Macroeconomics Sequence, Block I

The Solow Model

Nicola Pavoni

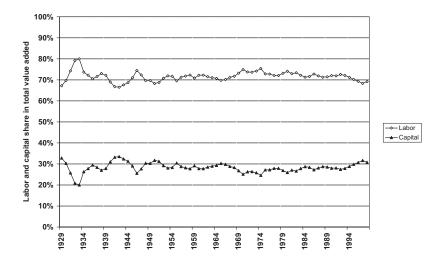
September 14, 2016

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Kaldor Facts

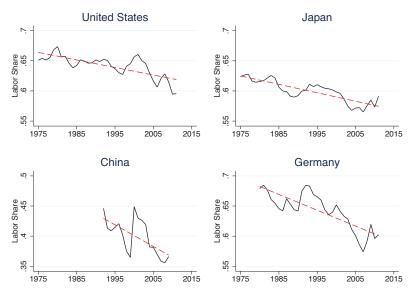
- Nicolas Kaldor '50 found some regularities in long-term US economic data (also Mitchell and Kuznets) which are roughly true today for several contries
 - Constant GDP (Y) growth rate (US since 1870, approx. 1.8%)
 - The 'great ratios' K/Y, C/Y, I/Y are approx. constant, i.e., K,Y and C growth roughly at the same rate (for the US: C/Y=.7, I/Y=.2)
 - **③** N and r do not change much $(r_{US} \in [0.02, 0.06])$
 - Y/N (GDP per capita) growth rate changes across countries (now, Y/N in top 5% is 20 times that in bottom 5%, constant income disparity: both rich and poor growth.)
 - So Income shares rK/Y and wN/Y are roughly constant (1/3 and 2/3 respectively), and high capital share \Rightarrow High investment
- These facts guided researchers in the development of the Neoclassical Growth Theory (Solow '56 and Cass-Koopmans '65). Key ingredient the (Neoclassical) production function ⇒

U.S. Capital and Labor Shares



Accuracy of Kaldor Facts?

Labor shares from Karabarbounis and Neiman (2014)



The Neoclassical Production Function ...

Output in period t depends positively on Labour input N_t , existing Capital K_t and the state of the technology A_t , and it satisfies two key conditions: CRS and DR

 $Y_t = F(K_t, N_t, A_t)$ with $F_K, F_N > 0$

A1. Constant Returns to Scale (CRS)

 $F(\lambda K, \lambda N, A) = \lambda F(K, N, A)$ (you can replicate it elsewhere).

A2. Decreasing Returns (DR)

Both $F_{KK} < 0$ and $F_{NN} < 0$

F is also assumed to satisfy few other limit conditions:

 $\lim_{K \to 0} F_K = \lim_{N \to 0} F_N = +\infty \quad (\text{Inada}) \quad \text{and} \quad \lim_{K \to \infty} F_K = \lim_{N \to \infty} F_N = 0$

... The Neoclassical Production Function Example: Cobb-Douglas

$$Y = K^{lpha} (AN)^{1-lpha} = (A)^{1-lpha} K^{lpha} (N)^{1-lpha}$$
 (check it satisfies A1, A2, etc..)

Output per capita as a function of capital per capita

$$y = \frac{Y}{N} = \frac{(A)^{1-\alpha} K^{\alpha} N^{1-\alpha}}{N} = \frac{\hat{A} K^{\alpha} N^{1-\alpha}}{N}$$
$$= \frac{\hat{A} K^{\alpha} N^{1-\alpha}}{N^{\alpha} N^{1-\alpha}}$$
$$= \frac{\hat{A} K^{\alpha}}{N^{\alpha}} = \hat{A} \left(\frac{K}{N}\right)^{\alpha} = \hat{A} k^{\alpha} = \hat{A} f(k).$$

where k = K/N is capital per worker, or capital per capita.

- Notice that we only have used CRS to derive the expression.
- DR will imply that f is concave (see Figure)
- The limit conditions imply f is as in the figure

A Simple Dynamic Economy

- Saving function à la Keynes (behavioral hp): $S_t = sY_t$
- **②** Capital accumulation rule (standard): $K_{t+1} = (1 \delta)K_t + I_t$
- Solution Capital market eq.: $I_t = S_t$ (no public sector, closed economy)

$$(1-2-3) \quad \Rightarrow K_{t+1} = (1-\delta)K_t + S_t = (1-\delta)K_t + sY_t$$

