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Chapter 3:Linear Models of Financial

Returns.

1. Econometric Modelling of Financial Returns: a general framework

Financial data are mostly observational data: they are not generated by well-designed

experiment to test hypothesis, they are given to the econometrician. These data can be

used to construct non-causal predictive models and to evaluate treatment effects. The

second exercise involves a deeper understanding of causation while the implementation of

non-causal predictive modelling requires understanding conditional expectations. Econo-

metric models of financial returns specify the distribution of a vector of variables y

conditional upon other variables zthat are helpful in predicting them. The mapping be-

tween y and z is determined by some functional relation and some unknown parameters.

All the relevant variables are stochastic and they are therefore characterized by a density

function. Linear Econometric Models specify conditional means of the y as linear func-

tions of the z . Think, for example, of the typical estimated equation derived from the

Capital Asset Pricing Model1:

³
 − 




´
= 0 + 1

³
 − 




´
+  (1)

 ∼ 
¡
0 2

¢
The theoretical model predicts that the excess return on each risky asset on the risk-

free asset is a linear function of the excess return of the market portfolio on the riskfree

asset, the linear relationship has a slope equal to  and a intercept equal to zero. The

excess returns of assets are determined by their exposure to a single common risk factor

1A more extensive discussion of the CAPM and its derivation will be provided in the next chapter.

Note that strictly speacking the validity of the CAPM requires  = 0



(captured by the excess returns on the market portfolio) and an hydiosincratic risk factor

which is captured by a noise term with zero mean and a constant (in time but not across

different assets) variance 2  The CAPM is a specific case of linear multivariate model

that relates the vector of excess returns to a single regressor, the market excess returns.

The linear model feature some restrictions on the parameters, i.e. the intercept is zero.

In the special case in which only one asset is considered, the CAPM delivers a univariate

regression model.

Technically the CAPM asset pricing regression is a special case of a specification of

the conditional density of a vector of variables y The conditioning is upon a vector of

regressors z an information set available at time  − 1 that contains past observations
of regressors and dependent variables Y−1Z−1 and a set of parameters β1 :

 (y | zY−1Z−1β1)

1.1. The reduction process

This conditional density is best interpreted as the outcome of a reduction process that

allows a simplified representation of reality. Of course such a simplified representation

omits an enormous amount of information. The validity of the model adopted is crucially

affected by the importance of the omitted information in determining the density of

yTo understand the reduction process partiton the set of all variables into three types

of variables:

x = (wy z) 

w identifies variables which are ignored in the specification of the econometric model.

Their exclusion might be motivated by a number of reasons, they could be unobservable

or irrelevant to the problem investigated according to the specific theory that inspires the

specification adopted by the econometrician. In practice these variables are ignored, in

theory such a result is obtained by factorizing the joint density and integrating it with

respect to wIn formal terms, we have no information loss only if

 (y z | Y−1Z−1β) =  (y zw | Y−1Z−1W−1θ) 

This is the statistical description of the model considered by the econometrician, this

is technically called i.e. the reduced form of the structure of interest. In general this

reduced form is a more general model than the one estimated. It is constructed by

parameterizing  (y z | Y−1Z−1β) and by deriving a vector of innovations from the
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difference between the vector of observed variables and the vector of their means. In the

case of the CAPM the specification of the reduced form is the following one:

³
 − 




´
=  +  +  (2)³

 − 

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´
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



!
∼ 
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0

0

!


Ã
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 
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The reduced form is the description of the data used (often implicitly) by the econo-

metrician. This description of the data omits a lot of information, it is very important

to make sure that no loss of relevant information occurs when concentrating on such a

simplified statistical model. Visual inspection of the data is a very important first step in

this direction, further insight can be gained by analyzing the residuals of the specification

and by making sure that they do indeed possess the properties that the econometrician

attributes to them. In the case of our model we can see that the maintained assumption

behind its specification is the so called constant expected (excess) returns model: excess

returns fluctuate randomly around a constant and no variables helps in predicting them.

Visual inspection of the relevant time series (which are both the dependent variables and

the regressors in the CAPM) and statistical analysis of the residuals (which in the case

at hand are the de-meaned variables) should be implemented to validate the statistical

model before working with it.

1.2. Exogeneity and Identification

Unfortunately reduced forms and their validation are not the common first stage of the

analysis as researchers tend to estimate directly a structure consistent with the theoretical

model of interest.As a matter of fact in the case of CAPM the equation that it is estimated

is (1)  which does not describe  (y z | Y−1Z−1β) but  (y | zY−1Z−1β1)  In

this case the relevant problem to the researcher is inference on a subset β1 of the para-

meters β determining the conditional density of y given z The intereresting question

here is about the possible loss of information in concentrating on  (y | zY−1Z−1β1)

rather than on  (y z | Y−1Z−1β) 

Note that in general it is always possible to re-write (y z | Y−1Z−1β) as follows:

 (y z | Y−1Z−1β) (3)

=  (y | zY−1Z−1β1β2) (z | Y−1Z−1β1β2) 

3



The general case admits as a specific case the existence of a ‘sequential cut’, which we

represent as follows:

 (y z | Y−1Z−1β) (4)

=  (y | zY−1Z−1β1) (z | Y−1Z−1β2) 

If the sequential cut is admissible and if the set on which the parameters β1are defined

is totally independent from the set on which the parameters β2 are defined (β1 and β2

are variation free) then inference on β1can be performed by concentrating only on the

conditional density for y, without explicitly treating the marginal density for zIn this

case we say that

z is weakly exogenous for the estimation of the parameters of interest β1Let us go

back to our CAPM example, what does weak exogeneity mean ? The estimated CAPM

equation implies that


³³

 − 



´
|
³
 − 




´
Y−1Z−1 

´
=  + 

³
 − 




´
(5)

Consider now the full system (1)  weak exogeneity is satisfied if the conditional mean

of
³
 − 




´
derived by considering the full system coincides with (5)  To derive the

conditional mean from the full system consider the following theorem:

Theorem 1 For any x ∼ N (μΣ), given any (×) B matrix and any (×1) vector,
d, if y = Bx+ d, this implies y ∼ N (Bμ+ dBΣB0).

Consider a partitioning of an -variate normal vector in two sub-vectors of dimensions

1 and − 1: Ã
x1

x2

!
∼ N

ÃÃ
μ1

μ2

!
,

Ã
Σ11 Σ12

Σ21 Σ22

!!
.

we then have:

1. x1 ∼ N (μ1Σ11);

2. (x1 | x2) ∼ N
¡
μ1 + Σ12Σ

−1
22 (x2−μ2) Σ11 −Σ12Σ

−1
22 Σ21

¢
,

By applying 2. to (1) we have:


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µ
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so weak exogeneity requires  = 0 In the case weak exogeneity is note satisfied the

data will deliver estimated parameters that reflect the full system, so the estimated slope

of the CAPM will be the more distant from  the higher the absolute value of 

The interpretation of this condition is pretty simple: weak exogeneity is satisfied in

the market excess returns do not respond to idiosyncratic shocks to the excess returns

to asset i. To put it in different words, if the weak exogeneity condition is satisfied,

then the structural model that is compatible with the reduced form system is unique.

In this case we say that the structural model of interest is identified. Identification is

a crucial condition for the validity of the interpretation of the estimated parameters. If

a model is not identified its estimation is pointless. Weak exogeneity is a condition for

identification and for validity of estimation. However estimation of parameters is not the

only interesting econometrics exercise, after estimation of a model we might be interest

in simulating it to produce forecasts or to assess the impact of shocks on the variables

included in the model. The validity of a model for the purpose of simulation and for

the evaluation of treatment effects requires a different condition from weak exogeneity:

strong exogeneity. We have strong exogeneity when the joint density can be factorized as

follows:

 (y z | Y−1Z−1β) (6)

=  (y | zY−1Z−1β1) (z | Z−1β2) 

In this case the there is no feedback from the past history of yon z and the conditional

model can be validly simulated.

To sum up2

1. if the objective of the analysis is inference on the β1 parameters, then the joint

density can be reduced to a conditional model if z is weakly exogenous for the

estimation of the parameters of interest;

2. if the objective of the analysis is dynamic simulation, then the joint density can be

reduced to a conditional model if z satisfies the conditions for strong exogeneity;

2for an extensive discussion of exogeneity see Engle, Hendry (1996)
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2. From theory to data: the CAPM

Estimation of parameters in the CAPM equation is important and can be useful for

many purposes. Do you want to evaluate fund managers ? Estimate the parameters

in the CAPM equations for the excess returns of the fund they manage and look at

their alphas (Jensen(1968)). In fact, Jensen’s alpha are useful also to test the CAPM

model because the theory predicts that they should all be zero. Estimating parame-

ters in the CAPM could also be useful to practitioners for estimating the cost of equity.

To illustrate how the CAPM can be put at work we will consider time series data of

monthly observations of different portfolios made available by Ken French from his web-

site: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.

