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1. The Constant Expected Returns Model

The CER model assumes that an asset’s return over time is normally distributed with

a constant mean and constant variance. The model allows for the returns on di erent

assets to be contemporaneously correlated but that the correlations are constant over

time. Returns are independent over time both across assets and within the same asset.

The CER model constitutes the simplest speci cation of our general statistical model for

asset returns.
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As we have already discussed in the introduction, the CER model is consistent with

the view on the behaviour of asset prices and nancial returns that can be summarized in

the following points:

• The CAPM provides a good measure of risk and thus a good explanation for why

some stocks earn higher average returns than others according to the simple model

e = ¯ [( )e]

where ¯ denotes the element-by-element multiplication operator, is the × 1
vector of CAPM (unconditional) betas for each of the risky assets and e an

( × 1) vector of ones;1

• Excess returns are close to unpredictable; any predictability is a statistical artifact
or cannot be exploited after transaction costs are imputed to actual trades based on

such alleged predictability, i.e., whatever is our information set I , [r +1 e|I ] =
[r +1 e] = e there is nothing to be learnt from I for practical purposes;

• Volatility and covariances are approximately constant over time, i.e., [r +1 e|I ]
= [r +1 e] = .

• asset prices behave as a (log) random walk with drift

1As an example, consider the triangular matrix"
1 2

0 3

#
and the column vector [ 4 4]0 We know that normally, the product would give"

1 2

0 3

#"
4

4

#
=

"
4

12

#
In this case the product is not even emphasized in the notation, i.e., = · . Using the dot product,
we obtain instead "

1 2

0 3

#
¯
"

4

4

#
=

"
4 8

0 12

#
i.e., each colum of the matrix is multiplied by the column vector.
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1.1. Regression Model Representation

Consider the following simultaneous equations linear regression model for a sample of size

concerning observations on a vector of returns:2

y+ = x+ + + u+, (1)

where y+ is a ( × 1) vector, x+ is a ×P
=1

matrix ( is the number of regressors

available at each point in time), + is a
P
=1

× 1 vector of unknown parameters, and u+
is a ( × 1) vector of residuals:

y+ =

y1
...
...

y

, x+ =

x1 0 0 0

0 x2 · · · ...

0
...

. . .
...

0 · · · · · · x

,

+ =

1

...

...
, u+ =

u1
...
...

u

.

Moreover, given that we consider predictive models in which X+ contains variables ob-

served in periods preceeding that of those included in y+ we can safely that they are

orthogonal to the residuals and therefore

lim
1
x+0u+ = 0.

Clearly, all vectors and matrices are simply stacking times the -long histories for

each of the return series, each of the explanatory variables, as well as the residuals. Also

notice the special diagonal structure of X+ (the + indeed stands for “augmented” to

emphasize that the stacking operation has allowed us to capture in one single system of

simultaneous regression models, such models, each with structure:

y = x + u

2In the lecture notes, it is possible that the number of assets may have been called To impose

some uniformity in notations, we simply set = here and the two carry no special meaning or

di erentiation.

3



= 1 2 ..., . (??) is then easy to use to derive inferences on means, variance and

covariances:

[y+] = x+ +

[y+] = [u+]

assuming that the regressors collected in X+ are predetermined (e.g., this will be the case

when X+ simply collects past values of asset return themselves). Because in this model

[y+|I ] = [u+] the third view is automatically enforced.

If u is assumed to have standard white noise properties, i.e., [u ] = 0 and [u u0 ] =

I (i.e., all residuals are not serially correlated although they can be contemporaneously

correlated) where = 2 then the following properties hold for u+:¡
u+
¢
= 0

[u+(u+)0] =

(u1u
0
1) (u1u

0
2) · · · (u1u

0 )

(u2u
0
1) (u2u

0
2) · · · ...

... · · · . . .
...

(u u01) · · · · · · (u u0 )

=

11I 12I · · · 1 I

21I 22I · · · ...
... · · · . . .

