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1 Introduction

In their paper, Watson and Holmes (2015) follow the statistical decision approach pio-

neered by Wald (1950). Under Wald’s perspective, the aim of the analysis shifts from the

discovery of a statistical “truth” (for instance, as revealed by the correct statistical model),

to making decisions that are defensible according to posited objective functions that trade

off alternative aims. We also draw on decision theory in our discussion because it provides

a formal framework for confronting uncertainty.

Decades ago, Arrow (1951) distinguished two sources of uncertainty: (i) risk within

a model, where the uncertainty is about the outcomes that emerge in accordance to a

(probability) model that specifies fully the outcome probabilities; and (ii) ambiguity among

models, where the uncertainty is about which alternative model, or convex combination of

such models, should be used to assign the probabilities. If the true model is not assumed

to be among the original set of models under consideration, a third source of uncertainty

emerges, (iii) model misspecification, here uncertainty is induced by the approximate na-

ture of the models under consideration to use in assigning probabilities. These different

sources of uncertainty are inherent to any analysis that includes decision makers who have

(probabilistic) theories about the outcomes and form beliefs over their relevance.
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How to accommodate potential model misspecification is a challenging topic. On the

one hand, if we have very precise information about the nature of the misspecification,

then presumably we would fix or repair the model. On the other hand, if we allow for too

large of a set of possible ways for a model to be misspecified, we may find that little can be

said of value in confronting the decision problem. The interplay between tractability and

conceptual appeal is a central consideration when producing tools that aid in statistical

decision making. By using formal decision theory to frame and analyze misspecification,

the advances described by Watson and Holmes (2015) help to nurture further connections

between statistics and economics, and they allow for the incorporation of additional insights

from statistics into economic analyses.

In their essay, Watson and Holmes (2015) draw connections to some research in eco-

nomics. Our comment will describe other important advances in decision theory within

the economics discipline that are designed to confront uncertainty conceived broadly to

include an aversion to ambiguity and a concern about model misspecification. We will also

delineate some special challenges for applications in economics.

Statisticians and econometricians use decision theory to guide how they estimate pa-

rameters and assess the specification of alternative models. But economics and other social

sciences also use decision theory for a second purpose. People inside the models that we

build must speculate about the future when making investment and other forward-looking

decisions. These people inside the models could be individuals from the private sector of

the market economy or they could be policy makers who employ econometricians to help

them in making better decisions with either self-serving or social objectives. It has long

been understood within economics that beliefs about the future are important inputs into

model construction, and this opens the door to letting people inside the economic models

to use data and statistical methods to help shape their beliefs. Economists debate what

degree of statistical sophistication we should ascribe to the people inside our models. Thus,

there is a role for depicting decision making under uncertainty to help capture behavior

inside the models we build. Doing so can have substantial consequences for outcomes of the

economic analysis. Statistical challenges, thus, show up in two places. They are present

inside the models we build to capture the behavior of astute decision makers and outside

these models when econometricians adapt and apply statistical methods to models that

interest them. See, for instance, Hansen (2014) for more discussion of this point.

Statistical challenges inside the models we build influence how we shape and apply

decision theoretic concerns about model misspecification. Moreover, dynamics are central
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to many economic analyses. This interest in dynamics has had a substantial impact in the

development of decision theory within economics at least since Koopmans (1960) and also

within control theory. The interplay between concerns about model misspecification in a

dynamic, stochastic environment along with the desire for tractable recursive formulations

has led to some recent advances in decision theory within economics that we will briefly

describe (see e.g. Gilboa and Marinacci (2013) and Marinacci (2015) for recent overviews).

2 Decision theory

Decision theory aims to describe how a person should behave in an uncertain environment.

We follow Watson and Holmes (2015) in our use of decision theory, except that we extend

the notation in ways that will support our discussion of potential model misspecification

in dynamic environments.

For a statistician, decision theory typically guides a choice of a model or an estimator

of an underlying parameter vector captured by the possibly infinite dimensional parameter

vector θ. Econometrics often adopts this same perspective. This is captured by an unknown

parameter vector θ that resides in a set Θ. Given θ, a random vector X with realized values

x in a set X is described by a probability model f(x|θ), a density relative to a measure

τ over X that provides a probabilistic specification of X. A decision maker observes a

realization x and takes an action a ∈ A that can depend on x. Formally, an action (or

decision) rule is a suitably measurable function A : X → A.

Represent the decision maker’s preferences in terms of a utility function U(a, x, θ).

Integrate over x to construct expected utility conditioned on θ:

U(A|θ) =

∫
X
U(A(x), x, θ)f(x|θ)τ(dx), (1)

which will be an important ingredient of our decision theories. The expected utility, as we

have computed it, conditions on the parameter θ that is typically unknown to the decision

maker. Statistical decision theory often regards −U as a loss function and calls −U a risk

function. Consistent with this label, we view the integration over x conditioned on θ in

equation (1) as adjusting for risk.