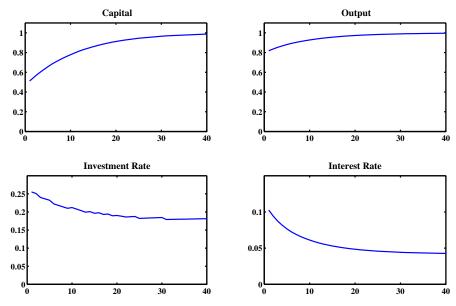
Now let's get all this in per-capita terms:

• If we assume that N and A are constant, we get

$$\begin{aligned} \frac{K_{t+1}}{N} &= (1-\delta)\frac{K_t}{N} + \frac{sY_t}{N} \\ k_{t+1} &= (1-\delta)k_t + sy_t \quad \text{ or } \\ k_{t+1} - k_t &= sy_t - \delta k_t \end{aligned}$$

where $\frac{K_t}{N} = k_t$ and $\frac{Y_t}{N} = y_t$ are capital per-capita and income per-capita respectively

Neoclassical Transitions



The Steady State

- We are in the steady state when $k_{t+1} = k_t$.
- Recalling that k_{t+1} k_t = sy_t δk_t, the steady state level of capital per capita solves:

$$sy_t = \delta k_t$$

$$s\hat{A}f(k_t) = \delta k_t$$

$$s\hat{A}f(k^*) = \delta k^*$$

• Cobb-Douglas Example: Assume $f(k) = k^{\alpha}$

$$s\hat{A}k^{\alpha} = \delta k \Rightarrow \frac{\hat{A}s}{\delta} = k^{1-\alpha} \Rightarrow k^* = \left(\frac{s\hat{A}}{\delta}\right)^{1/(1-\alpha)}$$

 k^* increases with s, α and \hat{A} ; decreases with δ .

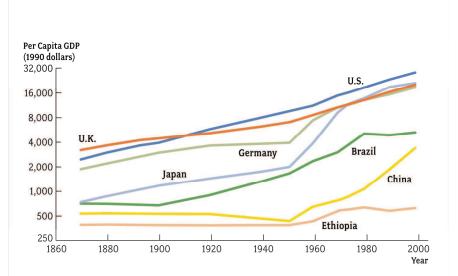
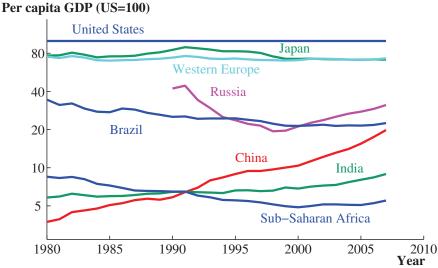


FIGURE 1.1 Per Capita GDP in Seven Countries, 1870-2000

Macroeconomics, Charles I. Jones Copyright © 2008 W. W. Norton & Company



Ten Macro Ideas - p.39/46

Figure: Is it there any 'absolute' convergence?

Growth Rate of GDP per Capita, 1960–1992, Versus GDP per Capita in 1960; OECD, Africa, and Asia. Asian countries are converging to OECD levels. There is no evidence of convergence for African countries. Source: See Figure 10-2.



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 の��

'Conditional' Convergence

Consider the following 'growth regression':

$$g_{y,i}^{1960/1990} = \alpha + \beta y_{0,i} + \gamma edu_{0,i} + \varepsilon_i$$
 $i = 1, 2, ..., n$

Within a group classified by 1960 human capital measures (such as schooling), 1960 saving rates, and other indicators, a higher income in 1960 is positively correlated with lower growth rates g_{γ} , that is $\beta < 0$.

NB: If we do not add the controls for education, we get $\beta = 0$ (no 'absolute' convergence)

Normative: The Golden Rule

• The good market equilibrium implies C + I = Y. Since I = S, using (ii) we have

$$\frac{C}{N} = \frac{(1-s)Y}{N} \Rightarrow c = (1-s)y = (1-s)\hat{A}f(k)$$

•
$$s = 0 \Rightarrow k^* = 0 \Rightarrow f(0) = 0 \Rightarrow c^* = 0.$$

• and
$$s=1\Rightarrow c^*=0$$
 as well.