...

1I · · · · · · I

= I

where each block of the covariance matrix [u+(u+)0] is × by construction. Here

denotes a standard Kronecker product (For any two matrices A ( × ) and B ( × ),

de ne as the Kronecker product, A B, the matrix ( × ) obtained by multiplying

each element of A by B).3 is non-singular covariance matrix. Notice that will be

a full matrix (i.e., it will not be simply a diagonal matrix) when the shocks hitting the

returns on di erent risky assets are potentially simultaneously correlated, so that the

3For intance

" #
=

If you contemplate the result for a while you understand the meaning of the di usive operation. Notice

that the Kronecker product of a × matrix by a × matrix, gives a new × matrix.
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o -diagonal elements of are non-zero. In this case OLS will be consistent but not

e cient. e ciency requires and estiamtion method that takes into account the existence

of non-zero o diagonal elements in

1.2. Seemingly Unrelated Regressions Estimators (SURE)

SURE is a a full-information estimators that expoit the information generated by the

whole system of equations. To analyse full-information estimators, we need to introduce

some new properties, related to the Kronecker product:

• (A B) (C D) = AC BD, whenever the matrices AC and BD are de ned;

• (A B)0 = A0 B0;

• (A B) 1 = A
1

B 1, whenever the matrices A
1
and B 1 are de ned.

To see how SURE is derived consider the following decomposition for 1:

1 = HH0, (2)

which always exists. From (2) we have:

H H0 =

By pre-multiplying (??) by H0 , we obtain:

(H0 )y+ = (H0 )x+ + + (H0 )u+, (3)

where residuals of (3) feature a diagonal variance-covariance matrix¡
(H0 )u+u+0 (H0 )

0¢
= (H0 ) ( ) (H0 )

0

= (H0 ) (H )

= = .

We are now left with the following transformed model:

(H0 )y+ = (H0 )x+ + + (H0 )u+, (4)

y = x + u , (5)

(u ) = 0 (u u 0) = , (6)
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in which the variance-covariance matrix is diagonal, however, moreover :

lim
1
x 0u = 0.

Using these properties we can derive the following estimator:

b+ = (x 0x ) 1
x 0y¡

x+0
¡

1 I
¢
x+
¢ 1

x+0
¡

1 I
¢
y+,

which is known as the seemingly unrelated regression equations (SURE) or Zellner’s esti-

mator.

An interesting speci c case of the SURE estimator is obtained when each equation of

the system contains the same set of regressors:

x+ =

x1 0 0 0

0 x2

0

0 x

=

x 0 0 0

0 x

0

0 x

= x.

By substituting for x+ in the expression for the Zellner estimator, we obtain:

b+
1 =

¡
( x)0

¡
1 I

¢
( x)

¢ 1
( x)0

¡
1 I

¢
y+

=
¡

1 x0 x
¢ 1 ¡ 1 x0I

¢
y+

=
³

(x0x) 1
´ ¡

1 x0
¢
y+

=
³

(x0x) 1
x0
´
y+,

which gives a compact representation of the OLS estimators applied equation by equation.

1.3. CER model representation

The CEr model in which [r +1|I ] = [r +1] = implies that each equation contains

only the one common regressors: a vector of ones. In this case we have for the i-th return:

:

y = e + u
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where

y =

1

2

...
X = e =

1

1
...

1

The OLS/SURE estimates of the relevant parameters are then simply

ˆ =
1X

=1

= ¯ ˆ11 = ˆ
2
1 =

1X
=1

( ¯ )2

which are sample mean and sample variance.

2. A Static Asset Allocation Problem with Constant Expected Returns

Consider the case of an investor who believes returns have constant rst and second

moments. adopts a buy and hold portfolio strategy for a single period of any xed length

(the length is not a decision variable in the asset allocation) from time to time . Let’s

denote with r the random vector of linear total returns from time to time from a given

menu of risky assets for interval [ ], r D ( ).4 The investor can also invest at

time in a security the price of which at is known at (typically, a non-defaultable

Aaa bond), called risk-free security. Let be the discretely compounded non-random

return from this investment over every single period. Short sales are admitted without

any constraints. For simplicity, we ignore transaction costs and any other frictions.