When it comes to applying decision theories to economics and other fields, the unknown

parameter θ may be an intermediate target. For instance, consider a decision maker facing

uncertainty captured by a future payoff relevant state. Represent this state as a random
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vector S with realized values s in a set S. Let f ∗(s|a, x, θ) denote the density relative

to a measure τ ∗ over alternative s’s in S conditioned on the current period action a and

observed data y. Consider a next period utility function U∗ that depends on (s, a) and

integrate over s to construct U(a, y, θ) =
∫
S U

∗(s, a)f ∗(s|a, y, θ)τ ∗(ds). Even when not

directly payoff relevant, the θ dependence of U is induced by the dependence of f ∗ on θ.

This formulation is amenable to dynamic programming methods where value functions are

incorporated into the specification of U and U∗, and S is a future Markov state or a shock

that determines this Markov state given current information.

As posed so far, this representation of decision theory is incomplete. Following de Finetti

(1937) and Savage (1954), we include a subjective prior probability π, and integrate over

the posited θ. With this, we complete the specification:∫
Θ

U(A|θ)π(dθ) (2)

and can use this integral to rank alternative action rules A. Since the action rule depends

on x, given π we may rank alternative actions a conditioned on x by
∫

Θ
U(a, x, θ)π∗(dθ|x),

where π∗ is the familiar Bayesian posterior π∗(dθ|x) ∝ f(y|θ)π(dθ). A Bayesian statisti-

cian’s job is to construct the posterior π∗.

As stated, however, in this specification there is no obvious scope for the expression

of an aversion to model misspecification or to model ambiguity. As noted by Watson and

Holmes (2015), both de Finetti and Savage acknowledge the challenge in using subjective

probability to address such aversions.

3 Misspecification

We share the Watson and Holmes (2015) interest of exploring the impact of model misspec-

ification. Issues that we discuss in this section are already relevant for uncertainty induced

by model ambiguity, but concerns about model misspecification magnify their importance

potentially by expanding substantially the set of models under consideration. A rich set

of extensions of decision theory has emerged to confront uncertainty broadly conceived.

These advances include some mentioned by Watson and Holmes (2015), but there are also

others. The alternative approaches alter the inputs into a Bayesian decision problem in

a variety of ways. Some follow Wald (1950)’s approach by relying on the game theoretic

analysis of Von Neumann and Morgenstern (1944) to shape an approach to uncertainty.
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Watson and Holmes (2015) point to a rich literature on robust Bayesian methods that

explores prior sensitivity in systematic ways. Motivated by applications in economic dy-

namics and control theory, decision theorists have found valuable to adopt the following

starting point. Consider a convex function C to assess a decision maker’s response to

ambiguity about the prior π. The decision maker solves:

Problem 3.1.

max
A∈A

min
π

∫
Θ

U(A|θ)π(dθ) + C(π).

The cost function imposes a penalty on the choice of prior. Penalization methods are

well known in both statistics and control theory. The preferences implicit in this decision

problem are what Maccheroni et al. (2006b) call variational preferences. Such preferences

nest the multiple priors specification of Gilboa and Schmeidler (1989), where the cost

function C takes on the extreme form of being equal to infinity if π is outside a convex

set of priors Π and zero inside. It extends the usual maximin approach to accommodate

penalization, thus including formulations with a reference prior and a relative entropy

penalty as proposed by Hansen and Sargent (2001). It accommodates robust Bayesian

analysis in its systematic exploration of prior sensitivity with the use of a utility or loss

function. The choice to minimize represents the aversion to ambiguity over the selection of

the prior or a concern about prior misspecification.

We may think of Problem 3.1 as a zero-sum game. When the order of extremization can

be reversed without altering the objective, then we may obtain a so-called worst-case prior

under which the decision maker optimizes by taking this prior as given. Bayesians such as

Good (1952) argue for assessing the plausibility of this (restrained) worst-case prior. While

this forges a link to Bayesian decision theory, notice that this “choice” of prior depends on

the utility or loss function rather than on a subjective introspection.

The theory of constrained optimization uses Lagrange or Kuhn-Tucker multipliers as

a convenient way to enforce constraints, say on a convex family of priors. This suggests

a direct connection between the more special Gilboa and Schmeidler (1989) approach and

that of Maccheroni et al. (2006b) in many applications, including those explored by Hansen

and Sargent (2001) and Hansen et al. (2006) and mentioned in Watson and Holmes (2015).

From the perspective of the axiomatic analysis of Maccheroni et al. (2006b) and of dynamic

implementation, there are important conceptual distinctions, however.

There is a seemingly different approach to ambiguity about a prior that also features

ambiguity aversion. Instead of penalizing or constraining a family of priors, it introduces
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aversion to prior ambiguity in a way that is conceptually similar to risk aversion by including

a strictly increasing concave function Φ as in the smooth ambiguity model of Klibanoff et al.

(2005):

Problem 3.2.

max
A∈A

Φ−1

(∫
Θ

Φ
[
U(A|θ)

]
π(dθ)

)
.