The data are available in EXCEL format in the file FF Data CH3.xls. This files

combines 3 data files from the website to make available monthly observation on 30 time

series from July 1927 onward.

The first four time series come from the file Fama-French factors that contains,

EXRET MKT, Rf, SMB, and HML.

The excess return on the market, value-weight return of all CRSP firms incorporated

in the US and listed on the NYSE, AMEX, or NASDAQ that have a CRSP share code

of 10 or 11 at the beginning of month t, good shares and price data at the beginning

of t, and good return data for t minus the one-month Treasury bill rate (from Ibbotson

Associates).

The Fama/French factors are constructed using the 6 value-weighted portfolios formed

6



on size and book-to-market.

SMB (Small Minus Big) is the average return on the three small portfolios minus the

average return on the three big portfolios,

 = 13( ++)−13( ++

HML (High Minus Low) is the average return on the two value portfolios minus the

average return on the two growth portfolios,

 = 12( + )− 12(+)

The fifth time series is the momentum factor, MOM, tha comes from the file Momen-

tum factor. It contains a momentum factor, constructed from six value-weight portfolios

formed using independent sorts on size and prior return of NYSE, AMEX, and NASDAQ

stocks. MOM is the average of the returns on two (big and small) high prior return port-

folios minus the average of the returns on two low prior return portfolios. The portfolios

are constructed monthly. Big means a firm is above the median market cap on the NYSE

at the end of the previous month; small firms are below the median NYSE market cap.

Prior return is measured from month -12 to - 2. Firms in the low prior return portfolio are

below the 30th NYSE percentile. Those in the high portfolio are above the 70th NYSE

percentile.

The last 25 time series come from the file 25 portfolios 5x5. This file contains value-

and equal-weighted returns for the intersections of 5 ME portfolios and 5 BE/ME port-

folios. The 25 time series we consider are to equal weighted returns.

The portfolios are constructed at the end of Jun. ME is market cap at the end of

Jun. BE/ME is book equity at the last fiscal year end of the prior calendar year divided

by ME as of 6 months before formation. Firms with negative BE are not included in

any portfolio. PR11 are the returns on the portfolio made with the smallest firm and the

lowest book equity, PR12 are the returns on the portfolio made with the smallest firm

and the second lower book to equity and so on until PR55, which are the returns on the

portfolio of the largest firms with the highest book to equity.

7



3. Graphical and Descriptive Data Analysis

Before doing any econometrics make sure that you know your data and you know them

well. Descriptive statistics are helpful but the the best way to know your data is to apply

graphical analysis. If you are interested in running CAPM regressions a good point to

start is the time-series plots of the returns you are interested into. We know that the

CAPM is consistent with a Constant Expected Returns view of the world. So the first

feature that returns (and excess returns) should show is that they fluctuate randomly

around a constant. Time-series plot are univariate graphs in which only one variable at

the time is considered. Further information gain be gained by multivariate graphs in

which multiple variables are put together in a graph. Here the obvious graph would be a

cross-plot, also called scatter-plot, of the excess returns on asset i and the excess return

on the market portfolio. In case the CAPM is applied to many returns a scatter-plot

matrix, that contains the set of all possible bivariate scatter-plots, could be an interesting

and informative way of summarizing the data.

To illustrate how Graphical Data Analysis can be implemented consider the case of

the application of the CAPM to two of the FF portfolios:PR15 and PR51. These are

respectively the portfolios made by the smallest firms with the highest book-to-market

and b the largest firm with the lowest book to market. We begin by plotting the excess

returns on the risk free fromthese two portofolios and from the market portfolio over a

sample of monthly data from 1962 to 2014:
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Figure 1
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Figure 1 illustrates several interesting features of graphical analysis. First, the eyes

are informative, excess returns are visually fluctuating randomly around a constant illus-

trating that the CER model good consistent with the CAPM, could be a good description

of the data. Second, the eyes could be deceptive, no strong systematic pattern of differ-

ence between the excess returns considered seems to emerge from the Figure. Consider

now looking at the same data from a different angle: invest one euro at the beginning of

the period and track the over time the value of the one euro invested respectively in the

market portfolio in portfolio 15, in portfolio 51 and in the risk-free. Figure 2 illustrates

that portfolio 15 strongly dominates the other in terms of total returns and that small

differences in returns can turn out into huge differences in cumulative total returns.
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Figure 2

As a last first look at the data let us aggregate monthly returns into annual and have

a look at them

Figure 3 reports annual and monthly returns on the market portfolio oserved at

monthly frequencies:
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Apparently the CER model does much worse when applied to annual returns as they

show a much stronger degree of persistence. Before rushing to conclusions it is important

to keep in many that such persistence is directly caused by time-aggregation. To illustrate

the point consider the case in which log monthly returns are correctly described by the

CER model

 =  + 

 ∼ 
¡
0 2

¢
by definition annual log-returns are constructed as

+12 =

11X
=0

+ = 12 +

11X
=0

+

and autocorrelation up to the eleventh lag (with decreasing size) is automatically

generated by the construction of returns. Consider now ”decimated” annual returns

when after construction of the series by aggregation of monthly returns we consider one

observation per year (i.e. we consider observation separated by 12 months), the pattern

of random fluctuations around a constant seem to re-emerge again in Figure 4
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4. Estimation Problem: Ordinary Least Squares

To illustrate how estimation can be performed to derive conditional expectations , consider

the following general representation of the model of interest:

y = Xβ + ²

y =

⎛⎜⎜⎜⎜⎜⎜⎝
1









⎞⎟⎟⎟⎟⎟⎟⎠ , X =

⎛⎜⎜⎜⎜⎜⎜⎝
11 12   1

    

    

    

1 2   

⎞⎟⎟⎟⎟⎟⎟⎠ ,

β =

⎛⎜⎜⎜⎜⎜⎜⎝
1









⎞⎟⎟⎟⎟⎟⎟⎠ , ² =

⎛⎜⎜⎜⎜⎜⎜⎝
1









⎞⎟⎟⎟⎟⎟⎟⎠ .

The vector y contains  observations on the dependent variable, while matrix X

()contains N observations on the K regressor. In the case of our data set we have

observations on monthly returns from 1927 to 2013 and the estimation of the CAPM for

each portfolio included in the data-set implies filling y with the observation on the relevant
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portfolio and filling X (2) with a first column made of ones and a second column

containing the observations on the market portfolio. The vector β contains therefore

two parameters to be estimated : a constant and the loading on the the uniuq factor

considered as a potential determnant of excess returns.

The simplest way to derive estimates of the parameters of interest is the ordinary

least squares (OLS) method. Such a method chooses values for the unknown parameters

to minimize the magnitude of the non-observable components. In our simple bivariate

case this amount to choosing a line that goes through the scatterplot of excess returns on

each asset on the market excess returns such that it provides the best fit. The best fit

is obtained by minimizing the sum of squared vertical deviations of the data points from

the fitted line. Define the following quantity:

e (β) = y−Xβ

where e (β) is a (× 1) vector. If we treat Xβ, as a (conditional) prediction for y, then
we can consider e (β) as a forecasting error. The sum of the squared errors is then

S (β) = e (β)
0
e (β) .

The OLS method produces an estimator of β, bβ defined as follows:
S
³bβ´ = min


e (β)

0
e (β) 

Given bβ we can define an associated vector of residual b as b = y −Xbβ The OLS
estimator is derived by considering the necessary and sufficient conditions for bβ to be a
unique minimum for S:

1. X0b = 0;
2. rank(X) = 

Condition 1 imposes orthogonality between the right-hand side variables on the OLS

residuals, and ensures that residuals have an average of zero when a constant is included

among the regressors. Condition 2 requires that the columns of the X matrix are linearly

independent: no variable in X can be expressed as a linear combination of the other

variables in X

From 1 we derive an expression for the OLS estimates:

X0b = X0
³
y−Xbβ´ = X0y−X0Xbβ = 0bβ = (X0X)−1X0y

12



4.1. Properties of the OLS estimates

We have derived the OLS estimator without any assumption on the statistical structure of

the data. However, the statistical structure of the data is needed to define the properties

of the estimator. To illustrate them, we refer to the basic concepts of mean and variance

of vector variables.

Given a generic vector of variables, x

x =

⎛⎜⎜⎜⎜⎜⎜⎝
1









⎞⎟⎟⎟⎟⎟⎟⎠ ,

we define the mean vector  (x) and the mean matrix of outer products  (xx0) as:

 (x) =

⎛⎜⎜⎜⎜⎜⎜⎝
 (1)







 ()

⎞⎟⎟⎟⎟⎟⎟⎠ ,

 (xx0) = 

⎛⎜⎜⎜⎜⎜⎜⎝
21 12   1

 22   2

    

    

1 2   2

⎞⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎝
 (21)  (12)    (1)

  (22)    (2)

    

    

 (1)  (2)    (2)

⎞⎟⎟⎟⎟⎟⎟⎠ .

The variance-covariance matrix of x is the defined as:

 (x) =  (x− (x)) (x− (x))0

=  (xx0)− (x) (x)
0
.