The investor’s strategy is to invest in the riskfree bond and in the risky assets

(stocks) at time and then liquidate the investment at time . The relative weights in-

vested in each of the risky assets are in collected in the column vector w, while (1 w0e )

is the relative amount invested in the riskfree security (e is a × 1 column vector of
ones). Given a degree of risk aversion , a standard mean-variance description of this

allocation problem is the following:

max
w
(1 w0e) +w0 1

2
(w0 w)

where [r] = (1 w0e) +w0 = +w0( e) and [r] = w0 w.5 In this mean-

variance setup the distribution of returns is fully described by the rst two moments and

the minimization of the variance of the portfolio implies that by ruling out big losses also

4Notice that in D ( ) D is not necessarily multivariate normal.
5The presence of the 1/2 coe cient in the objective function simplies the problem and has no material

e ects on the qualitative ndings.
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big gains are ruled out. The solution of this problems determines the portfolio weights in

terms of the preferences of the investor, as capture by the parameter and the (known)

mean and the covariance matrix describing the joint distribution of returns. Because

this is an unconstrained convex problem, the rst-order conditions (FOCs) are necessary

and su cient and de ne the following system of linear equations in unknowns, the

portfolio weights w R :

( e) w = 0

Solving the FOCs yields:

ŵ =
1 1

¡
e
¢

(7)

where
¡

e
¢
de nes the vector of risk premia for the risky assets. (7) de nes the

solution to a standard mean-variance portfolio program and it is one of the most crucial

and commonly used results in all of nancial economics. Of course, in order to make

this approach to portfolio allocation operational, knowledge of needs to be paired with

estimates (better, forecasts of future values) of and (or e when more convenient

or appropriate).

Consider now the special case in which ŵ0e = 1, that is no investment in the riskfree

bond is allowed. The optimal portfolio in this case is the famous tangency portfolio:

e0ŵ =
1
e0 1

¡
e
¢
= 1 = = e0 1

¡
e
¢

so that (7) becomes in this case

ŵ =
1
¡

e
¢

e0 1 ( e)
(8)

where the in ŵ stands for tangency. Several comments are in order

(1) The weights in the tangency portfolio do not depend on the risk aversion parameter

Individual preferences only in uence the allocation between the risk free security and

the risky portfolio but do not in uence the allocation among di erent risky assets .

(2) Given that the optimal risky portfolio is uniquely determined, the tangency portfo-

lio must then coincide with the market portfolio. Agents maximize their utility by taking

a linear combination of the market portfolio and and the risk-free securities. Note that

in this case we can express the return on any portfolio in the following way:

= (1 ) +

=
¡ ¢
8



and the CAPM holds.

(3) E cient portfolios are those with the highest expected return for a given level of

risk.If we summarize the expected return-risk (mean-variance) properties of the feasible

portfolios in a plot with portfolio expected return, , on the vertical axis and portfolio

standard-deviation, , on the horizontal axis, then all e cient portfolios can be repre-

sented as points in the space
¡ ¢

and the e cient frontier is the line that connects

all these points. given the properties of the tangency portfolios, weights for all portfolios

on the e cient frontier are obtained by inputing di erent values for the risk-free rate in

(8)

(4) If the CER model is adopted, then the optimal asset allocation problem and the

computation of the e cient frontier are easily implemented by using sample mean and

sample variance covaraince matrix of returns as inputs for deriving the relevant frontiers

and optimal portfolios. Notes that in this context the horizon a which returns are consid-

ered does not matter as the relation between one-period retruns and multi-period returns

in the CER implies that the tangecy portfolios and the e cient frontier do not depend

on the horizon at which returns are de ned.

