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Useful Mathematics: Complete Metric Spaces

Definition 1 A metric space (X, d) is a set X, together with a
metric (or distance function) d : X x X — IR, such that for all
x,y¥,z € X we have:

(i) d(x,y) >0, with d(x,y) = 0 if and only if x = y;

(ii) d(x,y) = d(y, x); and

(iii) d(x,z) < d(x,y) +d(y, 2).

Example: X =R and d(x,y) = |x — y|

Definition 9: Convergence Let (X, d) a metric space . The
sequence {x,} o is convergent to y € X if for each real number
€ > 0 there exists a natural number N such that for any n > N we
have d (x,, y) < €. And we write x, — y, of lim, e Xy = y.
Definition 10: Cauchy We say that a sequence {x,}'._, is Cauchy
if for each € > 0 there exists a natural number N such that for any
n,m > N we have d (xp, xm) < €.

Definition 20: Complete Metric Spaces A metric space (X, d) is
said to be Complete if any Cauchy Sequence is convergent in X.



Useful Mathematics: Example

Here is an example of a non-complete metric space.

@ Let again X = R, with the following metric

0 if X=y
d(X,}’):{ 1 1

max {TM le\} otherwise.

@ We can check that d is actually a metric!

@ Now consider the sequence {x,}%_,
of integers x0 =0, x1 =1, x0 =2, x3 =3, ... x, = n,

@ It is easy to see that as m and n increase, the distance
d(Xn, Xm) = d(n m) goes to zero. Indeed, if n,m > N, then
d(n, m) < 1. Hence the sequence is Cauchy.

@ However, it is easy to see that the sequence
{xn}og = {n}o_ does not converge to any real number x,

since for any x < co we have d(x, n) > 1+\ (> 0 forall n.



The Contraction Mapping Theorem
Definition 22: Contraction Mapping Let (X, d) a metric space and
T : X — X a function mapping X into itself. T is a Contraction
(with modulus B) if for some B < 1 we have

d(Tx, Ty) < Bd (x,y), forall x,y € X.

Theorem 7: If (X, d) is a complete metric space and T : X — X

is a contraction with modulus B, then

(i) T has exactly one fixed point x* in X, i.e. x* = Tx*, and

(ii) for any xg € X we have d (T"xg, T"x*) < B"d (xp, x*) ,

n=20,12,..

Proof: Start with any xg € X and construct the sequence:

X, = T"xp.

Notice that d(xpt1,xn) < ‘B"d(x(l,xo). Now, let m=n+p+1:
X

d(Xm, xn) < Xmy Xm—1) + d(Xm—1, Xm—2) + ... + d(Xn11, Xn)
S ‘de(XnJrern) + ‘Bpild(XnJrlv Xn) +o Tt d(Xn+1v Xn)
1 n
< d(Xnt1,%n) < P d(x1,x0)

1-8 1-p



Proof of the Contraction Mapping Theorem

The sequence is hence Cauchy. Since (X, d) is complete this
sequence must converge, i.e. there exists a x* such that

lim x, = x".
n—oo

By the continuity of T (in fact T is uniformly continuous) we have

Tx* =T lim x, = lim Tx, = lim x,.1 = x".
n—oo n—oo n—oo

It remains to show that x* = Tx™ is unique. Call x** = Tx** the
second fixed point. Note that

d(x™, x*) =d(Tx"", Tx*) < Bd (x™*, x*),

a contradiction as long as d (x**, x*) > 0. Hence, d (x**,x*) =0,
that is x* and x** must in fact be the same point.

- For part (ii) see Theorem 3.2 in Stokey-Lucas-Prescott (1991).



Sufficient Conditions for a Contraction

Theorem 6: Let X C R’. Both the set B(X) of bounded functions
and the set C(X) of bounded and continuous functions f : X — R
together with the “sup” metric dw(f, g) = sup, |f (t) — g (t)| are
Complete Metric Space (They are linear hence Banach Space).

Theorem 8: (Blackwell)

Let T : B(X) — B(X) be an operator satisfying:
(i) f.g € B(X) and f(x) < g(x) Vx € X, implies
(TF) (x) < (Tg) (x) Vx € X, and

(ii) there exists some 0 < B < 1 such that

[T (f+a)](x) <(Tf)(x)+Ba, VF€B(X), a>0, x € X.

Then T is a contraction with modulus .



The general Framework

Vi(x) =  sup Z BF (¢, Xe41) (1)
{xe+1}i0 t=0

sit. xp € X
xer1 € T(x¢) forall t.

Time invariant function F, and correspondence I'; B € [0, 1). We
assume " to be non empty for all x € X.

Recall that the BPO is equivalent to the possibility of writing the
value function V* as Bellman Functional Equation:

V(xo) = sup F(xo.x1)+BV(x1), (2)
x1€T(x0)



Basic Result: Existence and Uniqueness

Assumption 4.1 T(x) is non-empty for all x € X.
Assumption 4.2 F is bounded and B € [0, 1).

Theorem Assume 4.1 and 4.2 and consider the metric space
(B(X), ds) of bounded functions with the sup norm. Then the
Bellman operator T defined by

(TW)(x) = sup F(x,x")+BW(X) (3)

x'el’(x)

(i) maps B(X) into itself; (i) has a unique fixed point V € B(X).



Properties |: Continuity

Assumption 4.3 T'(x) is continuous.

Assumption 4.4 F is continuous and B € [0, 1).

Theorem 15 Assume 4.1, 4.2, 4.3 and 4.4 then
(i) the fixed point V is continuous (and bounded);
(i) the policy correspondence

G(x) ={y eT(x): V(x) = F(x,y) + BV(y)}

is non empty, compact valued, and upper semi-continuous.



Properties II: Concavity and Differentiability

Assumption 4.7 T has a convex graph

Assumption 4.8 F is concave

Theorem 16 Assume 4.1, 4.2, 4.7 and 4.8. Then
(i) The fixed point V/ is concave.
(ii) If F is differentiable then V is continuously differentiable and

dIF (x,&(x))

Vi) = dx

= F1(x,g(x))

for any x € intX such that the policy is interior, i.e.
g(x) € intT'(x).



Proofs

They all work in the same way.

@ Assumption 4.1 and 4.2, (and 4.3 and 4.4) [and 4.7 and 4.8]
guarantee that the operator T
maps bounded (and continuous) [and concave| functions
into bounded (and continuous) [and concave] functions.

@ The space of bounded (and continuous) [and concave]
functions is a complete metric space and T is a contraction.

@ We can hence apply the contraction mapping theorem and
show that the fixed point V = TV has these properties.

@ Differentiability uses a bit more advanced stuff. See SLP.

@ The same can be done for Monotonicity.
When F(x, x") is monotone increasing in x and the feasibility
set I'(x) widens with x, i.e. if X > x then I'(x) C T'(x');
Under 4.1, 4.2 and Monotonicity, V/(+) is bounded increasing.



The Maximum Theorem

Theorem of the Maximum. For all x € X let

v(x):= sup h(x,x).
x'eT(x)

If h(-,-) is continuous and I'(+) is continuous and non-empty,
v(+) is continuous and the policy correspondence

g(x) == {y e I(x)[v(x) = h(x,y)}
is non-empty and compact valued.
Figure

This theorem allows us to show that under 4.3 and 4.4 the Bellman
operator maps continuous function into continuous functions.



