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Abstract

Modeling of extreme values in the presence of heterogeneity is still a relatively un-

explored area. We consider losses pertaining to several related categories. For each

category, we view exceedances over a given threshold as generated by a Poisson pro-

cess whose intensity is regulated by a specific location, shape and scale parameter.

Using a Bayesian approach, we develop a hierarchical mixture prior, with an unknown

number of components, for each of the above parameters. Computations are per-

formed using Reversible Jump MCMC. Our model accounts for possible clustering

effects and takes advantage of the similarity across categories, both for estimation and

prediction purposes. Detailed guidance on the specification of the prior distribution

is provided, together with an assessment of inferential robustness. The method is il-

lustrated throughout using a data set on large claims against a well-known insurance

company over a 15-year period.

Keywords: Heterogeneity; Insurance claim and loss; Partition; Predictive distribution;

Reversible Jump MCMC.
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1 Introduction and summary

Modeling of extreme data is now a well established branch of modern statistics, see e.g.

Smith (1989), Embrechts, Klüppelberg, and Mikosch (1997) and Coles (2001).

On the other hand, the Bayesian analysis and modeling of extreme values is, to our

knowledge, relatively scarce, notable exceptions being Coles and Powell (1996), and refer-

ences therein, Coles and Tawn (1996), Smith (1999), Smith and Goodman (2000), Coles

and Pericchi (2001). This is unfortunate for several reasons, among which we like to

emphasize:

• extreme values are, by definition, rare and thus incorporating prior structure and

information into the analysis is often essential to obtain meaningful answers;

• prediction of (extreme) losses is a crucial enterprise, especially in insurance and

finance, and the Bayesian method provides a simple and clear cut answer that duly

incorporates estimation uncertainty;

• heterogeneity of data is increasingly recognized as an important issue in applications.

Again the Bayesian approach allows a variety of clustering techniques for modeling

extreme data.

Motivated by the analysis of a data set on seven types of insurance claims carried out

in Smith and Goodman (2000), we propose a Bayesian hierarchical model that embodies

clustering of type-effects. While our treatment is general, we present our method for ease

and concreteness of exposition with reference to the insurance claim data. Major features

of our model are:

• the number of clusters is not fixed in advance; instead it is left to the data and the

model to determine a posterior probability distribution on this quantity;

• a distinct clustering structure is allowed for each of the main parameters of the

model: in this way claim-type heterogeneity can be more flexibly accounted for;

• predictive distributions of extreme losses can be routinely computed within our

framework. Furthermore the predictions of losses for claim-types on which very
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few observations are available can be performed more reliably through a borrowing-

strength procedure;

• Markov chain Monte Carlo (MCMC) methods are used to compute estimates and

predictions; in particular Reversible Jump MCMC (RJMCMC) technology, see Green

(1995), is exploited for model determination.

The structure of the paper is as follows. Section 2 is devoted to the statistical modeling

of extreme data characterized by heterogeneity. In particular, subsection 2.1 describes a

data set on large claims in the insurance industry together with the standard modeling

approach that motivated our search for a new model; subsection 2.2 briefly reviews some

Bayesian modeling strategies, in particular partition and mixture models to deal with

heterogeneity and clustering, while subsection 2.3 presents a detailed description of the

structural features of the proposed model, together with a graphical-model representation.

Section 3 offers some guidance to model specification so that our method can be readily

implemented in an applied context. Section 4 examines the data set on insurance claims,

presents the basic findings, compares them with previous results, and carries out some

sensitivity analysis. Finally, Section 5 contains some concluding remarks. To facilitate

the exposition, the computational details of the RJMCMC algorithm are relegated to the

Appendix.

2 Modeling heterogeneity in extreme data

Heterogeneity is a pervasive concept in statistical analysis. In this section we treat this

topic with explicit reference to the modeling of extreme values. Our analysis is general;

however, for a more concrete motivation and illustration, we discuss the issue in the context

of insurance claims.

2.1 Claim-type effects in the insurance industry

Assessment of the risk of an insurance company depends crucially on the prediction of

the size and frequency of large claims. Reliable predictions, in turn, require accurate

statistical models. Smith and Goodman (2000), henceforth S&G, analyze data on large
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claims against a well-known international company over a 15-year period. To protect

confidentiality the data were coded so that neither the actual size, nor the time frame,

are disclosed. The data comprise a collection of 425 claims classified into one of seven

types (e.g. fire, flood, liability, etc.). It is common to aggregate claims relative to a single

source into a single “loss”, in order to prevent dependency among the data. When this is

done, the number of data, which we still name “claims”, reduces to 393. A further data

reduction occurs when only large losses exceeding a specified threshold are considered. In

particular only six claim-types need to be examined for such losses. Typical questions that

have to be addressed refer to the choice of a suitable probabilistic model for very large

claims, the estimation of the parameters and the prediction of overall losses. S&G, besides

providing an informative description of the data set, deal extensively with these topics. In

particular they discuss issues such as: a point-process representation of the exceedances,

the choice of suitable “thresholds”, outlier detection, model estimation and diagnostic fits,

trend- and claim-type effects. With reference to the latter issues, they conclude that there

seems to be no convincing evidence of any long-term trend. On the other hand, claim-

type effects are significant and ignoring them can lead to serious model misspecification

and inappropriate parameter estimates. We like to emphasize at this stage that S&G

analyze claim-type effects using a hierarchical Bayesian model assuming exchangeability

of the parameters. The main disadvantage of the latter model is that types are treated

symmetrically and correspondingly parameter estimates are shrunk towards a common

point.

2.2 Clustering via mixture distributions

Suppose there exist I claim-types, so that the data can be arranged as y

i

= (y
il

, i =

1, . . . , I, l = 1, . . . , n

i

). The standard Bayesian approach to model claim-type hetero-

geneity is to assume a specific parameter ¥

i

, say, for the distribution of y

i

and to model

hierarchically ¥ = (¥
1

, . . . , ¥

I

). Several options are available at this stage depending on the

amount of structural prior information. If there exist claim-type specific covariates and

these are deemed to be relevant, then a regression model on some suitable transformation

of ¥

i

may be attempted. A special case of this set-up is the partial exchangeability model.

Here a set of categorical factors is used to classify types into groups, or clusters, each
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group corresponding to a specific combination of the factor-levels , see e.g. Bernardo and

Smith (1994, Section 4.2.2 and 4.6). Types belonging to the same group are deemed to be

“similar” to each other: accordingly the ¥

i

s within each group are modeled as exchange-

able. Trivially, when no classification factor is employed, one recovers the standard model

of full exchangeability. On the other hand, one can go beyond the standard assumption of

full exchangeability by assuming a prior distribution on several cluster-structures and the

corresponding posterior may be regarded as a Bayesian cluster analysis. These concepts

are at the heart of partition models, see Hartigan (1990), Malec and Sedransk (1992) and

Consonni and Veronese (1995).

Another approach that bears a resemblance to partition models, but seems more

amenable to computations, is based on mixture distributions. Conditionally on the num-

ber of mixture-components k, the weights w

j

s and the hyperparameters ±

j

s , the ¥

i

s are

assumed to be iid according to a finite-mixture distribution

¥

i

|k, w, ±

iidª
kX

j=1

w

j

p

j

(·|±
j

), (1)

where p

j

(·|·) denotes the jth component distribution, w stands, here and in the sequel, for

the vector (w
1

, . . . , w

k

),
P

k

j=1

w

j

= 1, and similarly for ± = (±
1

, . . . , ±

k

). Priors are now

assigned, possibly using a further hierarchy, to k, w and ±.