3. What Happens in Practice ?

What happens when asset allocation based on the CER model is implemented on the

data?

First, estimates/forecasts of and are not constant over time: think of an investor

who as avalaible a sample from time t0 to time t to decide optimal asset allcation over

period the +1 + The estimates of and based on the sample t0 t are usually

very di erent from those based on the sample + 1 + and optimal asset allocation

ex-ante does not coincide with the optimal asset allocation ex-post. Moreover, the CER

approach to portfolio allocation can lead to dramatic swings in optimal portfolio weights

for small changes in investment views and conditions, as given by the estimates/forecasts

of and . There is a simple reason for these common ndings: too much sampling error

in the estimation of the vector of expected returns and, due to this, an asset allocation

which is idiosyncratic to the speci c estimation sample. This result is easily understood

by using regression analysis to obtain a con dence interval on the estimates of the mean

returns obtained within the simple econometric model underlying the CER: the standard

error associated to the OLS estimate ˆ = ¯ is typically large. The presence of estimation

error not only leads to high sensibility of optimal weights on input parameters, but also
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can generate so called nancial irrelevant portfolios, namely, nancial portfolios which

are mostly concentrated on few assets. The estimation error increases as either the sample

size decreases for a given portfolio size or the size of the portfolio increases for a given

amount of historical information. There are several ways to mititgate the negative e ects

of the estimation error in a mean-variance framework. We shall consider two well-known

alternatives widely adopted in the industry: the rst is to use methods that keep the

simplest possible estimates of and but fully recognize that the resulting estimates

are simply realizations of sample estimators that may imply considerable parameter (also

called estimation) uncertainty ; the second approach consists of allowing the investor to

have di erent views from those that will lead to hold the market portfolio and provide a

method to derive weights in the optimal portfolio determined by an optimal combination

of weights in the market portfolio and weights re ecting the the views speci c to the

individual investor.

Turning to the cross section of assets, remember that the solution of the static asset

allocation problem implies that for each portfolio (including those portfolio made of a

single asset) we have:

¡ ¢
=

¡ ¢
So the heterogeneity in excess returns to di erent assets can be explained only the

the di erent exposure to a single risk factor, the market excess returns. Given a sample

of observations on and then
ˆ

can be estimated by OLS regression over the

time series of returns, then the following second-pass equations can be estimated over the

cross-section of returns:

= 0 + 1
ˆ + = 1 (9)

(9) asserts that is a linear function of ˆ plus an error term (we need to insert an error

term as the relevant betas have been estimated in the rst stage).

If CAPM is valid, then 0 and 1 should satisfy

0 = 0 and 1 =

where is the mean market excess return. When the model is estimated with appropriate

methods6, the restriction 0 = 0 is typically rejected (Fama-French(1992)). The di erent

6Appropriate methods must take consider that , as returns are a fected by common shocks, the

variance-covariance matrix of the residuals in (9) is not diagonal (see Fama-MacBeth(1973) ).
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exposure to a single factor model cannot explain the observed cross-sectional behaviour

of returns. This evidence paved the way to the estimation of multi-factor models of

returns. Fama-French(1993) introduced a three-factor model based on the integration

ofthe CAPM with a “small-minus-big” market value (SMB) and “high-minus-low” book-

to-market ratio (HML), are based on portfolios of stocks sorted according to the two

characteristics of interest. Each factor is equivalent to a zero-cost arbitrage portfolio that

takes a long position in high book-to-market (small-size) stocks and nances this with

a short position in low book-to-market (large-size) stocks. Jegadeesh and Titman(1993)

discovered the importance of a further additional factor in explaining excess returns:

momentum. An investment strategy that buys stocks that have performed well and

sells stocks that have performed poorly over the past 3- to 12-month period generates

signi cant excess returns over the following year. It is interesting to note that augmenting

the CAPM with SMB and HML does not challenge per se the CER model, which still hold

as valid if the constant expected return model can be applied to the two aditional factors.

