
Macroeconomics Sequence, Block I

The Optimal Model of Growth:
Euler Equations vs Dynamic Programming

Nicola Pavoni

September 16, 2016



The Neoclassical Growth Model I

V ∗(k0) = max
{kt+1, it , ct , nt}∞

t=0

∞

∑
t=0

βtu(ct)

s.t.

kt+1 = (1− δ)kt + it (1)

ct + it ≤ F (kt , nt)

ct , kt+1 ≥ 0, nt ∈ [0, 1] ; k0 given.

Constraint (1) is the law of motion of the state variable kt .
V ∗(k0) is the value function of the problem.

Notice that nt = 1 and the resource constraint is satisfied
with equality.

We can hence simplify the constraints by defining

f (kt) = F (kt , 1) + (1− δ)kt .



The Neoclassical Growth Model II

The above specified simplifications deliver

V ∗(k0) = max
{kt+1}∞

t=0

∞

∑
t=0

βtu(f (kt)− kt+1)

s.t. (2)

0 ≤ kt+1 ≤ f (kt); k0 given.

(2) describes the problem in Sequential form: It is a ‘static’
problem with objective function

W (k0, k1, k2, ...) =
∞

∑
t=0

βtu(f (kt)− kt+1)

If f (k) = k we have the Cake eating problem. If
f (k) = (1+ r)k + y we have a simple saving (storage)
problem.



Euler Equation

Taking the usual first order conditions we get the Euler Equations

u′ (f (k∗t−1)− k∗t ) = βf ′(k∗t )u
′ (f (k∗t )− k∗t+1) t = 1, 2, ....

Economic Intuition: Intertemporal efficiency.

u′(c∗t−1)

βu′(c∗t )
= f ′(k∗t ) =

∂F (k∗t , 1)
∂kt

+ (1− δ),

MRS = MRT (ct−1, ct)

Since consumption and investment are the same good, a marginal
reduction of period t − 1 consumption implies a one-to-one

increase on it−1, which in turn increases by
∂F (kt ,1)

∂kt
+ (1− δ) the

amount of goods available for period t consumption.



Euler Equation and Steady state

Under standard assumptions (neoclassical production
function, with limk→∞ Fk = 0) the economy allows for a
steady state for capital and consumption.

Graph of c0(k) = f (k)− k , (which implies kt+1 = kt), and
the locus of points where ct+1 = ct .

In the steady state, the Euler equation implies 1

β = f ′ (kss) .

Assuming a Cobb-Douglas production function:

F (k , n) = Akαn1−α with α ∈ (0, 1)

the Euler equation becomes

1

β
= αAkα−1 + (1− δ) =⇒ kss =

(

Aα

δ + ρ

)
1

1−α

where ρ = β−1 − 1 is the agent’s discount rate.



The Euler Variational Approach I

The approach considers perturbations on the optimal contract
(which is supposed to exist)

And finds Necessary conditions for the conjectured contract to
be optimal

We are looking for a feasible deviation from the optimal
interior program {k∗t+1}∞

t=0, where interiority simple requires

both k∗t+1 > 0 and k∗t+1 < f (k∗t ) for all t.

The perturbation is aimed at changing k∗t+1 (and i∗t , i
∗
t+1),

while keeping unchanged all k∗s for s 6= t + 1, in particular
both k∗t and k∗t+2.

The perturbation must be small enough to keep feasibility



Euler variational approach II

Let ε any real number in an open neighborhood O of zero

For each ε, the perturbed plan {ı̂
ε
t , k̂

ε
t+1}∞

t=0 is constructed

from {i∗t , k∗t+1}∞
t=0 as follows: k̂ ε

t+1 = k∗t+1 + ε, and k̂ ε
s = k∗s

for s 6= t + 1.

Such perturbation implies: ı̂
ε
t = i∗t + ε and

ı̂
ε
t+1 = i∗t+1 − (1− δ) ε and ı̂

ε
s = i∗s for s 6= t, t + 1.

If we denote by V̂0 (ε) the value associated to the perturbed
plan for each ε ∈ O, the optimality of the original plan implies
V̂0 (ε) ≤ V ∗

0 for all ε ∈ O, and V̂0 (0) = V ∗
0 .

Stated in other terms, ε = 0 is the optimal solution to

max
ε∈O

V̂0 (ε) .

The first order condition is V̂ ′
0 (0) = 0.