Note that the variance-covariance matrix is symmetric and positive definite, by con-

struction. Given an arbitrary A vector of dimension , we have:

 (A0x) = A0 (x)A.
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The first relevant hypothesis for the derivation of the statistical properties of OLS

regards the relationship between disturbances and regressors in the estimated equation.

This hypothesis is constructed in two parts: first we assume that  (y | x) = x0β

ruling out the contemporaneous correlation between residuals and regressors (note that

assuming the validity of this hypothesis implies that there are no omitted variables corre-

lated with the regressors), second we assume that the components of the available sample

are independently drawn. The second assumption guarantees the equivalence between

 (y | x) = x0β and  (y | x1 x x) = x0β Using vector notation, we have:

 (y | X) = Xβ

which is equivalent to

 (² | X) = 0 (7)

Note that hypothesis (7) is very demanding. It implies that

 (² | x1 x x) = 0 ( = 1 ) .

The conditional mean is, in general, a non-linear function of (x1 x x) and

(7) requires that such a function is a constant of zero. Note that (7) requires that each

regressor is orthogonal not only to the error term associated with the same observation

( () = 0 for all ), but also to the error tem associated with each other observa-

tion ( () = 0 for all  6= ). This statement is proved by using the properties of

conditional expectations.

Since  (² | X) = 0 implies, from the law of iterated expectations, that  (²) = 0 we
have

 ( | ) =  [ ( | x) | ] = 0 (8)

Then

 () =  [ ( | )] (9)

=  [ ( | )] (10)

= 0 (11)

Such a hypothesis is clearly false in any time-series model when the time-series shows

some degree of persistence. If the CER model is valid such property is satisfied by the

CAPM regressors as the CER implies that no variable should help in predicting returns,

including their past history. The graphic analysis conducted prior to regression can also
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be informative on this issue by providingsome visual evidence on the persistence of the

variable entering the relevant empirical model. This property, satified by monthly returns,

is rarely satisfied when considering macro and financial time-series. Think of a simplest

time-series model for a generic variable :

 = 0 + 1−1 + 

Clearly, if 1 6= 0 then,  (−1 | −1) 6= 0 although it is still true that  ( | −1) =
0 and (7) breaks down, without any omitted variable problem.

This is why we use a monthle returns in this introductory chapter. We shall complicate

the framework to deal properly with time-series observations in the next chapters.

The second hypothesis defines the constancy of the conditional variance of shocks:

 (²0² | X) = 2 (12)

where 2 is a constant independent from X In the case of our data, this is a strong

assumption unlikely to be met in practice. Model of time-varying volatility are of crucial

importnace in finance and we shall reconsider this issue at a later stage of the book.

The third hypothesis is the one already introduced, which guarantees that the OLS

estimator can be derived:

 (X) =  (13)

Under hypotheses (7)− (13) we can derive the properties of the OLS estimator.
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Property 1: unbiasedness

The conditional expectation (with respect to X) of the OLS estimates is the vector of

unknown parameters β:

bβ = (X0X)−1X0 (Xβ + ²)

= β+(X0X)−1X0²


³bβ | X´ = β+(X0X)−1X0 (² | X)

= β

by hypothesis (7).

Property 2: variance of OLS

The conditional variance of the OLS estimator is 2 (X0X)−1:


³bβ | X´ = 

µ³bβ − β´³bβ − β´0 | X¶
= 

³
(X0X)−1X0²²0X (X0X)−1 | X

´
= (X0X)−1X0 (²²0 | X)X (X0X)−1

= (X0X)−1X02X (X0X)−1

= 2 (X0X)−1 .

Property 3: Gauss-Markov theorem

The OLS estimator is the most efficient in the class of linear unbiased estimators.

Consider the class of linear estimators:

β = Ly

This class is defined by the set of matrices ( × ) L which are fixed when conditioning

upon X. L does not depend on y Therefore we have:

 (β | X) =  (LXβ + Lε | X)
= LXβ

and LXβ = β only if LX = I Such a condition is obviously satisfied by the OLS estima-

tor, which is obtained by setting L =(X0X)−1X0 The variance of the general estimator

in the class of linear unbiased estimators is readily obtained as:

 (β | X) =  (Lεε0L0 | X)
= 2LL0
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To show that the OLS estimator is the most efficient within this class we have to show

that the variance of the OLS estimator differs from the variance of the generic estimator

in the class by a positive semidefinite matrix.

To this aim define D = L− (X0X)−1X0; LX = I requires DX = 0

LL0 =
³
(X0X)−1X0 +D

´³
X (X0X)−1 +D0

´
= (X0X)−1X0X (X0X)−1 + (X0X)−1X0D0 +

+DX (X0X)−1 +DD0

= (X0X)−1 +DD0

from which we have that

 (β | X) = 
³bβ | X´+ 2DD0

which proves the point. For any given matrix D (not necessarily square), the symmetric

matrix DD0 is positive semidefinite.

4.2. Residual Analysis

Consider the following representation:

b² = y−Xb
= y−X (X0X)−1X0y =My

where M = I−Q and Q = X (X0X)−1X0 The ( × ) matrices M and Q, have the

following properties:

1. they are symmetric: M0=MQ0= Q;

2. they are idempotent: QQ = QMM =M;

3. MX = 0MQ = 0QX = X

Note that the OLS projection for y can be written as by = Xbβ = Qy and thatb² =My from which we have the known result of orthogonality between the OLS residuals
and regressors. We also have My =MXβ +M² =M² given that MX = 0 Therefore

we have a very well-specified relation between the OLS residuals and the errors in the

model b² = M², which cannot be used to derive the errors given the residuals, since the
M matrix is not invertible.
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We can re-write the sum of squared residuals as:


³bβ´ = b²0b² = ²0M0M² = ²0M²


³bβ´ is an obvious candidate for the construction of an estimate for 2 To derive

an estimate of 2 from 
³bβ´, we introduce the concept of trace. The trace of a square

matrix is the sum of all elements on its principal diagonal. The following properties are

relevant:

1. given any two square matrices A and B  (A+B) = A+ B;

2. given any two matrices A and B  (AB) =  (BA) ;

3. the rank of an idempotent matrix is equal to its trace.

Using property 2 together with the fact that a scalar coincides with its trace, we have:

²0M² = (²0M²) =  (M²²0) 

Now we analyse the expected value of 
³bβ´, conditional upon X:


³

³bβ´ | X´ =  (M²²0 | X)

=  (M²²0 | X)
= M (²²0 | X)
= 2M

From properties 1 and 2 we have:

M = I−
³
X (X0X)−1X0

´
= − 

³
X0X (X0X)−1

´
= − 

Therefore, an unbiased estimate of 2 is given by 2 = 
³bβ´  (− ).

Using the result of orthogonality between the OLS projections and residuals, we can

write:

 (y) =  (by) +  (b²) ,
from which we can derive the following residual-based indicator of the goodness of fit:

2 =
 (by)
 (y)

= 1−  (b²)
 (y)


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The information contained in 2 is associated with the information contained in the

standard error of the regression, which is the square root of the estimated variance of

OLS residuals.

Note that, when a model is estimated in logarithms, residuals and, consequently, the

standard error of the regression do not depend on the unit of measure in which the

variables are expressed. In fact, we have:

b² = log (y)− log (by)
= log

µ
yby
¶
= log

µ
1 +

y− byby
¶
' y− byby 

When the model is not specified in logarithms, standard errors are usually intepreted

by dividing them by the mean of the dependent variable.

5. Interpreting Regression Results

Interpreting regression results is not a simple exercise. We propose to split these procedure

in three steps.

First, introduce a measure of sampling variability and evaluate again what you know

taking into account that parameters are estimated and there is uncertainty surrounding

your point estimates.

Second, understand the relevance of our regression independently from inference on

the parameters. There is an easy way to do this: suppose all parameters in the model are

known and identical to the estimated values and learn how to read these.

Third, remember that each regression is run after a reduction process has been, ex-

plicitly or implicitly implemented. The relevant question is what happens if something

went wrong in the reduction process? What are the consequences of omitting relevant

information or of including irrelevant one in your specification?

5.1. Statistical Significance and Relevance

Relevance of a regression is different form statistical significance of the estimated para-

meters. In fact, confusing statistical significance of the estimated parameter describing

the effect of a regressor on the dependent variable with practical relevance of that effect

is a rather common mistake in the use of the linear model. Statistical inference is a tool

for estimating parameters in a probability model and assessing the amount of sampling

variability. Statistics gives us indication on what we can say about the values of the

parameters in the model on the basis of our sample.
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The relevance of a regression is determined by the share of the unconditional variance

of y that is explained by the variance of  (y | X). Measuring how large is the share of
the unconditional variance of y explained by the regression function is the fundamental

role of 2.

To undertand the point here is an illustration of how statistical significance of coeffi-

cient in a CAPM model and the relevance of market excess returns in explaining a specific

assets’excess returns are evaluated.