However, momentum provides direct evidence against the CER model as it indicates that

the conditional expections of future returns is not constant. We shall immediately discuss

the resampled optimal-mean variance portfolio and the Black-Litterman approach, while

we shall defer the discussion of momentum related strategies to the next chapters.

3.1. The resampled optimal mean-variance portfolio

A rst possibility to deal with estimation uncertainty is to implement bootstrap methods to

derive the optimal portfolio allocation. Consider the estimation of a simple multivariate

model, in which the only regressor is a constant for the returns on assets, = 1 2

..., :

1 = ˆ1 + ˆ1

2 = ˆ2 + ˆ2

= ˆ + ˆh
ˆ1 ˆ2 ˆ

i0
N
³
0 ˆ

´
Notice that the fact that each observed return can always be decomposed as = ˆ + ˆ

obtains by de nition. Moreover, standard least squares algebra shows that in this case

[û ] = 0 as claimed. The idea of resampling the mean-variance portfolio solution is

not to stop at replacing and with ˆ [ˆ1 ˆ2 ˆ ]0 and ˆ in the classical formula
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ŵ = 1ˆ 1
¡
ˆ e

¢
but to implement the following algorithm. Collect of the residuals

from estimation in the following × matrix:

Û

ˆ11 ˆ21 ˆ 1

ˆ12 ˆ22 ˆ 2

...
. . .

...

ˆ1 ˆ2 ˆ

At this point, draw a new sample of size of residuals by extracting randomly rows

from Û Extracting the rows at random and with replacement is important because it

ensures that the covariance structure of the residuals is preserved. Given these new, re-

sampled residuals collected in a vector û1 ( = 1 2 ..., ) and the estimates ˆ we proceed

to generate a new arti cial sample of returns using

r1 = ˆ + û1

where the subscript “1” alludes to the fact that this represents the rst iteration of the

algorithm. At this point, a new OLS estimation of the model is performed on this arti cial

data, obtaining as an outcome a pair of new, bootstrapped estimates, ˆ1 and ˆ 1 and,

using the classical formula, ŵ1. At this point the algorithm is iterated a second time,

re-sampling a new set of residuals û2 ( = 1 2 ..., ) to obtain ˆ2 ˆ 2 and ŵ2. This

algorithm is then replicated times, where is in general a large number (let’s say 5,000

or 10,000 times), using the fact that at the th iteration one simply draws a new sample

of size of residuals by extracting randomly rows from Û generate a new arti cial

sample of returns using

r = ˆ + û

perform OLS estimation of ˆ and ˆ to obtain ŵ , for = 1 2 ..., .

This total number of replications of this procedure will generate optimal portfolio

allocations {ŵ } =1. At this point, the desidered vector of re-sampled, optimized portfolio
weights may be represented by the average, across the bootstraps, of the weights in

{ŵ } =1:
w =

1 X
=1

ŵ

This method and the resulting average portfolio allocation across bootstraps acknowl-

edges the e ects of estimation uncertainty and is generally more stable across di erent

sample whenever the instability in the portfolio allocation is generated by estimation un-

certainty rather than by a true structural break (or other forms of statistical instability
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such as regimes) in the distribution of the vector of risky asset returns. Using the same

procedure resampled the e cient frontier can be computed together with indication of

the uncertainty associated to its estimation.

3.2. Black and Litterman’s approach

In the early 90s the quantitative research group at Goldman Sachs proposed a model for

portfolio selection which is based on the mixed estimation approach developed in Theil

and Goldberger (1961). This model, popularly known as the Black-Littermann model (BL

henceforth), has become one of the most prominent portfolio allocation method to avoid

the standard drawbacks of the mean-variance framework, i.e Corner solutions, portfolio

instability, high sensitivity to the inputs and (see Black and Littermann, 1990, and

Black and Litterman, 1991). The basic idea is Bayesian updating of prior information.

