +

1

εn(θ)

)
Hence FOCs become

T ′(y(θ))θp(θ)λ = µ(θ)u′(c(θ))
(
1− T ′(y(θ))

) (
1 +

1

εn(θ)

)
Using the definition of µ(θ) and dividing by λ, we have:

T ′(y(θ))

1− T ′(y(θ))
= E

[
1

u′(c(s))
− 1

λ
|s ≥ θ

]
u′(c(θ))

1− P(θ)

θp(θ)

(
1 +

1

εn(θ)

)

Note: T ′ ∈ [0, 1). If v(n) = n
1+ 1

γ

1+ 1
γ

then εn(θ) = γ for all θ.
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The Simplest Dynamic Adverse Selection Model
Add payment and consumption in period zero and θ0 known

max
c0,y0,y (·),V (·)

u(c0)− v(y0, θ0) + β
∫ θ̄

0
V (θ)p(θ)dθ

+λ

[
y0 − c0 + q

∫ θ̄

0
[y(θ)− g (V (θ) + v(y(θ), θ))] p(θ)dθ

]
s.t. V̇ (θ) = −vθ(y(θ), θ) and ẏ(θ) ≥ 0.

q = price of the bond and β = agent’s discount factor.
θ only revealed to the agent at t = 1. Full Commitment

Obviously, y0 such that 1 =
vy (y0,θ0)
u′(c0)

.

Euler variation: β

u′(c0)
=

1

λ
= E

[
q

u′(c)

]
.

Using Jensen’s Inequality (positive capital tax?):

qu′(c0) < E
[
βu′(c)

]
.
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Intuitions for the Previous Result

1 Bond is a bad asset for incentives as it increases utility in an
unbalanced way, detrimental for incentives

2 Joint deviations

3 Frontloaded consumption desirable: Since ċ1 > 0 when
qu′(c0) = βE [u′(c1(θ))] the planner can increase c0 and
reduce all c1(θ) keeping IC. If the agent is contemplating to
lie, s/he will reduce next period expected returns and
consumption. As a consequence he would like a relatively low
c0. To discourage this deviation the planner keeps c0 relatively
high at the expenses of future payments.

4 Social intertemporal margin differs form the private: A bond
perturbation ↓ c0 by βε and ↑ c1(θ) by ε makes lying more
attractive, hence it induces an additional cost for the planner.
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Implementation Results
Golosov and Tsyvinski (2006): DI with absorbing shocks

Means tested transfers on income: Upperbound on wealth or k
Albanesi and Sleet (2006): iid shocks

One-to-one mapping between k(θ) and U(θ), with ẏ(θ) ≥ 0
τ(k , y) with τy ,k (k , y) 6= 0

Kocherlakota (2005): general income process

1− τk(θ) :=
qu′(c0)

βu′(c(θ))

hence, by construction zero expected tax on capital:

E
[(

1− τk(θ)
)]

= 1 ⇒ E
[
τk(θ)

]
= 0.

Pavoni and Violante (2005): UI discrete effort
Tax for joint deviations and leave all agents at their liquidity
constraint, say k ≥ 0. Positive capital income tax

Gottardi Pavoni (2011): Moral Hazard
Uncontingent tax ⇒ optimal tax on bond price is positive
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The Value of Enduring Relationships I

Pioneers: Townsend (1982), Green (1987), and Thomas and
Worrall (1991)

Endowment Economy

The model can be sees as a special case of our Mirrlees

U (c , n) = u(c − n) and y = f (θ, n) = θ + n

U(θ) := u(c(θ)− y(θ) + θ) = u(τ(θ) + θ)

Only relevant the insurance aspect: τ(θ) := y(θ)− c(θ)

Start with the Static Model
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Dynamic Model: Heuristic Intro to Recursive Constracts
Define first of all, the following value function

V (w) := max
τ(·)

−
∫ θ̄

0
τ(θ)p(θ)dθ

s.t. for all θ, θ̂

u(τ(θ) + θ) ≥ u(τ(θ̂) + θ); (ICθ,θ̂)

w =
∫ θ̄

0
u(τ(θ) + θ)p(θ)dθ. (PK )

The IC implies τ̇(θ) = 0 so no insurance

u(τ(θ) + θ) ≥ u(τ(θ̂) + θ)

⇒ FOC u′(τ + θ)τ̇(θ) = 0 ⇒ Autarchy!