Obtaining the Euler Equations

Since k∗s are untouched, both for s ≤ t and s ≥ t + 2 the
derivative with respect to ε of all terms are zero but period t
and t + 1 returns. We hence have:

V̂ ′
0 (ε) =

d

dε

{

u(f (k∗t )− k∗t+1 − ε) + βu(f (k∗t+1 + ε)− k∗t+2)
}

The condition V̂ ′
0 (0) = 0 hence delivers the Euler equation

u′ (f (k∗t )− k∗t+1) = βf ′(k∗t+1)u
′ (f (k∗t+1)− k∗t+2) .



The Euler Approach: Another Concavity Requirement

The Euler conditions check for ‘unilateral’ variations on the optimal plan.

To get the idea of the Euler Approach, consider the simple problem

V ∗ = max
(x ,y )∈X×Y

h(x , y )

The optimal pair (x∗, y ∗) : h(x∗, y ∗) ≥ h(x , y ) for all
(x , y ) ∈ X × Y , satisfies (among other things)

h(x∗, y ∗) ≥ h(x , y ∗) for all x ∈ X , and

h(x∗, y ∗) ≥ h(x∗, y ) for all y ∈ Y .

Now, for example, specify

h(x , y ) =
√
x
√
y , with x , y ∈ [0, 3].

What is the optimal pair? What about (0, 0)?



The Euler Approach: The Transversality Condition
Since with the first order conditions we only check for one period
deviations, one checks in addition the Transversality condition.
Proposition 3 Assume u and f to be bounded, increasing,
continuous, concave, and differentiable. If the (interior) sequence

{k∗t }∞
t=1

satisfies the Euler equations (given k0) and

lim
T→∞

βTu′(f (k∗T )− k∗T+1)f
′(k∗T )k

∗
T ≤ 0

then {k∗t }∞
t=0

is an optimal sequence.
Intuition: First order conditions are sufficient for global ‘finite
period optimality’ (concavity). What about infinite deviations?
Since βTu′f ′ is the t = 0 price of capital kT , if

lim
T→∞

βTu′(f (k∗T )− k∗T+1)f
′(k∗T )k

∗
T > 0

The agent is holding valuable capital, i.e. the value of capital has
not been exhausted, and perhaps U0 can be increased further.



The Bellman Principle of Optimality (B.P.O.) I

The optimal growth problem (2) can be studied by solving the
following functional equation

V (k) = max
0≤k ′≤f (k)

u(f (k)− k ′) + βV (k ′), (3)

where the ‘unknown’ in the equation is the value function V .
(3) is the Recursive formulation (R.F.) of the problem.

1 The R.F. simplifies the problem making it easier to
understand.

2 The R.F. has several computational advantages. See
numerical methods.

3 Instead of an optimal sequence (k∗0 , k
∗
1 , k

∗
2 , ...) (Euler), the

solution to the recursive problem delivers a policy k ′ = g(k),
i.e. an optimal rule for any k .



The Bellman Principle of Optimality II
In order to obtain the recursive formulation one need to identify
the state variables.

“In some problems, the state variables and the
transformations are forced upon us; in others there is a
choice in these matters and the analytic solution stands
or fall upon this choice; in still others, the state variables
and sometimes the transformations must be artificially
constructed. Experience alone, combines with often
laborious trial and error, will yield suitable formulations
of involved processes.” Bellman (1957).

The Principle of Optimality is

“An optimal [plan] has the property that whatever
the initial state and initial decision are, the remaining
decisions must constitute an optimal [plan] with regard
to the state resulting from the first decision.” Bellman
(1957).



The Bellman Principle of Optimality III
The B.P.O. is based on two key facts (recall our simple case):
(i) typically we can ’split’ the max:

V ∗ = max
(x ,y )∈X×Y

h(x , y ) = max
x∈X

{

max
y∈Y

h(x , y )

}

.

(ii) quite often we can also ‘pass’ the max over. Example: Profit
maximization

π∗(p,w) = max
z ,y

py − wz

s.t. y ≤ f (z),

where y is output, z are inputs; p and w are prices. It is well
known:

π∗(p,w) = max
y

py − C (y ;w),

where, for each y , C is the cost function

C (y ;w) = min
z

wz s.t. y ≤ f (z). (4)



The Bellman Principle of Optimality III: (continued)
Proposition 1 The ‘true’ value function V ∗ Solves the Bellman FE.
Proof :(assume existence) Just use the B.P.O. to our model

V ∗(k0) = max
0≤k1≤f (k0)

{

max
{kt+2}∞

t=0

∞

∑
t=0

βtu(f (kt)− kt+1)

}

= max
0≤k1≤f (k0)

{

max
{kt+2}∞

t=0

u(f (k0)− k1) + β
∞

∑
t=0

βtu(f (kt+1)− kt+2)

}

= max
0≤k1≤f (k0)

u(f (k0)− k1) + β max
{kt+2}∞

t=0

∞

∑
t=0

βtu(f (kt+1)− kt+2)

= max
0≤k1≤f (k0)

u(f (k0)− k1) + βV ∗(k1).