The investor updates the market view (implied by the equilibrium CAPMmodel) by using

her own views via the Bayes rule. The economic intuition is that the investor start by

holding a simple rescaled version of the market portfolio, then deviates from the market

portfolio according to views on speci c returns or linear combination of them. The weight

attributed to each asset depends on views and their associated uncertainty. In other words,

the BL optimal portfolio deviates from the market value-weighted weights if the investor’s

views substantially deviates from those implied by the market. The main contribution of

the method it to discipline the asset manager action. A numerical speci cation of views

and of their associated con dence is an input of the method and not an output, the output

is the optimal combination. The Bayesian method proposed by Black and Littermann

ensures then the most e cient implementation of the expressed views into a vector of

portfolio weights.

Given the knowledge of the market capitalization and therefore of the market portfolio

weights w and some estimates of the variance-covariance matrix of returns, we can use

the optimal portfolio allocation condition to derive the expected returns consistent with

the market capitalization:

w =
1 1

¡
e
¢
= = w + e

Assume now that the portfolio manager holds some (normally distributed, for simplic-

ity) views on a subset of size of the expected returns included in the market

portfolio:

P N (v )
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where N denotes a -variate multivariate normal distribution, is a vector of ex-

pected returns, and P is an appropriate × selection matrix that selects the subset

of returns on which there are subjective views expressed by the investor. The views are

expressed as a vector of mean expected returns V and a diagonal variance-covariance ma-

trix expressing the con dence on the views. Such subjective views have to be balanced

against the distribution of returns implied by the market portfolio:

N ( )

where is a scalar smaller than one (and conventionally set to 1/3 by Black and Lit-

termann and most of the subsequent literature) to lter out of the estimated covariance

matrix of returns the impact of their random variation (i.e., to take into account the e ect

of noise in small samples).

Black and Littermann’s approach aims then at generating a value for the expected

return vector by optimally combining the distribution of returns implied in the

market capitalization and the subjective views of the portfolio manager. This is obtained

by solving the following optimization problem:

= argmin ( )0 ( ) 1 ( ) + (P v)0 1 (P v)

This is a weighted least squares problems, where the weights depend on covariance matrix.

When the diagonal elements of all approach zero, that is, when there is in nite con -

dence in the subjective views by the investor, the problem becomes a constrained least

squares problem where the relevant constraint is P = v. On the other hand, when

has diagonal elements diverging to in nity (no con dence in the views), the solution to

the problem is simply = .

The rst order conditions for the solution of the problem can be written as follows:

2 ( ) 1 ( ) + 2P0 1 (Pˆ v) = 0

from which we can derive:

ˆ =
¡
( ) 1 +P0 1P

¢ 1 ¡
( ) 1 +P0 1v

¢
=

¡
( ) 1 +P0 1P

¢ 1
( ) 1| {z }

=

+
¡
( ) 1 +P0 1P

¢ 1
P0 1| {z }

=I

v

This expression emphasizes that is obtained by optimally combining market views

( ) with the investor’s views (v), through a rather complex weighting matrices given

14



by and I respectively. Also note that can be equivalently written as:

ˆ = +K (v P ) K = ( )P0 (P P0 + )
1

At this point, given ˆ the optimal BL portfolio weights are obtained by the usual

formula:

ŵ =
1 ˆ 1

¡
ˆ e

¢
or ŵ =

1
¡
ˆ e

¢
e0 1 (ˆ e)

Similarly to how optimal portfolio weights in the tangency portfolio are computed,

the BL e cient frontier can also be computed using ˆ and ˆ as inputs.

4. Going to the Data: Asset Allocation and the CER model with MATLAB

To illustrate what happens in practice consider the case of an investor who consumes in

euro and sees the German 3-month rate as the risk free. The risky assets available for

portfolio allocation are German US and UK shares and the German 10-Year government

bond. Data at monthly frequency over the sample 1978-2013, on aggregate stock price

indexes price index, dividends, bond yields to maturity, the exchange rates and the return

on the safe assets are available in the le STOCKINT2013.XLS. The following time series

are saved in the successive columns of the EXCEL le
The time-series in the STOCKINT2013.XLS les

identi er description

BDBRYLD GERMANY BENCHMARK BOND 10 YR (DS) - RED. YIELD

BDINTER3 BD FIBOR - 3 MONTH (MTH.AVG.)