Envelope: V ′(w) = 1∫ θ̄
0 u′(τ(θ)+θ)p(θ)dθ
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Dynamic Model: Heuristic Intro to Recursive Contracts

Consider the two period repetition

In t = 1 first shock θ; in t = 2 second shock θ′

Planner Problem

max
τ1(·),w (·)

∫ θ̄

0
[−τ1(θ) + qV (w(θ)) ] p(θ)dθ

s.t.
∫ θ̄

0
[u(τ1(θ) + θ) + βw(θ)] p(θ)dθ ≥ U0; (IR)

u(τ1(θ) + θ) + βw(θ) ≥ u(τ1(θ̂) + θ) + βw(θ̂). (IC )

What matters for the IC and IR is the promized utility w

IC uses τ1(θ) and w(θ) ⇐⇒ τ2(θ, θ′)

From previous argument, τ2(θ, θ′) ≡ τ2(θ).
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Recursive contracts: Formal Derivation

Sequential Problem

max
τ1(θ),τ2(θ,θ′)

∫ θ̄

0

[
−τ1(θ) + q

∫ θ̄

0
−τ2(θ, θ′)p(θ′)dθ′

]
p(θ)dθ s.t.

∫ θ̄

0

[
u(τ1(θ) + θ) + β

(∫ θ̄

0
u
(
θ′ + τ2(θ, θ′)

)
p(θ′)dθ′

)]
p(θ)dθ ≥ U0; (IR)

u(τ1(θ) + θ) + β
∫ θ̄

0
u
(
θ′ + τ2(θ, θ′)

)
p(θ′)dθ′ (IC )

≥ u(τ1(θ̂) + θ) + β
∫ θ̄

0
u
(
θ′ + τ2(θ̂, θ′)

)
p(θ′)dθ′ ∀θ̂ ∈ Θ.
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Step 1: useful redefinition

The transfer scheme (contract) can be written as
T := {τ1(θ), T2(θ)}θ∈Θ, where ∀θ T2(θ) := {τ2(θ, θ′)}θ′∈Θ
Let

V(T2(θ)) :=
∫ θ̄

0
−τ2(θ, θ′)p(θ′)dθ′

be the planner value in period 2 from contract after θ occurred in
period 1.
Similarly, for the agent, the equilibrium expected value

U(T2(θ)) :=
∫ θ̄

0
u
(
θ′ + τ2(θ, θ′)

)
p(θ′)dθ′.

Note, these are values from any contract
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Planner’s Problem

Then planner problem can be written as

max
τ1(·),T2(·)

∫ θ̄

0
[−τ1(θ) + qV(T2(θ)) ] p(θ)dθ

s.t.
∫ θ̄

0
[u(τ1(θ) + θ) + βU(T2(θ))] p(θ)dθ ≥ U0;

∀θ ∈ Θ : u(τ1(θ) + θ) + βU(T2(θ)) ≥ u(τ1(θ̂) + θ) + βU(T2(θ̂)) ∀θ̂

∀(θ, θ′) ∈ Θ2 : u(θ′ + τ2(θ, θ′)) ≥ u(θ′ + τ2(θ, θ̂′)) ∀θ̂′ ∈ Θ

NB: Since shocks are iid from the last IC, any agent who lied in
period one still has incentive to tell the truth in period 2.
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Step 2: A New Variable

Now, for each T let, for each θ ∈ Θ w(θ) := U(T2(θ)). The
above problem is equivalent to

max
τ1(·),w (θ),T2(·)