While this problem is not posed as one with a concern about prior sensitivity, the

informativeness or lack thereof in the prior does play a role in the decision criterion through

curvature in the function Φ. As noted by Hansen and Sargent (2007), for the familiar and

commonly used relative entropy formulation, there is a simple connection between the

penalization approach to prior sensitivity and the smooth ambiguity approach. Let πo

denote a reference prior and g denote a probability density with respect to πo. If G denotes

the family of such densities, then

min
f∈G

∫
Θ

U(A|θ)g(θ)πo(dθ) + λ

∫
Θ

f(θ) log g(θ)πo(dθ) = −λ log

∫
Θ

exp

[
−1

λ
U(A|θ)

]
πo(dθ).

This minimization problem is essentially a special case of an optimization problem with

a relative entropy penalty that emerges in a variety of areas of applied mathematics and

essentially follows from Theorem 4.1 in Watson and Holmes (2015). Thus, a particular

form of a smooth ambiguity model emerges from a search over alternative prior densities

subject to a penalization.

We close this section by observing that decision theories that extend (2) also violate the

sure-thing principle, which has been viewed as a basic normative principle. However, the

appeal of this principle becomes questionable under model uncertainty as Ellsberg (1961),

pp. 653-654, famously illustrated with the three-color paradox.

4 Dynamics

Incorporating dynamics raises a host of interesting questions and has nurtured the develop-

ment of recursive formulations of decision problems. By design these recursive formulations

are amenable to application of dynamic programming methods which render the computa-

tion and characterization of solutions to economics models tractable. There are a variety

of conceptual changes once we entertain model misspecification.
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4.1 Misspecification in future dynamics

Connecting the future to the past is central to application of time series statistical methods.

So far we have presumed that the density f ∗ for the future state, as well as the density f

used to represent the observed data, depend on an underlying parameter θ. This gives us the

opportunity to learn using Bayesian updating, even though potential model misspecification

can impede this process. But if past data are only revealing for some of the components

of θ, there may remain uncertainty about how the economic environment will evolve in the

future that is not fully captured by random shocks. This type of uncertainty motivated

the work of Hansen and Sargent (2001), Chen and Epstein (2002), and Anderson et al.

(2003). It is also a central motivation for the dynamic extension of the class of variational

preferences as discussed in Maccheroni et al. (2006a).

4.2 Dynamic consistency

Dynamic applications of decision making under uncertainty, often, but not always, look for

formulations that are dynamically consistent to avoid having decision makers play naive

or sophisticated games against future versions of themselves. This aim can shape the

formulation of decision problems. Indeed the penalization approach suggested by Hansen

and Sargent (2001) and the generalization developed by Maccheroni et al. (2006a) were

motivated in part by such concerns.

Dynamic extensions of the multiple priors model of Gilboa and Schmeidler (1989) led

Epstein and Schneider (2003) to embed a subjectively specified set of models or priors

over models into a potentially larger rectangular set based on considerations of dynamic

consistency. Such an approach does not always yield interesting answers, however. Suppose

we use dynamic versions of statistical discrepancies, including the ones used by Watson

and Holmes (2015), to constrain ways in which models could be misspecified. The resulting

rectangular embeddings are so large as to lead to degenerate outcomes (see Hansen and

Sargent (2016) for a formal discussion). This phenomenon has led Hansen et al. (2006) to

seek recursive implementations of so-called commitment problems solved from an ex ante

perspective, much like what often occurs in control theory as reflected say in Petersen et al.

(2000). The added flexibility of the dynamic version of variational preferences characterized

Maccheroni et al. (2006a) gives an alternative attractive way to support the use of statistical

discrepancy measures as noted originally by Hansen and Sargent (2001) and developed more

fully in Hansen et al. (2006).
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4.3 Robustness and dynamic learning

In dynamic settings, yesterday’s posterior is today’s prior. Bayes’ rule is a wonderful and

often convenient recursion. Even under potential misspecification, guesses about the future

are typically tied to past evidence. Robust learning and its impact on decisions provides a

fascinating twist to the direct Bayesian approach. There are a variety of approaches that

have been suggested, including direct application of Bayes’ rule applied to a reference prior

over models with an accompanying adjustment to the recursively generated posteriors (see

e.g. Hansen and Sargent (2007) and Klibanoff et al. (2009)). Alternatively, Epstein and

Schneider (2003) suggest a prior-by-prior application of Bayes’ rule in a dynamic multiple

priors models with a rectangular embedding to enforce consistency. In a model with date

zero prior ambiguity, Chamberlain (2000) embraces the prior-by-prior application of Bayes’

rule from an ex ante perspective without including a rectangular embedding.

There remains scope for further dialog and discussion of this important topic as there are

potentially important tradeoffs between conceptual appeal and computational tractability.

We very much hope that the essay by Watson and Holmes (2015) and our discussion

will encourage further synergistic research linking statistical challenges to economic model

building and analysis.
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