• The golden rule saving rate s_G solves:

$$\max_{s} c^*(s) := (1-s)\hat{A}f(k^*(s))$$

• Cobb-Douglas example: $y^*(s) = \hat{A}(k^*(s))^{\alpha} = \hat{A}\left(\frac{s\hat{A}}{\delta}\right)^{\alpha/(1-\alpha)}$

$$\max_{s} (1-s)\hat{A}\left(\frac{s\hat{A}}{\delta}\right)^{\alpha/(1-\alpha)} \Rightarrow s_{G} = \alpha. \quad \text{(Check at home)}$$

Positive: Predictions of the Solow Model

- The model does not predict long-run or sustained growth
 - Diminishing returns to reproducible factors (K)
 - .. and limiting condition: $\lim_{K\to\infty}F_K=0$
- Onditional Convergence:
 - Define the growth rate of capital as $\gamma_{k_t} := \frac{k_{t+1}-k_t}{k_t}$, we have:

$$\gamma_{k_t} = \frac{sy_t - \delta k_t}{k_t} = \frac{s\hat{A}k_t^{\alpha} - \delta k_t}{k_t} = \frac{s\hat{A}}{k_t^{1-\alpha}} - \delta$$

(Check that at $k_t = k^*$ we have $\gamma_{k_t} = 0$)

- The above condition is key in several empirical studies (growth regressions)
- 'After controlling for observable differences across countries (which affect the steady state level) the lower is the initial capital, the faster they growth' (Conditional Convergence)

Sources of Sustained Growth

- Physical Capital Accumulation $F(K_t, \bar{A}N)$
- **2** Human Capital Accumulation $F(K_t, \overline{A}H_t)$, H_t (education)
- **③** Technological Progress $F(K_t, A_tN) A_t$ (innovation)
 - 3a. Exogenous technological progress: $A_{t+1} = (1+g)A_t$
 - If $F(K_t, A_t N)$, the GDP per effective worker is

$$\hat{y_t} = Y_t / NA_t = \hat{f}(K_t / A_t N) = \hat{f}(\hat{k_t})$$

where \hat{k}_t is now capital per effective worker.

$$\begin{aligned} \frac{K_{t+1}}{A_t N} &= (1-\delta)\frac{K_t}{A_t N} + \frac{sY_t}{A_t N} \\ \Rightarrow \frac{A_{t+1}}{A_t}\frac{K_{t+1}}{A_{t+1} N} &= (1-\delta)\frac{K_t}{A_t N} + \frac{sY_t}{A_t N} \\ \Rightarrow (1+g)\hat{k}_{t+1} &= (1-\delta)\hat{k}_t + s\hat{y}_t \end{aligned}$$

Solow with exogenous technological progress If we rearrange the law of motion, we get:

$$\begin{aligned} (1+g)\hat{k}_{t+1} &= s\hat{y}_t + (1-\delta)\hat{k}_t \\ \Rightarrow (1+g)\left(\hat{k}_{t+1} - \hat{k}_t\right) &= s\hat{y}_t - (\delta+g)\hat{k}_t \end{aligned}$$

- NB1: g decreases the capital per effective worker. Why?
- NB2: We can use the same diagram as before in \hat{k} $\Rightarrow \hat{k}^* = \left(\frac{s}{\delta + g}\right)^{1/(1-\alpha)}$
- NB3: If ŷ = Y/AN is constant then income per capita y = Y/N grows as long as A grows (we get sustained growth). Recall k:

$$k^*(t) = \hat{k}^* A(t) = \left(\frac{s}{\delta + g}\right)^{1/(1-\alpha)} A(t) \qquad \Rightarrow \gamma_k = g$$

In a sustained (balanced) growth we must have $\gamma_y = \gamma_k$ (prove it!)

A Couple of Revision Exercises

- Consider the standard Solow model with no technological progress (i.e., A_t = Ā), and assume there is population growth, that is, N_{t+1} = (1 + n)N_t. Show that the model implies a sustained growth path where total GDP Y_t and aggregate capital K_t both growth at the same rate n.
- Now consider the model in the previous exercise and suppose the economy is on its balanced growth path and the saving rate is s₀. Now, suppose the saving rate increases to s₁ > s₀. Describe what will happen to the path of Y_t and K_t . Do it by drawing two well commented graphs where in the horizontal axis you have time t, while in the vertical axis you have $\ln Y_t$ and $\ln K_t$ respectively.

References

Any advanced book in macroeconomics analyzes the Solow-Swan model.

Here below you find (alternative) references that include the Ramsey-Cass-Koopmans moodel we will see next.

In parenthesis optional chapters on endogenous growth models.

- 1 Romer: Advanced Macroeconomics, McGraw-Hill, Chapters: 1, 2, (& 3).
- 2 Barrow and Sala-i-Martin: Economic Growth, McGraw-Hill, Chapters: Intro, 1, 2 (& 4).