It is convenient to rewrite slightly (1) using, independently for each ¥

i

, a latent variable

z

i

such that Pr (z
i

= j|k, w) = w

j

. The variable z

i

identifies the mixture component from

which ¥

i

is drawn. Formula (1) can thus be replaced with

¥

i

|±, z
i

indª p

zi(· |±zi )

z

i

|k, w

iidª Pr (z
i

= j |k,w ) = w

j

.

The employment of the allocation variables z

i

s turns out to be a useful tool especially

from the computational viewpoint.

Bayesian mixture models with an unknown number of components have become a pow-

erful tool for statistical analysis following the work of Richardson and Green (1997), which

makes use of the RJMCMC algorithm introduced by Green (1995). Green and Richard-

son (2001) further elaborate on the issue and make comparisons between parametric and

nonparametric mixture models. For our purposes the paper by Nobile and Green (2000),
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henceforth N&G, is especially useful, since it deals with mixture models for parameters,

as we do, and not for data, as in Richardson and Green (1997).

2.3 A hierarchical mixture model

We follow Smith (1989) and we view exceedances as generated by a Poisson process of

intensity

Λ
y

=
µ

1 + ª

y ° µ

√

∂°1/ª

+

, (2)

where x

+

= max (0, x). In equation (2) µ represents a location parameter, ª a shape

parameter, while √ accounts for scale. One of the advantages of the above representation

is that it can be immediately extended to cover more complex situations, such as those

with time-dependent parameters, see e.g. S&G.

Consider now data y = (y
il

), i = 1, . . . , I; l = 1, . . . , n
i

(u
i

), where y

il

represents

the lth exceedance over threshold u

i

for claim-type i.

Conditionally on µ

i

, √

i

and ª

i

we assume that, independently, the point process of

exceedances of type i is generated according to the Poisson process (2) with parameters

µ

i

, √

i

and ª

i

. This is the only step in the model we share with the paper by S&G.

Following N&G we specify a hierarchical mixture prior distribution for the collection

of the µ

i

, √

i

and ª

i

parameters. When no specific indication is given, conditional inde-

pendence is tacitly assumed.

Let

µ

i

|kµ

, w

µ

, µ

µ

,æ

µ

iidª
k

µX

j=1

w

µ

j

N(µµ

j

, (æµ

j

)2),

log √

i

ØØØk√

, w

√

, µ

√

, æ

√

iidª
k

√X

j=1

w

√

j

N(µ√

j

, (æ√

j

)2), (3)

ª

i

ØØØkª

, w

ª

, µ

ª

,æ

ª

iidª
k

ªX

j=1

w

ª

j

N(µª

j

, (æª

j

)2).

Notice that we postulate, for each of the three parameters of the Poisson process, a distinct

mixture distribution, with specific number of components, weights, means and variances.

To complete the model specification, the distributions of the hyperparameters appear-

ing in (3) must be detailed. For simplicity we only present those referring to µ. Similar
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expressions hold with respect to log √ and ª. We assume that

k

µ

iidª Unif{1, . . . , I},

w

µ |kµ ª Dir(dµ

1

, . . . , d

µ

k

µ),

µ

µ

j

|øµ

indª N(mµ

j

,

1
ø

µ

), (4)

(æµ

j

)°2

indª Ga(aµ

j

, b

µ

j

),

ø

µ ª Ga(aø

µ
, b

ø

µ
),

where Unif{1, . . . , I} denotes the uniform distribution over the integers {1, . . . , I}, Dir

stands for the Dirichlet distribution, Ga(a, b) denotes the gamma distribution with expec-

tation a/b.

The joint distribution of all random quantities involved is now fully specified and the

corresponding Directed Acyclic Graph (DAG) is depicted in Figure 1.

Figure 1 about here

3 Specification of prior distributions

Consider first the prior distribution on w

µ. A useful way to think about the choice of the

d

µ

j

s is in terms of the induced probability distributions on the partitions of the I types

for each fixed k

µ. This is the approach taken in N&G which we have found especially

illuminating. In our example, set, for instance, k

µ = 3. Then the claim-types parameters

µ

i

can be regarded as random draws from one of three distinct Normal populations with

weights w

µ

j

, j = 1, 2, 3. The latter in turn are random and governed by the coefficients d

µ

j

.

For each fixed value of d

µ = (dµ

j

) one can compute the probability of the various partitions

of six objects of degree less than or equal to three and check the reasonableness of the

assignments against such distribution. For example, if one wishes to favor aggregation

of claim-types, then one would want to place the highest probability on the partition of

degree (i.e. number of groups) one, where types belong to the same population, followed by

those of degree two and finally by that of degree three. In practice some default methods

are called for and we recommend using d

µ

j

= 1 for all j. This choice can be shown to favor

rather strongly the assumption of a single cluster and is thus also useful for comparison
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purposes with works based on the assumption of full exchangeability. More generally,

the above choice of prior encourages aggregation of types into a few number of clusters.

Similar considerations apply to the choice of d

√

j

and d

ª

j

.

Table 1 reports the prior probabilities induced on the various partitions of I = 6 objects

from a prior w ª Dir(1, . . . , 1) (we omit superscript since our considerations are general).

More precisely the first column of Table 1 reports selected values of k ranging from one

to three. Column 2 describes the structure of the partitions of the index set {1, . . . , 6}

in term of the cardinality of its clusters. For example for k = 2, (4, 2) indicates that a

partition has two clusters, one having four elements while the other two. In the third

column, to the right of (4, 2), a full description of all partitions is provided. For example

if º = (1, 1, 2, 1, 1, 2) this means that elements one, two, four and five belong to the same

cluster (indicated with 1), while elements three and six belong to cluster two. Notice that

º = (2, 2, 1, 2, 2, 1) would have provided an equivalent description of the partition and

is accordingly omitted. Finally the last column reports the probability of each partition

appearing to its left. Clearly the probability of the overall cluster structure is obtained

by multiplying the previous probability by the number of partitions in the set, e.g. the

probability of the cluster structure (5, 1) is 6£ 0.0223 = 0.1338.

Table 1 about here

Consider now the distribution of the µ

µ

j

s. Notice that the expectations m

µ

j

s are fixed,

while the variances are all equal but random ( 1

ø

µ ). In general (hierarchical) mixture

models are more sensitive to variance, rather than mean, specifications. In particular
q

1

ø

µ represents variability between components of the mixture while the æ

µ

j

s are measures

of within components variability. We claim that the former should be appreciably larger

than the latter: in this way we are fairly stringent about the variability within each

component but are largely uninformative relative to the location of the components (see

below for details). Clearly special care is needed in assigning these prior distributions,

since the structure of the mixture as well as the parameter estimates are highly dependent

upon them.

As for the values of the coefficients m

µ

j

s, the default choice we suggest is to take them all

equal to m

µ, say. Using an Empirical Bayes approach, we found that a fruitful procedure
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is to compute the MLE for each µ

i

, µ̂

i

and then set m

µ = min{µ̂i}+max{µ̂i}
2

.

We now consider the assignment of the coefficients a

µ

j

and b

µ

j

governing the distribu-

tion of (æµ

j

)°2. Since we are willing to believe that two µ

i

s come from the same mixture

component if they are “close”, the range of values of each æ

µ

j

should be fairly “small”.

