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Useful Mathematics: Complete Metric Spaces

Definition 1 A metric space (X , d) is a set X , together with a
metric (or distance function) d : X × X → IR, such that for all
x , y , z ∈ X we have:
(i) d(x , y ) ≥ 0, with d(x , y ) = 0 if and only if x = y ;
(ii) d(x , y ) = d(y , x); and
(iii) d(x , z) ≤ d(x , y ) + d(y , z).

Example: X = IR and d(x , y ) = |x − y |

Definition 9: Convergence Let (X , d) a metric space . The
sequence {xn}

∞
n=0

is convergent to y ∈ X if for each real number
ε > 0 there exists a natural number N such that for any n ≥ N we
have d (xn, y ) < ε. And we write xn → y , or limn→∞ xn = y .

Definition 10: Cauchy We say that a sequence {xn}
∞
n=0

is Cauchy
if for each ε > 0 there exists a natural number N such that for any
n,m ≥ N we have d (xn, xm) < ε.

Definition 20: Complete Metric Spaces A metric space (X , d) is
said to be Complete if any Cauchy Sequence is convergent in X .



Useful Mathematics: Example

Here is an example of a non-complete metric space.

Let again X = IR, with the following metric

d(x , y ) =

{

0 if x = y

max
{

1

1+|x |
, 1

1+|y |

}

otherwise.

We can check that d is actually a metric!

Now consider the sequence {xn}
∞
n=0

of integers x0 = 0, x1 = 1, x2 = 2, x3 = 3, ... xn = n, ... .

It is easy to see that as m and n increase, the distance
d(xn, xm) = d(n,m) goes to zero. Indeed, if n,m ≥ N, then
d(n,m) ≤ 1

1+N
. Hence the sequence is Cauchy.

However, it is easy to see that the sequence

{xn}
∞
n=0

= {n}∞
n=0

does not converge to any real number x ,
since for any x < ∞ we have d(x , n) ≥ 1

1+|x |
> 0 for all n.



The Contraction Mapping Theorem
Definition 22: Contraction Mapping Let (X , d) a metric space and
T : X → X a function mapping X into itself. T is a Contraction
(with modulus β) if for some β < 1 we have

d (Tx ,Ty ) ≤ βd (x , y ) , for all x , y ∈ X .

Theorem 7: If (X , d) is a complete metric space and T : X → X

is a contraction with modulus β, then
(i) T has exactly one fixed point x∗ in X , i.e. x∗ = Tx∗, and
(ii) for any x0 ∈ X we have d (T nx0,T

nx∗) ≤ βnd (x0, x∗) ,
n = 0, 1, 2, ...

Proof: Start with any x0 ∈ X and construct the sequence:
xn = T nx0.
Notice that d(xn+1, xn) ≤ βnd(x1, x0). Now, let m = n+ p + 1:
d(xm, xn) ≤ d(xm, xm−1) + d(xm−1, xm−2) + ....+ d(xn+1, xn)

≤ βpd(xn+1, xn) + βp−1d(xn+1, xn) + ....+ d(xn+1, xn)

≤
1

1− β
d(xn+1, xn) ≤

βn

1− β
d(x1, x0)



Proof of the Contraction Mapping Theorem

The sequence is hence Cauchy. Since (X , d) is complete this
sequence must converge, i.e. there exists a x∗ such that

lim
n→∞

xn = x∗.

By the continuity of T (in fact T is uniformly continuous) we have

Tx∗ = T lim
n→∞

xn = lim
n→∞

Txn = lim
n→∞

xn+1 = x∗.

It remains to show that x∗ = Tx∗ is unique. Call x∗∗ = Tx∗∗ the
second fixed point. Note that

d (x∗∗, x∗) = d (Tx∗∗,Tx∗) ≤ βd (x∗∗, x∗) ,

a contradiction as long as d (x∗∗, x∗) > 0. Hence, d (x∗∗, x∗) = 0,
that is x∗ and x∗∗ must in fact be the same point.

- For part (ii) see Theorem 3.2 in Stokey-Lucas-Prescott (1991).