TOTMKBD(PI) GERMANY-DS Market - PRICE INDEX

TOTMKBD(DY) GERMANY-DS Market - DIVIDEND YIELD

TOTMKUS(PI) US-DS Market - PRICE INDEX

TOTMKUS(DY) US-DS Market - DIVIDEND YIELD

TOTMKUK(PI) UK-DS Market - PRICE INDEX

TOTMKUK(DY) UK-DS Market - DIVIDEND YIELD

USDOLLR US $ TO UK $ - EXCHANGE RATE

EUUSBOE US $ TO EUR - EXCHANGE RATE

Files for running the empirical exerise should be organized as follows: a directory

will contain the main programme named main chap4.m, the main directory will have

three sudirectories label: INPUT, OUTPUT and UTILITIES. The INPUT directory

contains the data, the UTILITIES directory contains subroutines to be called within

main chap4.m,while the OUTPUT directory will be used to store tables and gures gen-

erated within the programme.
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The organization of the directories is set-up, the data are imported and prepared to

be used for di erent samples with the following commands:

close all; clear all; clc; pause(0.01), randn(’seed’,sum(clock)), rand(’seed’,sum(

warning off

TSTART = tic;

% -------------- Load folders ---------------------------------------------

addpath([pwd ’\Input\’]);
addpath([pwd ’\Utilities\’]);
addpath([pwd ’\Output\’]);
% -------------- Import data ----------------------------------------------

[data,textdata,raw] = xlsread(’STOCKINT2013.xls’,’Monthly’);

date=datenum(textdata(4:end,1),’dd/mm/yyyy’);

Next all the relevant data transformation are implemented

% BUILDING RETURNS

% -------------- German risk-free please note dating ---------

GER.RiskFree = log(1+(lag(data(:,2))/(100*12)));

GER.RiskFree(1,1)=NaN;

% German Long term bond YTM and period holding returns

GER.LTBond.Yield = (log(1+(data(:,1))/(100*12)));

GER.LTBond.Duration = 12*((1-(1+(data(:,1)/(100))).^(-10)))./(1-(1+(data(:,1)/(100

GER.LTBond.Ret = (lag(GER.LTBond.Duration,1,NaN).*lag(GER.LTBond.Yield,1,NaN)-(lag

GER.LTBond.ExRet = GER.LTBond.Ret - GER.RiskFree;

% -------------- German Stocks Monthly excess returns ------------------

GER.Stock.DY = data(:,4)/(100*12); % Monthly dividend yield

GER.Stock.dy = log(GER.Stock.DY); % Monthly log dividend yield

GER.Stock.Index = data(:,3); % Monthly stock index

GER.Stock.Ret = log(GER.Stock.Index./lag(GER.Stock.Index,1,NaN)+GER.Stock.DY);

GER.Stock.ExRet = GER.Stock.Ret - GER.RiskFree;

% -------------- Forex Exchanges ------------------------------------------

FX.EUvsUS=data(:,10);

FX.USvsUK=data(:,9);

FX.EUvsUK=FX.EUvsUS.*FX.USvsUK;

FX.r EUvsUS = log(data(:,10)./lag(data(:,10),1,NaN));

FX.r USvsUK = log((data(:,9))./lag(data(:,9),1,NaN));
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FX.r EUvsUK = FX.r EUvsUS + FX.r USvsUK;

% -------------- US Stocks Monthly excess Returns -------------------------

US.Stock.DY = data(:,6)/(100*12); % US dividend yield

US.Stock.dy = log(data(:,6)); % US log dividend yield

US.Stock.Index = data(:,5); % US stock index

US.Stock.Ret = log(US.Stock.Index./lag(US.Stock.Index,1,NaN)+US.Stock.DY);