The meaning of “small” is of course context-dependent, and it is not immediate for the

parameters µ

i

, √

i

and ª

i

in the Poisson process model. As a consequence the procedure

of N&G (Subsection 3.2) cannot be straightforwardly applied in our setting. We therefore

propose a modification that again relies on some empirically based estimates. First of all

we fix a

µ

j

= 3 for all j: this guarantees that (æµ

j

)2 will have finite second-order moment.

Next we evaluate the control parameter ∆µ, which represents with (high) probability p

0

the maximal discrepancy between two distinct µ

i

s coming from the same mixture compo-

nent. In other words Pr (|µ
i

° µ

i

0 | ∑ ∆µ) = p

0

. Clearly small values of ∆µ will favor a

greater number of mixture components, and conversely for large values of ∆µ. This is the

procedure we propose: we compute all pairs ∆̂
ii

0 = |µ̂
i

° µ̂

i

0 |, which provide a good indi-

cation of the observed range for discrepancies. We can now fix ∆µ equal to some suitable

quantile of the distribution of the ∆̂
ii

0s. Typically the estimated clustering structure will

be fairly sensitive to this choice. We recommend trying a few quantiles, e.g. between the

2nd and the 6th decile, to gauge sensitivity of the inferences. The numerical assessment

of b

µ

j

can now be obtained solving formula (8) of N&G (we set p

0

= 0.95). Specifically one

has:

b

µ

j

=
a

µ

j

2
(∆µ)2

Ω
F

°1

2a

µ
j

µ
1 + p

0

2

∂æ°2

,

where F

2a

µ
j

is the distribution function of the Student distribution with 2aµ

j

degrees of

freedom. Since we chose to fix the a

µ

j

s all equal, it follows that the b

µ

j

s will be also equal,

i.e. b

µ

j

= b

µ.

There remains two more coefficients to fix, namely a

ø

µ and b

ø

µ , i.e. those governing the

distribution of ø

µ. The former is set equal to 3 again, while the latter can be obtained from

equation (9) of N&G. We disregard the trivial solution b

ø

µ = b

µ, so that b

ø

µ will always

be larger than b

µ: this guarantees that we are largely uninformative about the component

locations µ

µ

j

. This completes the procedure as far as the distributions of the quantities

corresponding to the µ-parameters are concerned. The procedure is now repeated twice,
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with obvious modifications, in order to specify the distributions of the √- and ª-parameters.

We close this section by remarking that choosing the coefficients d

j

, m

j

, a

j

and b

j

(we

omit superscripts for simplicity) all equal among themselves, as we recommend, implies

that the mixture labels are not uniquely identified. This label-switching problem has

recently attracted the attention of many researchers (Celeux et al., 2000, Stephens, 2000,

and Frühwirth-Schnatter, 2001). In order to overcome this difficulty, some identifying

constrains need to be imposed. This is done in a post-processing “after simulation” stage

by ordering the labels according to the values taken by the parameters µ

j

or æ

j

or w

j

.

In our real-data setting, using the parameter µ

j

, removed the label-switching problem in

the sense that the posterior distribution of µ

j

, æ

j

and w

j

did not exhibit multimodalities.

This situation occurs for the µ, √ and ª parameters. We finally remark, however, that

this problem does not affect the predictive distribution.

4 Application to insurance claim data

The methodology described in the previous section is now illustrated using the insurance

claim data set described in Subsection 2.1. For comparison purposes we set the same

threshold u = 2.5 for each claim-type, as in S&G, thus reducing the effective number of

claim-types down to six as mentioned in the Introduction.

The MCMC-based results we present are based on 500, 000 sweeps, with a burn-in of

20, 000. Simulation time was close to 4 hours on a Pentium III 850 MHz. Values were

recorded at the rate of 1 every 100 to dampen serial correlation. Convergence was assessed

using diagnostics implemented in the package BOA, see Smith (2001). These diagnostics

were performed on the parameters k

µ, k

√ and k

ª as well as for the parameters of selected

models having high posterior probability. From these it appears that the number of

iterations could have been safely halved without appreciably modifying the results and

convergence issues.

We now describe in detail the specification of the coefficients in the prior distribution

(4) following closely our discussion in Section 3.

Table 2 reports for three levels of the control parameter ∆, namely the three quartiles

of the empirical distribution of the ∆̂
ii

0 and the values of the coefficients b and b

ø (for
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simplicity, here and in the Tables, we omit the superscript indicating the parameter under

consideration). While increasing ∆ makes the values of b and b

ø increase too, we remark

that the ratio of between-components variance
q

1

ø

and within-components variance æ

2, as

measured by the ratio of their expectations or the expectations of their ratios, is essentially

unaffected, see Table 3.

Table 2 and Table 3 about here.

The value of m was derived in Section 3, obtaining: m

µ = 8.3112, m

√ = 1.1864 and

m

ª = 0.7864.

4.1 Clustering structures

From the MCMC output, effectively based on 5, 000 values, one can make inferences about

the clustering structure, through the frequency distributions of the vector of partitions.

For each of the main parameters of interest, µ, log √ and ª, Tables 4, 5 and 6 report

the five most visited partitions for each of the three choices of the control parameter ∆

indicated in Table 2. As anticipated in the previous section, the higher the value of ∆, the

greater the posterior probability attached to partitions of smaller degree. For example,

with reference to the location parameter µ, we notice in Table 4 that the exchangeability

partition is virtually negligible for the two smaller values of ∆µ, but receives three quarters

of the probability under the highest value. The most probable partition appears to be that

wherein claim-type 1 is isolated while the remaining five types are clustered together. The

persistence of this partition is fairly robust to choices of ∆µ, always scoring highest or

second highest; its weight is however strongly downgraded for the largest value of ∆µ.

Further aspects of the posterior distribution are reported in Table 7. For the intermediate

value of ∆µ, only 56 partitions were visited; of these 9 were visited only once and 28

less than 10 times each. The first 10 most visited partitions accounted for almost 90%

of the whole posterior probability. In summary one can conclude that, with reference to

the parameter µ, there exists overwhelming evidence that claim-type 1 exhibits a quite

distinctive behavior, with mild evidence that claim-type 5 may be also considered on

its own. Of course this conclusion is broadly consistent with the graphical display of
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parameter estimates appearing in Figure 5 of S&G. The advantage of our approach is that

we provide the posterior probability distributions on the space of partitions.

Table 4 about here

As for the parameter log √, see Table 5, again it appears that claim-type 1 belongs to

a cluster of its own, provided we are fairly restrictive on the maximal discrepancy allowed.

The exchangeability partition however is surely a better candidate here, as it shows up

among the five most frequent partitions for all choice of ∆√, although it never attains a

posterior probability greater than 85%.

Table 5 about here

As far as the last parameter ª is concerned, see Table 6, it is evident that the exchange-

ability partition scores always very high with a posterior probability ranging from 76%

to 89%. Only very mild evidence is given to the possibility of two clusters. Interestingly,

however, it is not claim-type 1 that behaves in a distinctive way.

Table 6 about here

A summary of the posterior distribution of the partitions for each parameter of interest

and selected values of ∆ is reported in Table 7.

Table 7 about here

It appears that the algorithm visits a fair number of potential partitions, but quickly

settles down on a very few ones, namely those having greatest support. Indeed it is often

the case that the five most visited partitions account for a very large portion of the total

probability mass.