Sufficient Conditions for a Contraction

Theorem 6: Let X ⊂ IRl . Both the set B(X ) of bounded functions
and the set C(X ) of bounded and continuous functions f : X → IR
together with the “sup” metric d∞(f , g) ≡ supt |f (t)− g (t)| are
Complete Metric Space (They are linear hence Banach Space).

Theorem 8: (Blackwell)
Let T : B(X ) → B(X ) be an operator satisfying:
(i) f , g ∈ B(X ) and f (x) ≤ g(x) ∀x ∈ X , implies
(Tf ) (x) ≤ (Tg) (x) ∀x ∈ X , and
(ii) there exists some 0 ≤ β < 1 such that

[T (f + a)] (x) ≤ (Tf ) (x) + βa, ∀f ∈ B(X ), a ≥ 0, x ∈ X .

Then T is a contraction with modulus β.



The general Framework

V ∗(x0) = sup
{xt+1}

∞
t=0

∞

∑
t=0

βtF (xt , xt+1) (1)

s.t. x0 ∈ X

xt+1 ∈ Γ(xt) for all t.

Time invariant function F , and correspondence Γ; β ∈ [0, 1). We
assume Γ to be non empty for all x ∈ X .

Recall that the BPO is equivalent to the possibility of writing the
value function V ∗ as Bellman Functional Equation:

V (x0) = sup
x1∈Γ(x0)

F (x0, x1) + βV (x1), (2)



Basic Result: Existence and Uniqueness

Assumption 4.1 Γ(x) is non-empty for all x ∈ X .

Assumption 4.2 F is bounded and β ∈ [0, 1).

Theorem Assume 4.1 and 4.2 and consider the metric space

(B(X ), d∞) of bounded functions with the sup norm. Then the
Bellman operator T defined by

(TW )(x) = sup
x ′∈Γ(x)

F (x , x ′) + βW (x ′) (3)

(i) maps B(X ) into itself; (ii) has a unique fixed point V ∈ B(X ).



Properties I: Continuity

Assumption 4.3 Γ(x) is continuous.

Assumption 4.4 F is continuous and β ∈ [0, 1).

Theorem 15 Assume 4.1, 4.2, 4.3 and 4.4 then
(i) the fixed point V is continuous (and bounded);
(ii) the policy correspondence

G (x) = {y ∈ Γ(x) : V (x) = F (x , y ) + βV (y )}

is non empty, compact valued, and upper semi-continuous.



Properties II: Concavity and Differentiability

Assumption 4.7 Γ has a convex graph

Assumption 4.8 F is concave

Theorem 16 Assume 4.1, 4.2, 4.7 and 4.8. Then
(i) The fixed point V is concave.
(ii) If F is differentiable then V is continuously differentiable and

V ′(x) =
∂F (x , g(x))

∂x
= F1(x , g(x))

for any x ∈ intX such that the policy is interior, i.e.
g(x) ∈ intΓ(x).



Proofs

They all work in the same way.

Assumption 4.1 and 4.2, (and 4.3 and 4.4) [and 4.7 and 4.8]
guarantee that the operator T
maps bounded (and continuous) [and concave] functions
into bounded (and continuous) [and concave] functions.

The space of bounded (and continuous) [and concave]
functions is a complete metric space and T is a contraction.

We can hence apply the contraction mapping theorem and
show that the fixed point V = TV has these properties.

Differentiability uses a bit more advanced stuff. See SLP.

The same can be done for Monotonicity.
When F (x , x ′) is monotone increasing in x and the feasibility
set Γ(x) widens with x , i.e. if x ′ ≥ x then Γ(x) ⊂ Γ(x ′);
Under 4.1, 4.2 and Monotonicity, V (·) is bounded increasing.



The Maximum Theorem

Theorem of the Maximum. For all x ∈ X let

v (x) := sup
x ′∈Γ(x)

h(x , x ′).

If h(·, ·) is continuous and Γ(·) is continuous and non-empty,
v (·) is continuous and the policy correspondence

g(x) := {y ∈ Γ(x)|v (x) = h(x , y )}

is non-empty and compact valued.

Figure

This theorem allows us to show that under 4.3 and 4.4 the Bellman
operator maps continuous function into continuous functions.