Evaluating the statistical significance of coefficients in an estimated CAPM models

involves the following steps. First, estimate the coefficients in a CAPM regression.

Second, suppose the null hypothesis is true and compute  as be the probability (under

that hypothesis) of getting results as extreme as those observed.  is called the p-value.

If it is very small the results are statistically significance in the sense that the null is

rejected as the probability of observing what you have observed under the null is small.

Note that the p-value can be computed in two ways: i) by deriving the distribution of

the relevant statistics under the null ii) by simulating via Monte-Carlo or bootstrap the

relevant distribution under the null.

Evaluating the relevance of CAPM coefficients is a different exercise that involves the

following steps. First, estimate the coefficients in a CAPM regression and keep them fixed

at their point estimates, second run an experiment by changing the conditional mean via

a shock to the regressor(s), third assess how relevant is the shock in excess market returns

to determine excess returns on asset i.

6. Inference in the Linear Regression Model

Users of econometric models in finance attributes high priority to the concept of ”statis-

tical significance” of their estimates. In the standard statistical jargon an estimate of a

parameter is “statistical significant” if its estimated value, compared with its sampling

standard deviation makes it unlikely that in other samples the estimate may change of

sign. In the linear regression model the statistical index mostly used is the t-ratio and

an estimated parameter has a significance which is usually measured in terms of its P-

value, the probability with which that coefficient is equal to zero. When joint hypothesis

on more than one coefficients are of interest different distribution from the t have to be

considered. In this section we illustrate the basic principles that allow us to evaluate sta-

tistical significance and to perform test of relevant hypothesis on the estimated coefficient

in a linear model. We shall consider how to test hypothesis on all estimated coefficients,
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and on subsets of estimated coefficients.

6.1. Elements of distribution theory

We consider the distribution of a generic -dimensional vector z together with the derived

distribution of the vector x =  (z) which admits the inverse z =  (x), with  = −1 If

 (1    2) =
R 2
1

 ()  and  (1    2) =
R 2
1

∗ ()  then:

∗ () =  ( ()) 

where  =

¯̄̄̄
¯̄̄ 1

1
 

1

  
1


 


¯̄̄̄
¯̄̄ = ¯̄ hx0 ¯̄.

6.1.1. The normal distribution

The standardized normal univariate has the following distribution:

 () =
1√
2
exp

µ
−1
2
2
¶
,

 () = 0  () = 1

By considering the transformation  =  + , we derive the distribution of the

univariate normal as:

 () =
1


√
2
exp

Ã
−(− )

2

22

!
,

 () =   () = 2

Consider now the vector z = (1 2 )  such that

 (z) =

Y
=1

 () = (2)
−
2 exp

µ
−1
2
z0z

¶
.

z is, by construction, a vector of normal independent variables with zero mean and

identity variance covariance matrix. The conventional notation is z ∼ N (0 ).
Consider now the linear transformation,

x = Az+ μ

where A is an (× ) invertible matrix. We consider the following transformation

z = A−1 (x− μ) with Jacobian  = |A−1| = 1
|A|  By applying the formula for the

transformation of variables, we have:

 (x) = (2)
−
2

¯̄
A−1

¯̄
exp

µ
−1
2
(x−μ)0A−10A−1 (x−μ)

¶
,

21



which, by defining the positive definite matrix Σ = AA0 equals

 (x) = (2)
−
2

¯̄̄
Σ−

1
2

¯̄̄
exp

µ
−1
2
(x−μ)0Σ−1 (x−μ)

¶
. (14)

The conventional notation for the multivariate normal is x ∼ N (μΣ). The formula
of the trasnformation of variable allows us to better understand the theorem introduced

in a previous section of this chapter. 

Theorem 2 For any x ∼ N (μΣ), given any (×) B matrix and any (×1) vector,
d, if y = Bx+ d, this implies y ∼ N (Bμ+ dBΣB0).

Consider a partitioning of an -variate normal vector in two sub-vectors of dimensions

1 and − 1: Ã
x1

x2

!
∼ N

ÃÃ
μ1

μ2

!
,

Ã
Σ11 Σ12

Σ21 Σ22

!!
.

By applying the formula for the transofrmation of variables, we obtain two results:

1. x1 ∼ N (μ1Σ11), which follows from applying the general formula in the case d = 0,

B =(1 0);

2. (x1 | x2) ∼ N
¡
μ1 + Σ12Σ

−1
22 (x2−μ2) Σ11 −Σ12Σ

−1
22 Σ21

¢
, which is obtained by ap-

plying the general formula to the case d = Σ12Σ
−1
22 x2B =

¡
1 − Σ12Σ

−1
22

¢


Result 2 shows clearly that the absence of correlation is equivalent to independence

within the framework of a multivariate normal. This result is justified by the fact that

the normal distribution is entirely described by its first two moments.

6.1.2. Distributions derived from the normal

Consider z ∼ N (0 ), an -variate standard normal. The distribution of ω = z0z is

defined as a 2 () distribution with  degrees of freedom. Consider two vectors z1 and

z2 of dimensions 1 and 2 respectively, with the following distribution:Ã
z1

z2

!
∼ N

ÃÃ
0

0

!


Ã
1 0

0 2

!!
.

We have ω1 = z01z1 ∼ 2 (1), ω2 = z02z2 ∼ 2 (2), and ω1 + ω2 = z01z1 + z
0
2z2 ∼

2 (1 + 2). In general, the sum of two independent 2 () distributions is in itself

distributed as 2 with a number of degrees of freedom equal to the sum of the degrees of

freedom of the two 2.
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Our discussion of the multivariate normal concludes that if x ∼ N (μΣ), then (x−μ)0Σ−1 (x−μ)
2 ().

A related result establishes that if z ∼ N (0 ) and M is a symmetric idempotent

(× ) matrix of rank , then z0Mz ∼ 2 ().

Another distribution related to the normal is the  -distribution. The  -distribution is

obtained as the ratio of two independent 2 divided by the respective degrees of freedom.

Given ω1 ∼ 2 (1), and ω2 ∼ 2 (2), we have:

ω11

ω22
∼  (1 2) .

The Student’s −distribution is then defined as:

 =
p
 (1 )

Another useful result establishes that two quadratic forms in the standard multivariate

normal, z0Mz and z0Qz are independent if MQ = 0 We can finally state the following

theorem, which is fundamental to the statistical inference in the linear model:

Theorem 3 If z ∼ N (0 ), M and Q are symmetric and idempotent matrices of ranks

r and s respectively and MQ = 0 then z0Qz
z0Mz



∼ F ( ).

6.1.3. The conditional distribution  | X

To perform inference in the linear regression model, we need a further hypothesis to

specify the distribution of y conditional upon X:

 | X ∼ N ¡Xβ 2¢ , (15)

or, equivalently

 | X ∼ N ¡0 2¢ . (16)

Given (15) we can immediately derive the distribution of
³bβ | X´ which, being a linear

combination of a normal distribution, is also normal:³bβ | X´ ∼ N³β 2 (X0X)−1
´
. (17)

Equation (17) constitutes the basis to construct confidence intervals and to perform

hypothesis testing in the linear regression model. Consider the following expression:³bβ − β´0X0X
³bβ − β´

2
=

²0X (X0X)−1X0X (X0X)−1X0²
2

=
²0Q²
2


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and, applying the results derived in the previous section, we know that

²0Q²
2

| X ∼ 2 () . (18)

Equation (18) is not useful in practice, as we do not know 2 However, we know that


³bβ´ | X
2

=
²0M²
2

| X ∼ 2 ( − ) . (19)

Since MQ = 0 we know the distribution of the ratio of (18) and (19); moreover,

taking the ratio, we get rid of the unknown term 2:³bβ − β´0X0X
³bβ − β´ 2

22
=
²0Q²
²0M²

( − ) ∼  (  − ) . (20)

We use result (20) to obtain from the tables of the  -distribution the critical value

 ∗ (  − ) such that

 [ (  − )   ∗ (  − )] =  0    1

for different values of  we are in the position of evaluating exactly an inequality of the

following form:



½³bβ − β´0X0X
³bβ − β´ ≤ 2 ∗ (  − )

¾
= 1− 

which defines confidence intervals for β centered upon bβ
6.2. Hypotesis Testing

Hypothesis testing is strictly linked to the derivation of confidence intervals. When testing

the hypothesis, we aim at rejecting the validity of restrictions imposed on the model on

the basis of the sample evidence. Within this framework, (7) − (17) are the maintained
hypothesis and the restricted version of the model is identified with the null hypothesis

0 Following the Neyman−Pearson approach to hypothesis testing, one derives a statistic
with known distribution under the null. Then the probability of the first-type error

(rejecting 0 when it is true) is fixed at  For example, we use a test at the level  of

the null hypothesis β = β0 based on the  -statistic, when we do not reject the null 0

if β0 lies within the confidence interval associated with the probability 1 −  However,

in practice, this is not a useful way of proceeding, as the economic hypotheses of interest

rarely involve a number of restrictions equal to the number of estimated parameters.
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Think of the CAPM for example, testing its validity given a bivariate regression of any

given portfolio excess returns on the market portfolio excess returns requires testing the

restriction that a subset of the estimated coefficients (the constant) is equal to zero.