∫ θ̄

0
[−τ1(θ) + qV(T2(θ)) ] p(θ)dθ

s.t.
∫ θ̄

0
[u(τ1(θ) + θ) + βU(T2(θ))] p(θ)dθ ≥ U0;

∀θ ∈ Θ : u(τ1(θ) + θ) + βU(T2(θ)) ≥ u(τ1(θ̂) + θ) + βU(T2(θ̂)) ∀θ̂

∀(θ, θ′) ∈ Θ2 : u(θ′ + τ2(θ, θ′)) ≥ u(θ′ + τ2(θ, θ̂′)) ∀θ̂′ ∈ Θ

∀θ ∈ Θ : w(θ) = U(T2(θ))
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Step 3: The Bellman Principle

We are now able to give a form to the value V(T2(θ))
Notice that when w(θ) is chosen, T2(·) does not affect period
zero choices of τ1(·).
We can hence ’pass the max over’

max
τ1(·),w (θ)

∫ θ̄

0

−τ1(θ) + q max
T2(θ)s.t.

w (θ)=U(T2(θ))
u(θ′+τ2(θ,θ′))≥u(θ′+τ2(θ,θ̂′))∀θ̂′

V(T2(θ))

 p(θ)dθ

s.t.
∫ θ̄

0
[u(τ1(θ) + θ) + βw(θ)] p(θ)dθ ≥ U0;

∀θ ∈ Θ : u(τ1(θ) + θ) + βw(θ) ≥ u(τ1(θ̂) + θ) + βw(θ̂) ∀θ̂ ∈ Θ.
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The ‘handy’ recursive formulation

V1(w0) = max
τ1,w

∫ θ̄

0
[−τ1(θ) + qV (w(θ)) ] p(θ)dθ

s.t.
∫ θ̄

0
[u(τ1(θ) + θ) + βw(θ)] p(θ)dθ = w0; (PK)

∀θ ∈ Θ : u(τ1(θ) + θ) + βw(θ) ≥ u(τ1(θ̂) + θ) + βw(θ̂) ∀θ̂ ∈ Θ.

MULTIPERIOD: In the recursive formulation, for a given level
of promised utility wt the government chooses a transfer
scheme and promises for future utility wt+1(θ), and so on.

The constraint (PK) is the ‘promise-keeping’ constraint that
requires the contract to deliver the promised level of utility. It
plays the role of a law of motion for the state variable w0.



Introduction Notions of Mechanism Design Static Adverse Selection Dynamic Adverse Selection

Observations

1 Note the we have an equality above. One must be careful in
distinguishing between ’utility possibility frontier’ and ’Pareto
frontier’

2 Because of the Bellman Principle, all that matters to
reconstruct the optimal contract continuation is a particular
‘statistic’ w(θ) = U(T ∗2 (θ)), one number for each θ in this
case.

3 This number induces a constraint on the next period problem.
We then let the planner ‘re-maximize’ subject to this
constraint.

4 Optimality requires that V(T ∗2 (θ)) = V (w(θ)). That is, the
planner always goes on the frontier of the utility possibility set.
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The Optimal Allocation I

The Relaxed planner’s problem

max
τ1,w

∫ θ̄

0
[−τ1(θ) + qV (w(θ)) ] p(θ)dθ

s.t.
∫ θ̄

0
[u(τ1(θ) + θ) + βw(θ)] p(θ)dθ ≥ U0; (IR)

τ̇1(θ)u
′(τ1(θ) + θ) + ẇ(θ) = 0. (IC )

It can be shown that

ẇ(θ) = τ̇2(θ)E
[
u′(τ2(θ) + θ′)

]
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The Optimal Allocation II

From IC we immediately have: if τ̇1(θ) < 0 then τ̇2(θ) > 0

Intuition: Recall the intertemporal utility of agent θ1 = θ:

u(τ1(θ) + θ) + βEu(τ2(θ) + θ′).