Table 8 reports the posterior distribution of the number of mixture components k, for

each parameter of interest under the usual three choices of ∆. For simplicity we comment

only on the intermediate panel, corresponding to a value of ∆ equal to the median of the

empirical distribution of the ∆̂
ii

0 . The mode of the distribution of k

µ is 2 with appreciable

probabilities also on the values 3 and 4. On the other hand both k

√ and k

ª have their mode

on 1, although the former presents non trivial masses also on 2 and 3. This of course is
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consistent with our previous analysis of the distribution of the partitions. Notice however

that the distribution of k includes cases with “empty components”, namely sweeps wherein

the actual number of distinct values taken on by the allocation variables z is smaller than

the current value of k. This situation is quite typical in the Bayesian analysis of mixture

models. Of course persistence of situations characterized by empty components should be

a warning and must be carefully monitored. In our case this was not a problem: indeed the

proportion of empty components was lower than that reported in Richardson and Green

(1997). As to the proportion of split/combine moves that were accepted this is detailed in

the last column of Table 8, and is well in agreement with similar studies using RJMCMC.

Table 8 about here

4.2 Parameter estimates

A simple representation of the posterior distribution of the main parameters is shown

in Figures 2-4, for the usual three choices of the control parameter ∆ and with stars

marking MLEs. Posterior means, medians and 95% credible intervals along with standard

deviations and interquartile ranges for the usual three choices of the control parameter

∆ are shown in Table 9, 10 and 11. For simplicity we only comment results relative to

intermediate value of ∆. It immediately appears from the boxplots that both parameters

µ and log √ of claim-type 1 are isolated with respect to the other five. In particular the

credible interval of µ

1

does not overlap with those remaining, consistently with the findings

of the clustering structure previously described. On the other hand the distribution of the

parameter ª appears essentially similar across claim-types.

Table 9, Table 10 and Table 11 about here

Figure 2, Figure 3 and Figure 4 about here

The control parameter ∆ operates on the pattern of the shrinkage estimates both

through the clustering structure describe in Subsection 4.1 as well as through the within-

and between- variance. Two partly conflicting effects emerge as ∆ increases: on the one

hand the number of clusters tends to diminish, thus favoring aggregation of claim-types;

on the other hand, because of the nature of our prior distributions, both variances tend to
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increase too, thus pushing parameter estimates towards MLEs. This phenomenon is best

captured through the crossover diagrams depicted in Figure 5, 6 and 7 which show the

sensitivity of the posterior means with respect to ∆. For example, looking at Figure 5,

from bottom to top, one can see that estimates diverge as ∆ approaches the 0.70 quantile

of ∆̂
ii

0 ; however as ∆ increases further, the estimate for µ

1

is strongly shrunk towards the

center since at the 0.75 quantile the exchangeability partition prevails. It is apparent that

a “crossover” effect takes place for claim-type 2, 4 and 6, i.e. the lines connecting MLEs

and Bayesian estimates intersect due to the shrinkage effect.

For the parameter log √ the crossover diagram in Figure 6 is essentially interpretable

along the lines described for µ. For the parameter ª instead, posterior means diverge,

from bottom to top, progressively since the exchangeability partition is always prevalent,

see Table 6. The cross over effects still appear involving claim-type 4 and 6 and shrinkage

is more pronounced when ∆ corresponds to the third quartile.

Figure 5, Figure 6 and Figure 7 about here

For all parameters our results with ∆ corresponding to the 0.75 quantile are broadly

consistent with those obtained by S&G using a full exchangeability model, which in our

setting can be reinterpreted as a one-component mixture prior distribution.

4.3 Prediction

Let Y

f

i

denote a future exceedance over a threshold u relative to a year period for the ith

claim-type, G the distribution function corresponding to the Poisson process of intensity

(2) and h (µ, log √, ª |y ) the posterior density of the parameters. The predictive distribu-

tion of Y

f conditional on y for a fixed claim-type (omitted from the notation) is given

by

Pr
≥
Y

f

< y

f |y
¥

=
Z

G

≥
y

f |µ, log √, ª

¥
h (µ, log √, ª |y ) d (µ, log √, ª)

º 1
T

TX

t=1

G

≥
y

f

ØØØ(µ, log √, ª)(t)
¥

, (5)

where (µ, log √, ª)(t) represents the output at the tth iteration of the MCMC algorithm

and T is the number of iterations. A plot of y

f

p

against {° log (1° p)} on a logarithmic

14



scale, where Pr
≥
Y

f

< y

f

p

|y
¥

= 1°p, is called “predictive return level plot” and represents

the equivalent of the conventional return level plot, see Coles (2001, Section 7.8). There

are two ways to construct such a plot: one is to fix a grid of values y

f s and evaluate the

G function at these points at each iteration t. Averaging over the MCMC output, this

provides an estimate of G at each point of the grid and finally the return level plot is

obtained by inversion. Clearly to achieve a reasonable quality of the plot, the grid must

be sufficiently fine. An alternative approach is to assign at each iteration a probability p

(t)

(possibly drawn from a uniform distribution over the unit interval) and then to evaluate

y

f

p

(t) = G

°1

°
p

(t) |· · ·
¢

whose empirical distribution function provides an estimate of G.

Finally the predictive return level plot is obtained again by inversion. Figure 8 reports

the predictive level plots based on MLE estimates, the full exchangeability model of S&G

and the mixture models for the usual three choices of the control parameter ∆.

The major feature of the plots appears to be the striking difference between the MLE-

based and the Bayesian predictive level plots. These differences are most notable for claim-

type 1 and 2, where the MLE-based plots identify a much riskier situation. Conversely for

claim-type 5 and 6, the Bayesian plots appear to indicate a considerable greater risk than

the frequentist one. We finally stress that the mixture model exhibits some appreciable

difference also with respect to the standard model used by S&G.

Figure 8 about here

5 Conclusions

Mixture models represent a flexible tool for Bayesian inference allowing for heterogeneity

in the data while taking advantage of the borrowing strength effect. These aspects seem

especially fruitful when examining extreme data relative to various categories of claims.

We have shown that current computational techniques allow to fit models and pro-

duce predictions with reasonable speed and accuracy. Our results indicate that Bayesian

estimates and predictions can be appreciably different from those based on MLEs: as a

consequence they can have significant impact also from a practical point of view. Within

the Bayesian approach we have demonstrated that mixture models can be successfully

used in place of the more traditional method based on full exchangeability.

15



Future work should extend the model presented here to a dynamic setting thus allowing

for time dependent clustering effects.

Acknowledgments

We are indebted to Richard L. Smith for providing us with the data set on the insurance

large claims, already analyzed in Smith and Goodman (2000). Leonardo Bottolo’s research

was supported by the University of Pavia and by a European Union TMR grant ERB-

FMRX-CT96-0096 through the Athens University of Economics. Guido Consonni’s and

Antonio Lijoi’s research was partially supported by the University of Pavia research project

on the Statistical Analysis of Complex Systems.