The general case of interest is therefore the one when we have  restrictions on the

vector of parameters with   . If we limit our interest to the class of linear restrictions,

we can express them as

0 = Rβ = r

where R is an ( × ) matrix of parameters with rank  and r is an ( × 1) vector of
parameters. To illustrate howR and r are constructed, we consider the baseline case of the

CAPM model; we want to impose the restriction 1 = −2 on the following specification:³
 − 




´
= 0 + 1

³
 − 




´
+  (21)

Rβ = r³
1 0

´Ã 0

1

!
= (0) 

The distribution of a known statistic under the null is derived by applying known

results.

If
³bβ | X´ ∼ N ¡β 2 (X0X)−1

¢
, then:³

Rbβ − r | X´ ∼ N³Rβ − r 2R (X0X)−1R0
´
. (22)

The test is constructed by deriving the distribution of (22) under the nullRβ − r = 0
Given that ³

Rbβ − r | X´= Rβ − r+R (X0X)−1X
0
u,

under 0 we have: ³
Rbβ − r´0 ³R (X0X)−1R0

´−1 ³
Rbβ − r´

= ²0X (X0X)−1R
0 ³
R (X0X)−1R0

´−1
R (X0X)−1X

0
²

= ²0P².

where P is a symmetric idempotent matrix of rank , orthogonal toM.

Then ³
Rbβ − r´0 ¡R (X0X)−1R0¢−1 ³Rbβ − r´

2
∼ rF (  − ) , under 0

25



which can be used to test the relevant hypothesis. To further illustrate the idea that

statistical significance is a measure of the quality of the estimate note that the sampling

standard deviation decreases at speed of square root of the size of the sample and

even a practically negligible effect can be estimated with enough precision to allow us to

distinguish it from zero in a very large sample.

6.3. The Partitioned Regression Model

Given the linear model:

y = Xβ + ²

Partition X in two blocks two blocks of dimension () and ( ( − )) and β in a

corresponding way into
h
β1 β2

i
. The partitioned regression model can then be written

as follows

y = X1β1 +X2β2 + ²

in which partitioning creates two blocks of dimension  and  − .

It is useful to derive the formula for the OLS estimator in the partitioned regression

model. To obtain such results we partition the ‘normal equations’ X0Xbβ = X0
y as:Ã

X0
1

X0
2

!³
X1 X2

´Ã bβ1bβ2
!
=

Ã
X0
1

X0
2

!
y,

or, equivalently, Ã
X0
1X1 X0

1X2

X0
2X1 X0

2X2

!Ã bβ1bβ2
!
=

Ã
X0
1y

X0
2y

!
. (23)

System (??) can be resolved in two stages by first deriving an expression bβ2 as:bβ2 = (X0
2X2)

−1
³
X0
2y−X0

2X1
bβ1´ ,

and then by substituting it in the first equation of (??) to obtain

X0
1X1

bβ1 +X0
1X2 (X

0
2X2)

−1
³
X0
2y−X0

2X1
bβ1´ = X0

1y,

from which:3 bβ1 = (X0
1M2X1)

−1
X0
1M2y

M2 =
³
I−X2 (X

0
2X2)

−1
X0
2

´
.

3 Note that the expression for the estimator can be obtained by applying the formula of the parti-

tioned inverse directly on the normal equations:Ã
 

 

!−1
=

Ã
 −−1

−−1 −1 +−1−1

!
,  =

¡
−−1

¢−1

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Note that, asM2 is idempotent, we can also write:

bβ1 = (X0
1M

0
2M2X1)

−1
X0
1M

0
2M2y,

and bβ1can be interpreted as the vector of OLS coefficients of the regression of y on the ma-
trix of residuals of the regression of X1 on X2 Thus, an OLS regression on two regressors

is equivalent to two OLS regressions on a single regressor (Frisch-Waugh theorem).

Finally, consider the residuals of the partitioned model:

b² = y−X1
bβ1 −X2

bβ2,b² = y−X1
bβ −X2 (X

0
2X2)

−1
³
X0
2y−X0

2X1
bβ1´ ,b² = M2y−M2X1

bβ1
= M2y−M2X1 (X

0
1M2X1)

−1
X0
1M2y

=
³
M2−M2X1 (X

0
1M2X1)

−1
X0
1M2

´
y,

however, we already know that b² =My therefore,
M =

³
M2−M2X1 (X

0
1M2X1)

−1
X0
1M2

´
. (24)

6.3.1. Testing the significance of the subset of coefficients

Now reconsider testing for our null of interest β1 = 0 . Under 0 X1 has no additional

explicatory power for y with respect to X2, therefore:

0: y = X2β2 + ² (² | X1X2) ∼ 
¡
0 2

¢
.

Note that the statement

y = X2γ2 + ² (² | X2) ∼ 
¡
0 2

¢
,

is always true under our maintained hypotheses. However, in general γ2 6= β2To derive

a statistic to test 0 remember that the general matrix R (X
0X)−1R0 is the upper left

block of (X0X)−1, which we can now write as (X0
1M2X1)

−1
. The statistic then takes the

form bβ01 (X0
1M2X1)

−1 bβ1
2

=
y0M2X1 (X

0
1M2X1)

−1
X0
1M2y

y0My
 − 


∼  ( −  ) .

Given (24), (??) can be re-written as:

y0M2y− y0My
y0My

 − 


∼  ( −  ) , (25)
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where the denominator is the sum of the squared residuals in the unconstrained model,

while the numerator is the difference between the sum of residuals in the constrained

model and the sum of residuals in the unconstrained model.

Consider the limit case  = 1 and 1 is a scalar. The  -statistic takes the form

bβ21
2 (X0

1M2X1)
∼  ( −  ) , under 0,

where (X0
1M2X1)

−1
is element (1 1) of the matrix (X0X)−1.

Using the result on the relation between the  and the Student’s -distribution:

bβ1
 (X0

1M2X1)
12
∼  ( − ) under 0

Therefore, an immediate test of significance of the coefficient can be performed, as it is in

Table 3.1, by taking the ratio of each estimated coefficient and the associated standard

error.

6.4. Testing Hypothesis via Simulation

The core of hypothesis testing is the derivation of a statistic with known distribution

under the null, this can be also done via simulation. Consider a case in which the following

CAPM model is estimated by OLS over the sample 1962:1 2014:6 of 260 observations for

the returns on the Fama-French portfolio 15 :

³
15 − 




´
= 0 + 1

³
 − 




´
+ 1 (26)³

 − 



´
=  + Ã





!
∼ 

"Ã
0

0

!


Ã
1 0

0 1

!#

The following estimates are obtained
ˆ
 = 000438

ˆ
 = 0044916

ˆ
1 = 00638

ˆ

0 =

0009
ˆ

1 = 101
ˆ
1 =

ˆ

0 +
ˆ

1
ˆ
 = 00139 We are interested in testing the hypothesis

ˆ

1 = 1

The distribution of
ˆ

1under the null of interest,
ˆ

1 = 1 can be derived by simulating

n samples of size 630, either by Monte-Carlo or by bootstrap, from the following model:
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³
15 − 




´
=

ˆ
1 + 1

³
 − 


 −

ˆ


´
+

µ
21 − 21

ˆ

2



¶05
1 (27)³

 − 



´
=

ˆ
 +

ˆ



Ã





!
∼ 

"Ã
0

0

!


Ã
1 0

0 1

!#
 = 1  

On each sample, in which the generated
³
15 − 




´
will have the same mean and

the same variance independently from the chosen value for 1 the following regression is

estimated :

³
15 − 




´
=

ˆ





0 +
ˆ





1

³
 − 


 −

ˆ


´
+

ˆ





to obtain the distribution of the n
ˆ





1  given the distribution the 95 per cent quantile
ˆ



95

1 can be computed to be compared with the estimated
ˆ

1 = 101 if
ˆ

1 
ˆ



95

1 then the

null of interest is rejected.

Evaluating the null via simulation allows to address a number of relevant questions that

the analytical derivation of the relevant statistics does not normally allow. In particular

we can assess the effect of the sample size used for estimation on the testing procedure

and we can evaluate the power of the test (i.e. the probability of not rejecting the null

when it is false)

7. The R2 as a measure of relevance of a regression

To illustrate the point let us consider two specific cases of applications of the CAPM, in

which we simulate the data for the excess returns on the market portfolio
³
 − 




´
and

the excess returns on two hypothetical assets
³
1 − 




´

³
2 − 




´
 We assume that

the Data Generating Process implicit in the CAPM is the same for the two assets but we

calibrate the two processes differently as follows:
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³
 − 




´
= 08 +  (28)³

 − 



´
=  + Ã





!
∼ 

"Ã
0

0

!