That is, we obtain the functional equation (3) with V = V ∗!



The B.P.O. III: (continued)

The Bellman Principle of Optimality is a much tighter then the
Euler approach.

With the Principle of Optimality we guarantee

u(f (k∗t−1)− k∗t ) + βV ∗(k∗t ) ≥ u(f (k∗t−1)− kt) + βV ∗(kt)

Recall that with the Euler approach we were checking instead

u(f (k∗t−1)− k∗t )+ βu(f (k∗t )− k∗t+1) ≥ u(f (k∗t−1)− kt)+ βu(f (kt)− k∗t+1)

When the time horizon is finite, the B.P.O. is equivalent to global
optimality.
When the horizon is infinite we need a form of ’Transversality’,
since again we only check for one-stage deviations.



The Verification Theorem

Proposition 2 If V solves the Bellman functional equation (3), and
for all feasible sequences {kt}∞

t=0
with 0 ≤ kt+1 ≤ f (kt) we have

lim
T→∞

βTV (kT ) = 0

then V is the true value function (i.e. V = V ∗) and any sequence
generated by the optimal policy starting from k0 is optimal.
Proof : Bellman equation implies global ‘finite period optimality’:

V (k0) = max
k1

u(f (k0)− k1) + βV (k1)

= max
k1,k2

u(f (k0)− k1) + βu(f (k1)− k2) + β2V (k2)

· · ·
V (k0) = max

k1,k2,..

T−1

∑
t=0

βtu(f (kt)− kt+1) + βTV (kT ).

Since kT belongs to a feasible sequence and βTV (kT ) → 0, done!



The Cake Eating Problem I: Sequential Approach

If we set f (k) = k the problem is that of eating a cake of size k0.
In terms of the controls alone it can be written as

V ∗(k0) = max
{ct}∞

t=0

∞

∑
t=0

βtu(ct)

s.t.
∞

∑
t=0

ct ≤ k0; ct ≥ 0; k0 given.

⇒ Do it at home!



The Cake Eating Problem II: Recursive Approach

The associated functional equation is

V (k) = max
0≤k ′≤k

ln(k − k ′) + βV (k ′).

We can adopt a guess and verify procedure.

(i) Guess that V (k) = A+ B ln(k) and

(ii) take FOC to verify that we can find constants (A and B) such
that V solves the functional equation.

1

k − k ′
= β

B

k ′
⇒ k ′ = g(k) =

βB

1+ βB
k .

Plugging it into our initial problem we have

V (k) = A+
1

1− β
ln k ,

hence B = 1

1−β , optimal policy g(k) = βk , or c(k) = (1− β)k .



Finite Horizons and guided guesses
Consider the one-period Gale’s cake eating problem

V1(k) = max
0≤k ′≤k

ln
(

k − k
′
)

.

V1(k) = max
0≤k ′≤k

ln
(

k − k
′
)

+ βV0(k
′) = max

0≤k ′≤k
ln
(

k − k
′
)

.

where V0(k) ≡ 0.
Since k ′ = g0(k) ≡ 0, we have V1(k) = ln (k − g0(k)) = ln(k).

V2(k) = max
0≤k ′≤k

ln
(

k − k
′
)

+ βV1(k
′)

= A2 + (1+ β) ln(k),
· · ·

Vn(k) = An + (1+ β + β2 + · · ·+ βn−1)ln(k)
· · ·

V (k) = V∞(k) = A∞ +
1

1− β
ln(k).



Bellman Operator and Contraction Mapping
Recall the previous slide:

V1(k) = max
0≤k ′≤k

u
(

k − k
′
)

+ βV0(k
′) = (TV0) (k).

T is called the Bellman operator. T maps functions into functions.

V2(k) = T 2V0 = (TV1)(k) = max
0≤k ′≤k

u
(

k − k
′
)

+ βV1(k
′),

· · ·
Vn(k) = T nV0 = (TVn−1)(k) = max

0≤k ′≤k
u
(

k − k
′
)

+ βVn−1(k
′).

The function V can be seen as a fixed point of the T− operator:

lim
n→∞

T nV0 = V∞ = TV∞.

Contraction Mapping Theorem ⇒ the fixed point V exists, is
unique, is obtainable as a limit ‘point’ V∞ from an arbitrary V0.
(algorithm)