Appendix: the Reversible Jump MCMC sampler

The Bayesian analysis described in Section 2 is implemented using the RJMCMC algo-

rithm, introduced in Green (1995). We summarize below the computational scheme that

we used. Let M(A) := #{claims whose size lies in A}. For each A belonging to B(R),

where B(R) is the æ-algebra of Borel, the random measure M(·) is assumed to be a Pois-

son process and, in particular, for any y ∏ u, the expected value of M((y,+1)) coincides

with Λ
y

defined in (2), so that the likelihood function becomes

l (y |µ,√, ª ) = e

°N i Λui

Y

i l

∏

yil ,

where y = (y
11

, ..., y

1n

1

, y

21

, ..., y

InI ) are the observed exceedances over the claim-type spe-

cific threshold u

i

> 0, ∏

x

= °dΛ
x

/dx and N is the number of years in which observations

are collected, see, e.g., Basawa and Prakasa Rao (1993, Chapter 3). Hence

l (y |µ,√, ª ) = e

°N i Λui

IY

i=1

1
√

i

niY

l=1

µ
1 + ª

i

y

il

° µ

i

√

i

∂° 1

ªi
°1

I
(0,+1)

(1 + ª

i

√

°1

i

(y
il

° µ

i

)),

where I
A

stands for the indicator function of the set A. Henceforth we shall take for

simplicity u = u

i

. According to the distributional assumptions set forth in (4), one can

easily determine the full conditional distributions for each of the vectors w

µ, z

µ, æ

µ, µ

µ,

ø

µ given the observed data y and the remaining parameters. If A

µ

j

:= {i : z

µ

i

= j},
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n

µ

j

:= card(Aµ

j

), µ̄

j

=
P

i2A

µ
j

µ

i

/n

µ

j

and ¡ denotes the density of a standard normal

distribution, the full conditional distributions are described below

w

µ |· · · ª Dir(dµ

1

+ n

µ

1

, ..., d

µ

k

µ + n

µ

k

µ) (A.1)

Pr(zµ

i

= j |· · · ) =
w

µ

j

¡(µ
i

; µµ

j

,æ

µ

j

)
P

k

µ

l=1

w

µ

l

¡(µ
i

; µµ

l

, æ

µ

l

)
(A.2)

(æµ

j

)°2 |· · · indª Ga

0

B@a

µ

j

+
n

µ

j

2
, b

µ

j

+
1
2

X

i2A

µ
j

(µ
i

° µ

µ

j

)2

1

CA (A.3)

µ

µ

j

|· · · indª N

√
m

µ

j

ø

µ + n

µ

j

µ̄

j

/(æµ

j

)2

ø

µ + n

µ

j

/(æµ

j

)2
,

(æµ

j

)2

n

µ

j

+ ø

µ(æµ

j

)2

!
(A.4)

ø

µ |· · · ª Ga

√
a

ø

µ
+

k

µ

2
, b

ø

µ
+

1
2

IX

i=1

(µ
i

° µ

µ

i

)2
!

, (A.5)

where |· · · stands for conditioning on y and all other random variables, save the one on

the left hand side. The full conditional distributions referred to √ and ª are identical to

the ones above, provided the superscript µ is replaced with √, respectively ª.

The full conditional distribution for the parameters (µ,√, ª) is analytically intractable

and thus not available for sampling. This suggests to perform a Metropolis-Hastings step.

Let ¥

i

= (µ
i

, log √

i

, ª

i

) and denote the proposal distribution with q (¥
i

|e
i

, v

i

) which we

take as a three-dimensional Normal law with mean e

i

and variance-covariance matrix v

i

.

In order to increase the efficiency of the algorithm the matrix v

i

is fixed as follows. Firstly,

a maximum likelihood estimate v̂

i

of v

i

is obtained. Then a preliminary (random-walk)

Metropolis-Hastings run is performed with the posterior distribution of ¥

i

as the target

distribution using, at this stage, q(¥
i

ØØØ¥(t)

i

, c

i

v̂

i

) as the proposal distribution at the (t+1)th

iteration, where c

i

is a suitable tuning parameter. After running such a chain, one obtains

a sample {¥̂
i

(t) : t ∏ t

0

} from the posterior distribution of ¥

i

and we set v

i

= c

0
i

ṽ

i

, where

ṽ

i

denotes the corresponding sample variance-covariance matrix and c

0
i

another suitable

tuning parameter.

Below we detail the steps of the sampling procedure. Superscripts are used to de-

note the iteration, while superscripts referring to the parameters µ,√, ª are omitted for

simplicity from the notation. Finally we set A

(t)

j

:= {i : z

(t)

i

= j}.

1. Fix initial values z

(0)

, w

(0)

, µ

(0)

,æ

(0)

, ø

(0)

, µ

(0)

, √

(0)

, ª

(0)

, k

(0).
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2. Sample z

(t+1)

i

from

p(j) =
w

(t)

j

¡(µ(t)

i

; µ(t)

j

,æ

(t)

j

)
P

k

(t)

l=1

w

(t)

l

¡(µ(t)

i

; µ(t)

l

,æ

(t)

l

)
, j = 1, ..., k

(t)

, i = 1, ..., I.

3. Sample w

(t+1) = (w(t+1)

1

, ..., w

(t+1)

k

(t) ) from Dir

≥
d

(t)

1

+ n

(t+1)

1

, ..., d

(t+1)

k

(t) + n

(t+1)

k

(t)

¥
,

where n

(t+1)

j

:= card
≥
A

(t+1)

j

¥
.

4. Sample µ

(t+1)

j

from

N

√
n

(t+1)

j

µ

(t)

j

+ ø

(t)(æ(t)

j

)2m
j

n

(t+1)

j

ø

(t)(æ(t)

j

)2
,

(æ(t)

j

)2

n

(t+1)

j

ø

(t)(æ(t)

j

)2

!
.

5. Sample (æ(t+1)

j

)°2 from Ga(a
j

+ n

(t+1)

j

/2, b

j

+ s

(t+1)

j

), where

s

(t+1)

j

=
1
2

X

i2A

(t+1)

j

(µ(t)

i

° µ

(t+1)

j

)2.

6. Sample ø

(t+1) from Ga(aø + k

(t)

/2, b

ø +
P

I

i=1

(µ(t)

i

° µ

(t+1)

i

)2/2).

7. Sample from the full conditional distribution of ¥

(t+1)

i

given the obser-

vations y and the (vector of) parameters

(z(t+1)

, w

(t+1)

, µ

(t+1)

,æ

(t+1)

, ø

(t+1)

, k

(t))

via a (random walk) Metropolis-Hastings step with proposal distributi-

on

q(¥(t+1)

i

ØØØ¥(t)

i

, v

i

).

8. Update k

µ

, k

√

, k

ª via the RJMCMC.

As far as step 8 is concerned, updating is achieved by means of the RJMCMC algorithm

employed in N&G, which is now described omitting as usual the superscript from the

notation for simplicity. Suppose first that the parameters (d
j

, a

j

, b

j

,m

j

) differ across

components, so that the corresponding labels are uniquely identified. The split/merge

moves in the RJMCMC work as follows. Let k be the current number of components. A

preliminary selection of a splitting move, with probability s

k

, or of a merging move, with
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probability c

k

= 1 ° s

k

is made. Clearly, s

1

= c

k

max

= 1, whereas s

k

= c

k

= 0.5 for each

k = 2, ..., k

max

° 1. If a split move is selected, then one randomly fixes a component, j

§

say, to be split into two components, j

1

and j

2

. Accordingly, the value of the parameters

are set as follows

w

j

1

= w

j

§
u

1

, w

j

2

= w

§
j

(1° u

1

)