Ã
1 0

0 1

!#
 = 00065  = 0054 1 = 009 2 = 0005 (29)

We simulate an artificial sample of 1056 (same length with the sample July 1926-

June2014) observations for each process.  and  are calibrated to match the first

two moments of the market portfolio excess returns over the sample 1926:7-2014:7. While

the standard errors of the two excess returns are calibrated to deliver R2 in the CAPM

regression of respectively about .22 and .98. By running the two CAPM regressions on

the artificial sample we obtain the following results:

Table 3.1: The estimation of the CAPM on artificial data

Dependent Variable

³
1 − 




´
Regressor Coefficient Std. Error t-ratio Prob.³
 − 




´
0.875 17.48 0.000

R2 0.22 S.E. of regression 0.0076

Dependent Variable

³
2 − 




´
Regressor Coefficient Std. Error t-ratio Prob.³
 − 




´
0.793 201.86 0.000

R2 0.972 S.E. of regression 0.0000

In both cases the estimated beta are statistically significant and very close to their

true value of 0.8. Consider now the following experiment, simulate again the processes

but for introduce at some point a temporary shift of two per cent in the excess returns

in the market portfolio. Look first at the simulated process for
³
1 − 




´
can you tell

when the shift happened ? Consider now the same thought experiment by examining³
2 − 




´

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Figure 5

Figure 5 tells us that the shift in market excess returns happened in 1955:1,this shift can

be easily traced in the Excess Returns for Asset 2 but it cannot be traced in the Excess

returns for assset 1. The CAPM model for excess returns on asset 2 is practically relevant

while the evidence in this direction is much more limited for excess returns on asset 1.

In both experiments the conditional expectation changes of the same amount but

the share of the unconditional variance of y explained by the regression function is very

different, as different are the 2 In one case the change implied by the conditional

expectation is “drowned” in the “noise” ” and the change is not identifiable, while in

the other the effect is clearly visible. This super-simple example shows that the actual

meaning and relevance of the same vector of coefficients is very heterogenous and it is

strongly affected affected by the corresponding 2. It also shows that simulation is much

more important than estimation to understand the properties of any given econometric

model and the empirical relevance of the results.
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7.1. The partial regression theorem

The Frisch-Waugh Theorem described above is worth more consideration.

The theorem tells us than any given regression coefficient in the model  ( | X) = Xβ
can be computed in two different but exactly equivalent ways: 1) by regressing  on all

the columns of X, 2) by first regressing the j-th column of X on all the other columns of

X, computing the residuals of this regression and then by regressing  on these residuals.

This result is relevant in that it clarifies that the relationships pinned down by the

estimated parameters in a linear model do not describe the connections between the

regressand and each regressor but the connection between the part of each regressor that

is not explained by the other ones and the regressand.

This is importnat in the case the regression that a regression analysis is a first step

in a “what if” analysis. The relevant question in this case becomes “how much shall 

change if I change X?”

The estimation of a single equation linear model does not allow to anser that question,

for a number of reasons.

First, estimated parameters in a linear model can only answer the question how much

shall  ( | X) if I change X? We have seen that the two questions are very different if the
2 of the regression is low, in this case a change in  ( | X) may not effect any visible
and relevant effect on 

Second, a regression model is a conditional expected value GIVEN X. In this sense

there is no space for “changing” the value of any element in X. Any statement involving

such a change requires some assumption on how the conditional expectation of  changes

if X changes and a correct analysis of this requires an assumption on the joint distribu-

tion of  and X. Simulation might require the use of the multivariate joint model even

when valid estimation can be performed concentrating only on the conditional model.

Strong exogeneity is stronger than weak exogeneity for the estimation of the parameters

of interest.

Think of a linear model with know parameters

 = 11 + 22

What is in this model the effect of on  of changing 1 by one unit while keeping 2

constant ? Easy 1

Now think of the estimated linear model:
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 =
ˆ

11 +
ˆ

22 +
ˆ


Now  is different from  ( | X) and the question ”what is in this model the effect of
on  ( | X) of changing 1 by one unit while keeping 2 constant ?” does not in general
make sense. Changing 1 keeping 2 implies that there is zero correlation among this

variables. But the estimates
ˆ

1and
ˆ

2 are obained by using data in which in general there

is some correlation between 1 and 2 Data in which fluctuations in 1 do not have any

effect on 2 would have most likely generated different estimates from those obtained in

the estimation sample. The only valid question quetion that can be answered using the

coefficients in linear regression is ”What is the effect on  ( | X) of changing the part
of each regressors that is orthogonal to the other ones”. Only in the case regressors are

orthogonal to each other the parameters estimates to describe the effect of changing the

regressor of one unit.

Historically regression methods were simply not conceived with a “what if” analysis

in mind, they were conceived to assess the overall regressive dependence of a  on a set

X and, to a lesser extent, to evaluate the marginal contribution of each to this overall

dependence. ”What if” analysis requires simulation and in most cases a low level of

reduction than that used for regression analysis.

7.1.1. Relevance and Significance again: the semi-partial R2

OK, the difference between significance of parameters and relevance of a regression is

well understood. Is there something that we can do if we are interested in measuring the

“relevance” of single columns of X, say by partitioning the “overall explaining power”

(better: the variance of the regression function) in a regressor by regressor evaluation?

When the columns of X are orthogonal to each other the total 2 can be exactly

decomposed in the sum of the partial 2 due to each regressor  (the partial 
2 of a

regressor i is defined as the 2 of the regression of  on ).

This is in general not the case in applications with non experimental data: columns

of X are correlated and a (often large) part of the overall 2 does depend on the joint

behaviour of the columns of X. However, it is always possible to compute the marginal

contribution to the overall 2 due to each regressor , defined as the difference between

the overall 2 and the 2 ot the regression that inlcudes all columns X except . This

is called the semi-partial 2

Interestingly, the the semi-partial 2 is a simple tranformation of the t-ratio:
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2 =
2 (1−2)

( − )

This result has two interesting implications.

First, a quantity which we considered as just a measure of statistical reliability, can

lead to a measure of relevance when combined with the overall 2 of the regression.

Second, we can re-iterate the difference between statistical significance and relevance.

Suppose you have a sample size of 10000 and you have 10 columns in X and the t-ratio on

a coefficient  is of about 4 with an associate P-value of the order .01: “very” statistical

significant! . The derivation of the semi-partial 2 tells us that the contribution of this

variable to the overall R2 is at most (why at most?) approximately 16/(10000-10) that

is: less than two thousands.

To put it differently, in the case here described we need a t-ratio on  of the order

of eleven to have a marginal contribution of the regressor to the overall 2 of the 10%.

8. The effects of mis-specification

The third important element to consider when interpeting regression results are the con-

sequences of adopting a ”wrong” model. Each specification can be interpreted of the

result of a reduction process, what happens if the reduction process that has gener-

ated  ( | X) omits some relevant information. We shall consider three general cases
of mis-specification. Mis-specification related to the choice of variables included in the

regressions, mis-specification related to ignoring the existence on constraints on the esti-

mated parameters and misspecification related to wrong assumprions on the properties of

the error terms.

8.1. Misspecification in the Choice of Variables

We take first the case of under-parameterization (the estimated model omits variables

included in the DGP) to move on to over-parameterization (the estimated model includes

more variables than the DGP).

8.1.1. Under-parameterization

Given the DGP:

y = X1β1+X2β2+² (30)
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for which hypotheses (7)− (15) hold, the following model is estimated:

y = X1β1 + ν. (31)

The OLS estimates are given by the following expression:

bβ

1 = (X0
1X1)

−1
X0
1y, (32)

while the OLS estimates which are obtained by estimation of the DGP, are:

bβ1 = (X0
1M2X1)

−1
X0
1M2y. (33)

The estimates in (33) are best linear unbiased estimators (BLUE) by construction,

while the estimates in (32) are biased unless X1and X2 are uncorrelated. To show this,

consider:

bβ1 = (X0
1X1)

−1
³
X0
1y−X0

1X2
bβ2´ (34)

= bβ

1 +
bDbβ2, (35)

where bD is the vector of coefficients in the regression of X2 on X1 and bβ2 is the OLS
estimator obtained by fitting the DGP.

To provide further interpretation of these results, note that if

 (y | X1X2) = X1β1+X2β2,

 (X1| X2) = X1D,

then,

 (y | X1) = X1β1+X1Dβ2 = X1α.

Therefore the OLS estimator in the under-parameterized model is a biased estimator

of β1 but an unbiased estimator of α Then, if the objective of the model is forecasting

and X1 is more easily observed than X2, the under-parameterized model can be safely

used. On the other hand, if the objective of the model is to test specific predictions on

parameters, the use of the under-parameterized model delivers biased results. When we

are interested in the effect of X1 on y independently from other factors, it is crucial to

control the effects of omitted variables.