In t = 1 low θ’s expect an improvement of the situation,
hence willing to give up on the future for a today’s subsidy
τ1 > 0. High θ’s expect a deterioration hence are willing to
accept τ1 < 0 for a deterministic increase in future payments
τ2 > 0.

Endogenous return to savings
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The Optimal Allocation III

If we integrate by parts in the Lagrangian:∫
µ(θ)τ̇2(θ)E

[
u′(τ2(θ) + θ′)

]
dθ =

∫
µ̇(θ)E

[
u(τ2(θ) + θ′)

]
and

∫
µ(θ)τ̇1(θ)u

′(τ1(θ) + θ)dθ

=
∫

µ(θ) [1 + τ̇1(θ)] u
′(τ1(θ) + θ)dθ −

∫
µ(θ)u′(τ1(θ) + θ)dθ

=
∫

µ̇(θ)u(τ1(θ) + θ)dθ −
∫

µ(θ)u′(τ1(θ) + θ)dθ

The associated Lagrangian becomes:

L =
∫ θ̄

0
[−τ1(θ)− qτ2(θ) ] p(θ)dθ −

∫
µ(θ)u′(τ1(θ) + θ)dθ

+
∫ θ̄

0
[λp(θ) + µ̇(θ)]

{
u(τ1(θ) + θ) + βE

[
u(τ2(θ) + θ′)

]}
dθ
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The Optimal Allocation IV

The FOCs :[
1

u′(τ1(θ) + θ)
− λ

]
p(θ) = µ̇(θ)− µ(θ)

u′′(τ1(θ) + θ)

u′(τ1(θ) + θ)[
q

βE [u′(τ2(θ) + θ′)]
− λ

]
p(θ) = µ̇(θ)

Rearranging terms and using IC we have

p(θ)
τ̇1(θ) + qτ̇2(θ)

τ̇1(θ)u′(τ1(θ) + θ)
= µ(θ)a(θ) > 0,

where a(θ) = − u′′(τ1(θ)+θ)
u′(τ1(θ)+θ)

Since τ̇1(θ) < 0 it must be that (NPV decreases with θ)

τ̇1(θ) + qτ̇2(θ) < 0.



Introduction Notions of Mechanism Design Static Adverse Selection Dynamic Adverse Selection

Endogenizing Market Incompleteness
Consider again the IC

τ̇1(θ) + τ̇2(θ)β
∫ θ̄

0

u′(c2(θ, θ′))

u′(c1(θ))
p(θ′)dθ′ = 0

Assume now the agent has access to credit market as the
planner
Bond price = q
Standard EEq.: Let ct = τt + θt

β
∫ θ̄

0

u′(c2(θ, θ′))

u′(c1(θ))
p(θ′)dθ′ = q ∀θ

⇒ τ̇1(θ) + qτ̇2 = 0
The planner can only mimic the bond, no insurance on top of
self-insurance: Bond economy
Informational frictions can be used to explain why insurance
markets are incomplete

⇒ Macro Literature on Endogenous incomplete markets
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Dynamic Adverse Selection and Commitment

1 Full Commitment and no skill shocks: Identical to the static
model (with randomizations)

2 No Commitment: Neither the principal nor the agent can
commit after θ) is realized and it has been announced.
- Take the Money and run
- Ratchet effect
- ⇒ with continuum of types the contract is pooling

3 Partial commitment

Only commitment on the planner: Ex-post incentives
(Rawlsian)
Only commitment on the agent: Restricted Revelation
principle (Bester and Strausz, Econometrica, 2001)

Many agents vs 1 agent
Incentive feasible versus Constrained Efficient
True-telling with P > 0 (random mechanisms)


	Introduction
	Notions of Mechanism Design
	Bayesian Set-up and Equilibrium
	The Revelation Principle

	Static Adverse Selection
	The Basic Set-Up
	Characterization

	Dynamic Adverse Selection
	Simple Set-up