µ

j

1

= µ

j

§ ° u

2

æ

j

§

q
w

j

2

/w

j

1

, µ

j

2

= µ

j

§ + u

2

æ

j

§

q
w

j

1

/w

j

2

æ

2

j

1

= u

3

(1° u

2

2

)æ2

j

§(w
j

§
/w

j

1

), æ

2

j

2

= (1° u

3

)(1° u

2

2

)æ2

j

§(w
j

§
/w

j

2

),

where u

1

ª Beta(2, 2), u

2

ª 2Beta(2, 2)° 1 and u

3

ª Beta(0, 1). Proceeding analogously

as in N&G, we let j

1

coincide with j

§ and take j

2

to be the (k + 1)th component in the

mixture. The observations in j

§ are reallocated to j

1

and to j

2

according to the following

probabilities

Pr(z
i

= j

1

) =
p

i1

p

i1

+ p

i2

= 1° Pr(z
i

= j

2

) 8i 2 A

j

§
,

and

p

i1

=
w

j

1

æ

j

1

e

°
(µi°µj

1

)

2

2æ2

j
1

, p

i2

=
w

j

2

æ

j

2

e

°
(µi°µj

2

)

2

2æ2

j
2 8i 2 A

j

§
. (A.6)

If n

§
1

and n

§
2

denote the number of elements allocated in j

1

and in j

2

, respectively, with

n

§
1

+ n

§
2

= n

j

§ = card (A

j

§), then

P

alloc

=
Y

i2Aj
1

p

i1

Y

l2Aj
2

p

l2

designates the probability of the specific reallocation obtained according to (A.6). The

candidate state is accepted with probability min(1, R) where

R =
æ

n

§
/2

j

§

æ

nj
1

/2

j

1

æ

nj
2

/2

j

2

exp

8
<

:°
1
2

0

@
X

i2Aj
1

(µ
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)2
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i2Aj
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£ c

k+1

s

k

P

alloc

µ
1
2
g

2,2

(u
1
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µ
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where
P0 extends over the indexes j referring to those components not affected by the

split/merge move, whereas g

i,k

stands for the Beta density function with parameters i and

k.

Conversely, suppose a merge move is selected. If we start from a situation in which

k + 1 components are present, two of them are selected as follows: j

1

is randomly chosen

from the first k existing ones and j

2

is set equal to the (k + 1)th. Hence, j

1

and j

2

merge

to form a new single component, j

§ say, with

w

j

§ = w

j

1

+ w

j

2

, µ

j

§ =
w

j

1

w

j

§
µ

j

1

+
w

j

2

w

j

§
µ

j

2

and

æ

j

§ =
w

j

1

w

j

§
(µ2

j

1

+ æ

j

1

) +
w

j

2

w

j

§
(µ2

j

2

+ æ

j

2

)° µ

2

j

§ .

The candidate state, j

§, is placed, within the list of components, in the place occupied

by j

1

. The move is accepted with probability equal to min(1, R

°1) where R is defined as

above.

An implicit assumption underlying the algorithm we have just described is that the

coefficients associated with any two distinct components j are different. If there are two

distinct components with common coefficients, then the merge move differs allowing for a

random choice of both merging components. Viceversa, the split move is not altered.
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empirical distribution of ∆̂
ii
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Figure 4: Boxplots of the posterior distribution for the parameters µ,

log √ and ª. MLEs marked as stars and S&G’s posterior medians marked

as dots. Control parameter ∆ corresponds to the 3rd quartile of the

empirical distribution of ∆̂
ii
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Figure 5: Crossover diagram for the parameter of location µ. MLEs

marked as stars with claim-type numbers above. Posterior means

marked as plus for various choices of the quantiles of empirical distribu-

tion of ∆̂
ii
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Figure 6: Crossover diagram for the parameter of scale log √. MLEs

marked as stars with claim-type numbers above. Posterior means

marked as plus for various choices of the quantiles of empirical distribu-

tion of ∆̂
ii
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Figure 7: Crossover diagram for the parameter of shape ª. MLEs marked

as stars with claim-type numbers above. Posterior means marked as plus

for various choices of the quantiles of empirical distribution of ∆̂
ii
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Figure 8: Predictive return level plots for the six claim-types. Solid bold

line is MLE, solid line is S&G’s full exchangeability model, dotted line is

mixture model with ∆ corresponding to the 1st quartile, dot-dashed line

is mixture model with ∆ corresponding to the 2nd quartile and dashed

line is mixture model with ∆ corresponding to the 3rd quartile. Dots

correspond to empirical estimates based on the insurance claim data.
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k

Cluster

structure
Partitions

Prior

prob.

1 (6) 111111 0.1034

2 (5, 1) 111112, 111121, 111211, 112111, 121111, 211111 0.0223

(4, 2) 111122, 111212, 112112, 121112, 211112, 111221, 112121,

121121, 211121, 112211, 121211, 211211, 122111, 212111,

221111 0.0089

(3, 3) 111222, 112122, 121122, 122211, 112212, 121212, 122121,

122112, 121221, 112221 0.0067

3 (4, 1, 1) 111123, 111213, 112113, 121113, 211113, 111231, 112131,

121131, 211131, 112311, 121311, 211311, 123111, 213111,

231111 0.0058

(3, 2, 1) 111223, 112123, 121123, 211123, 112213, 121213, 211213,

122113, 212113, 221113, 112231, 121231, 211231, 122131,

212131, 221131, 111232, 112132, 121132, 211132, 122311,

212311, 221311, 111322, 112312, 121312, 211312, 112321,

121321, 211321, 122311, 212311, 221311, 223111, 113122,

113212, 123112, 213112, 113221, 123121, 213121, 123211,

213211, 131122, 131212, 132112, 231112, 131221, 132121,

231121, 132211, 231211, 311122, 311212, 312112, 321112,

311221, 312121, 321121, 312211, 321211, 322111 0.0014

(2, 2, 2) 112233, 121233, 122133, 122313, 112323, 122331 0.0012

Table 1: Prior probability induced by w|k ª Dir(1, . . . , 1) on the space

of partitions of I = {1, . . . , 6}, classified by number of clusters (k =

1, 2, 3) and cluster structure.
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Parameter ∆ b b

ø

µ 1.2361 0.3828 45.8944

log √ 0.7469 0.1398 16.7570

ª 0.3624 0.0329 3.9445

µ 2.1794 1.1899 142.6683

log √ 1.3678 0.4687 56.2006

ª 0.6911 0.1197 14.3469

µ 12.5064 39.1851 4, 698.2347

log √ 1.9164 0.9200 110.3114

ª 1.0048 0.2530 30.33293

Table 2: Values of b and b

ø for selected choices of ∆ corresponding to

the 1st, 2nd and 3rd quartile of the empirical distribution of ∆̂
ii

0 .