8.1.2. Over-parameterization

Given the DGP,

y = X1β1 + ², (36)
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for which hypotheses (7)− (15) hold, the following model is estimated:

y = X1β1 +X2β2 + v. (37)

The OLS estimator of the over-parameterized model is

bβ

1 = (X
0
1M2X1)

−1
X0
1M2y (38)

while, by estimating the DGP, we obtain:

bβ1 = (X0
1X1)

−1
X0
1y (39)

By substituting y from the DGP, one finds that both estimators are unbiased and the

difference is now made by the variance. In fact we have:


³bβ

1 | X1X2

´
= 2 (X0

1M2X1)
−1
, (40)


³bβ1 | X1X2

´
= 2 (X0

1X1)
−1
. (41)

One can show that the estimator derived from the correct model is more efficient. The

difference between the two variance-covariance matrices is a positive semidefinite matrix.

To show this, remember that if two matrices A and B are positive definite and A−B
is positive semidefinite, then also the matrix B−1−A−1 is positive semidefinite. We have
to show that X0

1X1 −X0
1M2X1 is a positive semidefinite matrix. Such a result is almost

immediate:

X0
1X1 −X0

1M2X1 = X0
1 (I−M2)X1

= X0
1Q2X1 = X

0
1Q2Q2X1

We conclude that over-parameterization impacts on the efficiency of estimators and

the power of the tests of hypotheses.

8.2. Estimation under linear constraints

In this section we analyse the impact on the OLS estimator of a mis-specification deriving

from ignoring the existence of constraints on an estimated parameter. To analyse the

mis-specification, we introduce the difference between the estimated model and the data

generating process (DGP).

The estimated model is the linear model analysed up to now:

y = Xβ + ²
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while the DGP is instead:

y = Xβ + ²   Rβ − r = 0

where the constraints are expressed using the so called implicit form. A useful alternative

way of expressing constraints, known as the ‘explicit form’ has been expressed by Sargan

(1988):

β = Sθ + s,

where S is a ( × ( − )) matrix of rank  −  and s is a  × 1 vector.
To show how constraints are specified in the two alternatives let us consider the case

of 1 = −2 on the following specification:

ln  = 0 + 11 + 22 +  (42)

Using Rβ − r = 0: ³
0 1 1

´⎛⎜⎝ 0

1

2

⎞⎟⎠ = (0) ,

while using β = Sθ + s:⎛⎜⎝ 0

1

2

⎞⎟⎠ =

⎛⎜⎝ 1 0

0 1

0 −1

⎞⎟⎠Ã 0

1

!
+

⎛⎜⎝ 0

0

0

⎞⎟⎠ .
In practice the constraints in the explicit form are written by considering θ as the

vector of free parameters. Note that there is no unique way of expressing constraints in

the explicit form, in our case the same constraint can be imposed as:⎛⎜⎝ 0

1

2

⎞⎟⎠ =

⎛⎜⎝ 1 0

0 −1
0 1

⎞⎟⎠Ã 0

2

!
+

⎛⎜⎝ 0

0

0

⎞⎟⎠ .
As the two alternatives are indifferent, Rβ − r = 0 and RSθ +Rs− r = 0 are equiv-

alent, which implies:

1. RS = 0;

2. Rs− r = 0.

We use the explicit form of imposing constraints to derive the restricted least squares

(RLS) estimators, and to evaluate the consistency and relative efficiency of OLS and RLS.
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The restricted least squares (RLS) estimator To construct RLS, substitute the

constraint in the original model to obtain:

y−Xs = XSθ + ² (43)

Equation (43) is equivalent to:

y∗= X∗θ + ² (44)

where y∗ = y−Xs X∗ = XS
Note that the transformed model features the same residuals with the original model;

therefore, if hypotheses (7) − (15) hold for the original model, they also hold for the
transformed. We apply OLS to the transformed model to obtain:

bθ = (X∗0X∗)−1X∗0y∗ (45)

= (S0X0XS)−1 S0X0 (y−Xs) .

From (45) the RLS estimation is easily obtained by applying the transformationbβ
= Sbθ + s Similarly, the variance of the RLS estimator is easily obtained as:


³bθ | X´ = 2 (X∗0X∗)−1 = 2 (S0X0XS)−1 ,


³bβ | X

´
= 

³
Sbθ + s | X´

= S 
³bθ | X´S0

= 2S (S0X0XS)−1 S0.

We can now discuss the properties of OLS and RLS in the case of a DGP with con-

straints.

Unbiasedness

Under the assumed DGP, both estimators are unbiased, since such properties depend

on the validity of hypotheses (7) − (15), which is not affected by the imposition of con-
straints on parameters.

Efficiency

Obviously, if we interpret RLS as the OLS estimator on the transformed model (45)

we immediately derive the results that the RLS is the most efficient estimator, as the

hypotheses for the validity of the Gauss Markov theorem are satisfied when OLS is applied

to (45). Note that by posing L =(X0X)−1X0 in the context of the transformed model, we

do not generally obtain OLS but an estimator whose conditional variance with respect to

X coincides with the conditional variance of the OLS estimator.
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We support this intuition with a formal argument by showing that the difference

between the variance of the OLS estimator and the variance of the RLS estimator is a

positive semidefinite matrix.


³bβ | X´− 

³bβ | X
´
= 2 (X0X)−1 − 2S (S0X0XS)−1 S0.

Define A as:

A =(X0X)−1 − S (S0X0XS)−1 S0.

Given that

AX0XA =
³
(X0X)−1 − S (S0X0XS)−1 S0

´
X0X

³
(X0X)−1 − S (S0X0XS)−1 S0

´
= (X0X)−1 − 2S (S0X0XS)−1 S0 + S (S0X0XS)−1 S0S (S0X0XS)−1 S0

= (X0X)−1 − S (S0X0XS)−1 S0

= A,

A is positive semidefinite, being the product of a matrix and its transpose.

The OLS estimator ignores available information and therefore is less efficient than

the RLS estimator. However, there is no difference between the two estimators in terms

of unbiasedness.

8.3. Heteroscedasticity, Autocorrelation, and the GLS estimator

Mis-specification also occurs when the hypothesis on the residuals’ variance covariance

matrix are not satisfied. Let us reconsider the single equation model and generalize

it to the case in which the hypotheses of diagonality and constancy of the conditional

variances-covariance matrix of the residuals do not hold:

y = Xβ + ² (46)

² ∼ 
¡
0σ2Ω

¢
,

where the vector y contains  observations on the dependent variables,X contains (×)
observations on the  explanatory variables exogenous for the estimation of ( × 1) the
vector β, and Ω is a ( ×  ) symmetric and positive definite matrix. When the OLS

method is applied to model (46), it delivers estimators which are consistent but not

efficient; moreover, the traditional formula for the variance-covariance matrix of the OLS

estimators, σ2 (X0X)−1, is wrong and leads to an incorrect inference. Using the standard
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algebra, it can be shown that the correct formula for the variance-covariance matrix of

the OLS estimator is:

σ2 (X0X)−1X0ΩX (X0X)−1 .

To find a general solution to this problem, remember that the inverse of a symmetric

definite positive matrix is also symmetric and definite positive and that for a given matrix

Ω symmetric and definite positive, there always exists a ( ×  ) non-singular matrix K,

such that K0K = Ω−1 and KΩK0= I 

To find the solution, consider the regression model obtained by pre-multiplying both

the right-hand and the left-hand sides of (46) by K:

Ky = KXβ +K², (47)

K² ∼ 
¡
0σ2I

¢
.

The OLS estimator of the parameters of the transformed model (47) satisfies all the

conditions for the applications of the Gauss−Markov theorem; therefore, the estimator
b = (X0K0KX)−1X0K0Ky

=
¡
X0Ω−1X

¢−1
X0Ω−1y,

known as the generalised least squares (GLS) estimator, is BLUE. The variance of the

GLS estimator, conditional upon X, becomes

 
³b | X´ = Σ = 2

¡
X0Ω−1X

¢−1
.

Note that, from the application of the Gauss−Markov theorem, it follows immediately
that the variance of the GLS estimator is equal to the sum of the variance of any other

linear estimator and a positive semidefinite matrix. Consider, for example, the variances

of the OLS and the GLS estimators. Using the fact that if A and B are positive definite

and A−B is positive semidefinite, then B−1−A−1 is also positive semidefinite, we have:¡
X0Ω−1X

¢− (X0X) (X0ΩX)−1 (X0X)

= X0K0KX− (X0X)
³
X0K−1 (K0)−1X

´−1
(X0X)

= X0K0
µ
I− (K0)−1X

³
X0K−1 (K0)−1X

´−1
X
0
K−1

¶
KX

= X0K0M0
MKX

where

M =
³
I−W (W0W)

−1
W

0´
 (48)

W = (K0)−1X (49)
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The applicability of the GLS estimator requires an empirical specification for the matrix

K We consider here three specific applications where the appropriate choice of such a

matrix leads to the solution of the problems in the OLS estimator generated, respec-

tively, by the presence of first-order serial correlation in the residuals, by the presence of

heteroscedasticity in the residuals and by the preseece of both of them.

8.3.1. Correction for Serial Correlation (Cochrane-Orcutt)

Consider first the case of first-order serial correlation in the residuals. We have the

following model:

 = x0β+,

 = −1 + ,

 ∼ 
¡
0 2

¢
,

which, using our general notation, can be re-written as:

y = Xβ + ², (50)

² ∼ 
¡
0σ2Ω

¢
,

σ2 =
2

1− 2
, (51)

Ω =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1  2   −1

 1    −2

2  1   

     

−2    1 

−1 −2    1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In this case, the knowledge of the parameter  allows the empirical implementation of

the GLS estimator. An intuitive procedure to implement the GLS estimator can then be

the following:

1. estimate the vector β by OLS and save the vector of residuals b;
2. regress b on b−1 to obtain an estimate b of ;
3. construct the transformed model and regress ( − b−1) on (x − bx−1) to obtain
the GLS estimator of the vector of parameters of interest.

Note that the above procedure, known as the Cochrane−Orcutt procedure, can be
repeated until convergence.
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8.3.2. Correction for Heteroscedasticity (White)

In the case of heteroscedasticity, our general model becomes

y = Xβ + ²,

² ∼  (0Ω) ,

Ω =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

21 0 0   0

0 22 0   0

     

     

0   0 2−1 0

0 0   0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In this case, to construct the GLS estimator, we need to model heteroscedasticity

choosing appropriately the K matrix. White (1980) proposes a specification based on the

consideration that in the case of heteroscedasticity the variance-covariance matrix of the

OLS estimator takes the form:

σ2 (X0X)−1X0ΩX (X0X)−1 ,

which can be used for inference, once an estimator for Ω is available. The following

unbiased estimator of Ω is proposed:

bΩ=
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

b21 0 0   0

0 b22 0   0

     

     

0   0 b2−1 0

0 0   0 b2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This choice for bΩ leads to the following degrees of freedom corrected heteroscedasticity
consistent parameters’ covariance ince matrix estimator:

Σ
 =



 − 
(X0X)−1

Ã
X
=1

b2XX
0


!
(X0X)−1

This estimator corrects for the OLS for the presence of heteroscedasticity in the resid-

uals without modelling in that, later in the book we shall consider alternative models

for heteroscedasticity, known as ARCH (autoregressive conditional heteroscedasticity)

processes, useful for high-frequency financial series, and based upon simultaneous mod-

elling of the first two moments of time-series processes. These models have been been

proposed by Engle (1980) and Bollerslev (1986).
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8.3.3. Correction for heteroscedasticity and serial correlation (Newey-West)

TheWhite covariance matrix assumes serially uncorrelated residuals. Newey andWest(1987)

have proposed a more general covariance estimator that is robust to heteroscedasticity

and autocorrelation of the residuals of unknow form. This HAC (heteroscedasticity and

autocorrelation consistent) coefficient covariance estimators is given by:

Σ
 = (X0X)−1 

ˆ

Ω (X0X)−1

where
ˆ

Ω is a long-run covariance estimators

bΩ = bΓ (0) + X
=1

∙
1− 

+ 1

¸ hbΓ () + bΓ (−)i , (52)

bΓ () =

Ã
X
=1

bb−XX
0
−

!
1



note that in absence of serial correlation bΩ = bΓ (0) and we are back to the White
Estimator. Implementation of the estimator requires a choice of p, which is the maximum

lagat whcih correlation is still present. The weighting scheme adopted guarantees a posi-

tive definite estimated covaraince matrix by multiplying the sequence of the bΓ ()’s by a
sequence of weights that decreases as || increases.

9. Econometrics in action: From the CAPM to Fama and French Factors

Let us run some CAPM regression on real data. Table 3.2 reports the results of running

the CAPM regression on returns from portfolios 15 and 51 in the FF data over a sample

on monthly observations from 1962:1-2014:6.
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Table 3.2: The Estimation of the CAPM on the FF data

Dependent Variable

³
15 − 




´
Variable Coefficient Std. Error t-ratio Prob.

C 0.009 0.0018 5.13 0.0000³
 − 




´
1.016 0.038 26.11 0.0000

R2 0.52 S.E. of reg 0.0438 S.E. dep.var 0.063 1962:1-2014:6

F-statistic C=0, F(1,628)=26.33(0.0000)

Dependent Variable

³
51 − 




´
Variable Coefficient Std. Error t-ratio Prob.

C -0.00096 0.0006 -1.52 0.13³
 − 




´
1.110027 0.0139 79.92 0.0000

R2 0.91 S.E. of reg 0.0156 S.E. dep.var 0.052 1962:1-2014:6

F-statistic C=0, F(1,628)=2.328(0.13)

The results of the regressions show a 1 significantly different from zero but not signifi-

cantly different from 1 and a significantly positive 0 for portfolio 15 and a 1 significantly

different from zero and from 1 and a not-significantly negative 0 for portfolio 51. Note

that the test of significance on 00 is strictly speaking a test ofthe CAPM, and it can be

equivalently conducted using the t-statistic or constructing the F-statistic for restriction

on the relevant set of coefficients (Table 3.1 reports both tests).

To assess the poitential effect of omitted variables we consider augmenting the CAPM

regression with the Fama-French Factors, SMB and HML, and the momentum factor

MOM.
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Table 3.3: The Estimation of the CAPM on the FF data

Dependent Variable

³
15 − 




´
Variable Coefficient Std. Error t-ratio Prob.

C 0.006 0.0010 5.83 0.0000³
 − 




´
0.857 0.024 35.02 0.0000

HML 0.568 0.038 15.02 0.0000

SMB 1.154 0.034 33.61 0.0000

MOM -0.166 0.024 -6.86 0.0000

R2 0.85 S.E. of reg 0.0249 S.E. dep.var 0.063 1962:1-2014:6

F-statistic 2 = 3 = 4 = 0, F(3,625)=439.02(0.0000)

Dependent Variable

³
51 − 




´
Variable Coefficient Std. Error t-ratio Prob.

C 0.002 0.00048 4.18 0.0000³
 − 




´
1.044 0.0112 92.64 0.0000

HML -0.378 0.017 -21.73 0.0000

SMB -0.107 0.0158 -6.765 0.0000

MOM -0.129 0.011 -11.565 0.0000

R2 0.91 S.E. of reg 0.0156 S.E. dep.var 0.052 1962:1-2014:6

F-statistic 2 = 3 = 4 = 0, F(3,625)=179.85(0.0000)

All the three added factors are strongly significant in all regressions showing that the

CAPM equations suffer from omitted variables problem. Note also that the coefficients

on the market protfolio excess returns change when the extended specification is adopted.

We have therefore evidence that the augmenting factors are not orthogonal to excess

returns on market portfolios.

9.1. Fama-French Factors and the Fama-MacBeth procedure

Alternative evidence on the validity of the CAPM can be provided by analyzing the cross-

section of returns (Fama-French(1992,1993), FamaMacBeth(1973)). To illustrate how this

can be done consider the 25 portfolios and run for each of them the CAPM regression

over the sample 1962:1 2014:6. These regressions deliver 25 betas. Take now a second-

step regression in which the cross-section of the average (over the sample 1962:1-2014:6)

monthly returns on the 25 portfolios are projected on the 25 betas:

 = 0 + 1 + 
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Under the null of the CAPM i) residuals should be randomly distributed around the

regression line, ii) 0 = 
¡

¢
 1 = 

¡
 − 

¢
Table 3.4: CAPM in the cross-section of 25 portfolios

Dependent Variable  ( = 1 25)

Variable Coefficient Std. Error t-ratio HAC Std.Err. Prob.

C 2.07 0.35 5.94 0.451 0.3069

 -0.80 0.31 -2.57 0.364 0.0169

R2 0.22 S.E. of reg 0.22 S.E. dep.var 0.25 1926:7-2014:6


¡

¢
= 040  

¡
 − 

¢
= 089
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The cross-sectional regression strongly rejects the CAPM. Note however that this

regression is affected by an inference problem caused by the correlation of residuals in the

cross-section regression. Fama and MacBeth (1973) address this problem by estimating

month-by-month cross-section regressions of monthly returns on the betas obtained on

the full sample. The time series means of the monthly slopes and intercepts, along with

the standard errors of the means, are then used to test whether the average premium for

beta is positive and whether the average return on assets uncorrelated with the market

is equal to the average riskfree interest rate. In this approach, the standard errors of

the average intercept and slope are determined by the month-to-month variation in the

regression coefficients, which fully captures the effects of residual correlation on variation

in the regression coefficients. The application of the Fama-MacBeth on the sample 1962:1

2014:6 delivers the following results
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Table 3.5: Statistics on the distribution of coefficients from Fama-MacBeth

0 1

Mean 2.07 -0.807

St.Dev 9.56 10.06

Obs 630 630

t-stat 5.437 -2.01

An alternative route would be to construct Heteroscedasticity and Autocorrelation

Consistent(HAC) estimators. We illustrate how do this in the following section, Table 3.4

includes a colum containing the HAC estimators of the standard errors of the regression

parameters,
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