Parameter E
°
ø

°1

¢
E

°
æ

2

¢
E

°
ø

°1

¢
/E

°
æ

2

¢
E

≥°
øæ

2

¢°1

¥

µ 22.9470 0.1914 119.89 179.84

log √ 8.3785 0.0699 119.86 179.80

ª 1.9723 0.0164 120.26 179.84

µ 71.3340 0.5949 119.91 179.85

log √ 28.1000 0.2343 119.93 179.86

ª 7.1735 0.0598 119.96 179.79

µ 2, 349.1000 19.5935 119.89 179.85

log √ 55.1560 0.4600 119.90 179.86

ª 15.1660 0.1265 119.89 179.84

Table 3: Between-component variance
°
ø

°1

¢
and within-component

variance
°
æ

2

¢
, ratio of expected values and expected values of ratios

for selected choices of ∆ corresponding to the 1st, 2nd and 3rd quartile

of the empirical distribution of ∆̂
ii

0 .
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∆µ

1.2361 211111 211131 312121 321211 211311

[2,733]

(0.5466)

[689]

(0.1378)

[489]

(0.0978)

[99]

(0.0198)

[94]

(0.0188)

2.1794 211111 211131 312121 211311 321211

[3,258]

(0.6516)

[365]

(0.0730)

[261]

(0.0522)

[129]

(0.0258)

[99]

(0.0198)

12.5064 1111111 211111 211121 212111 111211

[3,765]

(0.7530)

[631]

(0.1262)

[51]

(0.0102)

[38]

(0.0076)

[33]

(0.0066)

Table 4: The five most frequent partitions º

µ in the posterior sample

ordered by number of visits for selected choices of ∆ corresponding to the

1st, 2nd and 3rd quartile of the empirical distribution of ∆̂
ii

0 . Number

of visits in squared brackets and posterior probability of visit in round

brackets.
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∆√

0.7469 211111 111111 212111 213111 212112

[1,517]

(0.3034)

[789]

(0.1578)

[619]

(0.1238)

[161]

(0.0322)

[111]

(0.0222)

1.3678 111111 211111 212111 212112 211112

[3,022]

(0.6044)

[673]

(0.1346)

[232]

(0.0464)

[83]

(0.0166)

[54]

(0.0108)

1.9164 111111 211111 212111 212112 121111

[4,272]

(0.8544)

[132]

(0.0264)

[72]

(0.0144)

[36]

(0.0072)

[33]

(0.0066)

Table 5: The five most frequent partitions º

√ in the posterior sample

ordered by number of visits for selected choices of ∆ corresponding to the

1st, 2nd and 3rd quartile of the empirical distribution of ∆̂
ii

0 . Number

of visits in squared brackets and posterior probability of visits in round

brackets.
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∆ª

0.3624 111111 111112 121111 112111 111211

[3,798]

(0.7596)

[100]

(0.0200)

[79]

(0.0158)

[72]

(0.0144)

[58]

(0.0116)

0.6911 111111 111112 121111 111121 112111

[4,209]

(0.8418)

[74]

(0.0148)

[72]

(0.0144)

[52]

(0.0104)

[51]

(0.0102)

1.0048 111111 111112 111211 121111 111121

[4,458]

(0.8916)

[45]

(0.0090)

[43]

(0.0086)

[37]

(0.0074)

[30]

(0.0060)

Table 6: The five most frequent partitions º

ª in the posterior sample

ordered by number of visits for selected choices of ∆ corresponding to the

1st, 2nd and 3rd quartile of the empirical distribution of ∆̂
ii

0 . Number

of visits in squared brackets and posterior probability of visits in round

brackets.
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Parameter
# of visited

partitions

# of visits and

post. prob.

Post. prob.

for the most

visited partitions

µ 50

1 visit 5 0.0010

< 10 visits 23 0.0164

∏ 10 visits 27 0.9836

5 most visited 0.8208

10 most visited 0.8908

log √ 155

1 visit 33 0.0066

< 10 visits 102 0.0664

∏ 10 visits 53 0.9336

5 most visited 0.6394

10 most visited 0.7060

ª 137

1 visit 41 0.0082

< 10 visits 106 0.0550

∏ 10 visits 31 0.9450

5 most visited 0.8214

10 most visited 0.8672

µ 56

1 visit 9 0.0018

< 10 visits 28 0.0164

∏ 10 visits 28 0.9836

5 most visited 0.8224

10 most visited 0.8978

log √ 138

1 visit 53 0.0106

< 10 visits 102 0.0494

∏ 10 visits 36 0.9506

5 most visited 0.8128

10 most visited 0.8538

ª 102

1 visit 32 0.0064

< 10 visits 76 0.0348

∏ 10 visits 26 0.9652

5 most visited 0.8916

10 most visited 0.9202

µ 81

1 visit 30 0.0060

< 10 visits 56 0.0304

∏ 10 visits 25 0.9696

5 most visited 0.9036

10 most visited 0.9282

log √ 89

1 visit 30 0.0060

< 10 visits 66 0.0294

∏ 10 visits 23 0.9706

5 most visited 0.9090

10 most visited 0.9350

ª 82

1 visit 33 0.0066

< 10 visits 63 0.0330

∏ 10 visits 19 0.9670

5 most visited 0.9226

10 most visited 0.9434

Table 7: Features of the posterior distribution of partition for selected

choices of ∆ corresponding to the 1st, 2nd and 3rd quartile of the em-

pirical distribution of ∆̂
ii

0 .

36



Parameter

p (k |y )

k = 1 k = 2 k = 3

k = 4 k = 5 k = 6

Proportion of

split/combine

moves accepted

µ

0 0.3580 0.2738

0.1844 0.1134 0.0704
0.0712

log √

0.1408 0.3780 0.2070

0.1252 0.0920 0.0570
0.1434

ª

0.6810 0.1736 0.0746

0.0396 0.0184 0.0128
0.1077

µ

0.0004 0.4334 0.2528

0.1508 0.0956 0.0670
0.1005

log √

0.5416 0.2390 0.1052

0.0562 0.0330 0.0250
0.1573

ª

0.7586 0.1438 0.0524

0.0244 0.0134 0.0134
0.1002

µ

0.6740 0.1912 0.0730

0.0334 0.0176 0.0108
0.1299

log √

0.7698 0.1404 0.0458

0.0236 0.0132 0.0072
0.1143

ª

0.8032 0.1258 0.0398

0.0184 0.0096 0.0032
0.0910

Table 8: Posterior distribution of the number of clusters k for selected

choices of ∆ corresponding to the 1st, 2nd and 3rd quartile of the empir-

ical distribution of ∆̂
ii

0 and proportion of split/combine moves accepted.
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1st quartile

µ

1

µ

2

µ

3

µ

4

µ

5

µ

6

Mean 12.7629

(2.3956)

1.7470

(0.8271)

2.3930

(0.8961)

1.6680

(0.8363)

3.0980

(0.7163)

1.8614

(0.7882)

Median 12.5365

(2.2915)

1.8457

(0.6415)

2.3398

(0.7164)

1.7791

(0.7034)

2.9952

(0.5911)

1.9278

(0.6741)

2.5 quantile

97.5 quantile

8.7595

18.1972

-0.1793

3.0913

0.7770

4.3144

-0.3295

3.0398

1.9742

4.8654

0.0811

3.2401

log √

1

log √

2

log √

3

log √

4

log √

5

log √

6

Mean 2.5063

(0.2411)

1.0196

(0.5077)

1.5517

(0.4964)

1.0240

(0.5022)

0.9482

(0.3493)

1.1634

(0.4533)

Median 2.4990

(0.2457)

1.0044

(0.4669)

1.5337

(0.5481)

1.0091

(0.4698)

0.9392

(0.3349)

1.1415

(0.4392)

2.5 quantile

97.5 quantile

2.0469

2.9969

0.0359

2.0963

0.6514

2.4821

0.0281

2.0625

0.2679

1.6608

0.3101

2.0625

ª

1

ª

2

ª

3

ª

4

ª

5

ª

6

Mean 0.8261

(0.1633)

0.8861

(0.2496)

0.8766

(0.2494)

0.8384

(0.2345)

0.8005

(0.2254)

0.7761

(0.2562)

Median 0.8182

(0.1632)

0.8619

(0.2073)

0.8486

(0.2052)

0.8227

(0.2043)

0.7951

(0.2045)

0.7852

(0.2150)

2.5 quantile

97.5 quantile

0.5396

1.6608

0.4989

2.0968

0.4905

1.1816

0.4298

1.4469

0.3630

1.4509

(0.2362

1.2507

Pr (ª > 1) 0.1400 0.2566 0.2456 0.2014 0.1728 0.1600

Table 9: Posterior means, (standard deviations), medians, (interquartile

ranges) and 95% credible intervals for the main parameters with control

parameter ∆ corresponding to the 1st quartile of the empirical distri-

bution of ∆̂
ii

0 . For the parameter ª the posterior probability (ª > 1) is

also provided.
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2nd quartile

µ

1

µ

2

µ

3

µ

4

µ

5

µ

6

Mean 13.3908

(2.6542)

1.6157

(0.9151)

2.4098

(0.9237)

1.4721

(0.9307)

3.2049

(0.6335)

1.7769

(0.8612)

Median 13.0841

(2.5107)

1.7346

(0.7090)

2.3699

(0.8184)

1.6025

(0.7409)

3.1381

(0.5492)

1.8261

(0.7256)

2.5 quantile

97.5 quantile

9.0633

19.5239

-0.4719

3.1270

0.7227

4.3616

-0.7800

3.0209

2.1618

4.6628

-0.1195

3.3240

log √

1

log √

2

log √

3

log √

4

log √

5

log √

6

Mean 2.5488

(0.2502)

1.0510

(0.5577)

1.5984

(0.4191)

1.0490

(0.5542)

0.9686

(0.3384)

1.2773

(0.4434)

Median 2.5387

(0.2483)

1.0727

(0.5638)

1.6101

(0.4158)

1.0750

(0.5362)

0.9769

(0.3275)

1.2920

(0.4427)

2.5 quantile

97.5 quantile

2.0912

3.0794

-0.0830

2.0622

0.7420

2.3720

-0.1098

2.0578

0.2697

1.6180

0.3566

2.1051

ª

1

ª

2

ª

3

ª

4

ª

5

ª

6

Mean 0.8184

(0.1682)

0.8979

(0.2857)

0.8895

(0.2594)

0.8428

(0.2778)

0.7739

(0.2677)

0.7190

(0.3034)

Median 0.8077

(0.1636)

0.8923

(0.2506)

0.8677

(0.2454)

0.8242

(0.2599)

0.7703

(0.2552)

0.7240

(0.2855)

2.5 quantile

97.5 quantile

0.5218

1.1737

0.4602

1.1737

0.4527

1.4537

0.3559

1.4290

0.2686

1.3157

0.0901

1.2904

Pr (ª > 1) 0.1436 0.3434 0.3018 0.2602 0.1934 0.1664

Table 10: Posterior means, (standard deviations), medians, (interquar-

tile ranges) and 95% credible intervals for the main parameters with

control parameter ∆ corresponding to the 2nd quartile of the empiri-

cal distribution of ∆̂
ii

0 . For the parameter ª the posterior probability

(ª > 1) is also provided.
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3rd quartile

µ

1

µ

2

µ

3

µ

4

µ

5

µ

6

Mean 12.0130

(2.5207)

0.8082

(1.5168)

2.9804

(1.4873)

0.3262

(1.6122)

3.7727

(0.7904)

1.2162

(1.3855)

Median 11.6591

(2.2322)

1.0653

(1.3013)

2.8963

(1.2717)

0.5957

(1.4573)

3.6718

(0.7438)

1.3477

(1.2272)

2.5 quantile

97.5 quantile

8.2074

18.0700

-2.7998

3.1544

0.0882

6.1935

-3.6202

2.7172

2.5047

5.5677

-2.0260

3.6067

log √

1

log √

2

log √

3

log √

4

log √

5

log √

6

Mean 2.4277

(0.2441)

1.1594

(0.5561)

1.7710

(0.4042)

1.1972

(0.5246)

1.1685

(0.3395)

1.3894

(0.4339)

Median 2.4098

(0.2383)

1.1845

(0.5201)

1.7758

(0.3966)

1.2206

(0.5078)

1.1821

(0.3339)

1.4001

(0.4257)

2.5 quantile

97.5 quantile

1.9934

2.9561

-0.0155

2.1773

0.9483

2.5495

0.0975

2.1585

0.4788

1.8134

0.5064

2.1888

ª

1

ª

2

ª

3

ª

4

ª

5

ª

6

Mean 0.8114

(0.1651)

0.9013

(0.3045)

0.8665

(0.2795)

0.7739

(0.3054)

0.7139

(0.3079)

0.5940

(0.3429)

Median 0.7981

(0.1627)

0.8726

(0.2785)

0.8450

(0.2725)

0.7533

(0.3015)

0.7039

(0.3075)

0.5963

(0.3324)

2.5 quantile

97.5 quantile

0.5251

1.1736

0.4088

1.6009

0.3736

1.4748

0.2455

1.4156

0.1640

1.3366

-0.0844

1.2594

Pr (ª > 1) 0.1314 0.3260 0.2968 0.2184 0.1714 0.1146

Table 11: Posterior means, (standard deviations), medians, (interquar-

tile ranges) and 95% credible intervals for the main parameters with

control parameter ∆ corresponding to the 3rd quartile of the empiri-

cal distribution of ∆̂
ii

0 . For the parameter ª the posterior probability

(ª > 1) is also provided.

40



Dipartimento di economia politica e metodi quantitativi 
Università degli studi di Pavia 

 
List of the lately published Technical Reports  
(available at the web site: "http://economia.unipv.it/Eco-Pol/quaderni.htm"). 
 

Quaderni di Dipartimento 
 # Date  Author(s)     Title 
129 02-01  A.Lijoi    Approximating priors by finite mixtures of 

conjugate distributions for and 
exponential family 

130 02-01  R.Lucchetti   Artificial Regression Testing in the 
E.Rossi   GARCH-in-mean model 

131 02-01  D.Sonedda   Employment Effects of Progressive Taxation 
in a Unionised Economy 

132 04-01  P.L.Conti   A Bayesian approach to the analysis of  
A.Lijoi    telecommunications systems performance 

   F. Ruggeri 
133 04-01  C. Bianchi    A Reappraisal of Verdoon’s Law for the 

Italian Economy: 1951-1997 
134 09-01  A.Roverato   Compatible Prior Distributions for DAG 

G.Consonni   Models 
135 11-01  D.Sonedda   On the dynamics of unemployment and 

labour tax progression 
136 11-01  F.Chelli L.Rosti  Gender Discrimination, Entrepreneurial 

Talent and Self-Employment in Italy ‘If you 
think you’re so discriminated against, why 
don’t you set up on your own?’ 

137 12-01  L. E. Nieto-Barajas  Normalized Random Measures driven by  
I. Pruenster   Increasing Additive Processes 
S.G. Walker 

138 02-02  A.Lijoi    Means of a Dirichlet process 
E.Regazzini   and multiple hypergeometric functions 

139 02-02  M.Maggi   Immunization in an affine term structure 
framework 

140 02-02  F.Menoncin   Optimal Portfolio With Bechmark for Fund 
Managers 

141 04-02  M.Balconi   Il trasferimento di conoscenze tecnologiche 
S.Breschi    dall’università all’industria in Italia: 
F.Lissoni nuova evidenza sui brevetti di paternità dei 

docenti 
142 04-02  M.Balconi   Ivory Tower vs Spanning University: 

S.Borghini   il caso dell’Università di Pavia 
   A.Moisello 
    
    