% Returns in local currency

US.Stock.Ret = US.Stock.Ret + FX.r EUvsUS; % Returns in euros (german perspective)

US.Stock.ExRet = US.Stock.Ret - GER.RiskFree; % Excess returns in euros

% ------------- UK Stocks Monthly Excess Returns --------------------------

UK.Stock.DY = data(:,8)/(100*12); % UK dividend yield

UK.Stock.dy = log(data(:,8)); % UK log dividend yield

UK.Stock.Index = data(:,7); % UK stock index

UK.Stock.Ret = log(UK.Stock.Index./lag(UK.Stock.Index,1,NaN)+UK.Stock.DY);

UK.Stock.Ret = UK.Stock.Ret + FX.r EUvsUK; % Returns in euros

UK.Stock.ExRet = UK.Stock.Ret - GER.RiskFree; % Excess returns in euros

Let us now imagine a situation in which, given data available over the period 1978-2003

the investor has to decide an asset allocation between the four risky assets (the tangency

portfolio) to be maintained over the period 2004-2007.

4.1. Exploratory Data Analysis

As a rst step an exploratory data analysis is conducted by visualizing excess returns and

cumulative excess returns over the period 1978-2003.

% % ------------------------------------------------------------------------

% ------------------- Exploratory Data Analysis -----------------

% -------------------------------------------------------------------------

s start = ’31/01/1978’;

s end = ’31/12/2003’;

date find = datenum([s start; s end],’dd/mm/yyyy’);
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ss = datefind(date find(1,1),date);

se = datefind(date find(2,1),date);

T=ss-se+1;

%----------- Historical Excess Returns Matrix ----------------------------

R = [GER.LTBond.ExRet(ss:se) GER.Stock.ExRet(ss:se) UK.Stock.ExRet(ss:se)

US.Stock.ExRet(ss:se)];

Perf = cumsum(R);

% Plot returns and cumulative returns performances in figure(1)

run Figure001

Note that the programme calls a routine named Figure001.m and saved in UTILITIES

to produce the relevant graphs. The following gure is generated:
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4.2. Optimal Static Asset Allocation

Next optimal static asset allocation is implemented using the data available. In partic-

ular the Tangency portfolio is constructed alongwith the e cient frontier and a graph

illustrating the solution is obtained.

% % ------------------------------------------------------------------------

% ------------- Compute the weights and Efficient Frontier using information

upto 2003

% -------------------------------------------------------------------------

% Compute unconditional means and VarCov
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muR = mean(R)’;

SigmaR = (T/(T-1))*cov(R); %compute robust variance covariance matrix

% Optimal weights on the tangency portfolio

WeightsTP = ((SigmaR^(-1))*muR)./(ones(size(R,2),1)’*(SigmaR^(-1)*muR));

%Compute the efficient frontier and plot it

NumPortf = 20; % number of efficient portfolios to be computed

% we do not compute all efficient portfolios in the

% efficient frontier (there is a continuum of them)

% we compute only a subset of them, equally spaced between

% the minimum variance portfolio and the portfolio with the

% highest return.

mu=mean(R)+ mean(GER.RiskFree(ss:se)); %generate mean returns

% generate mean variance efficient frontier

[WeightsMV, MuMeanVariance, StdMeanVariance] = effront(mu, SigmaR, NumPortf);

%mean variance for risk fre and tangency portfolio

Mu bm = zeros(2, 1);

SD bm = zeros(2, 1);

Mu bm(1,1) = mean(GER.RiskFree(ss:se));

SD bm(1,1)=0;

Mu bm(2,1)=mu*WeightsTP;

SD bm(2,1)=sqrt(WeightsTP’*SigmaR*WeightsTP);

% Plot weights in the tangency portfolio and the efficient frontier

run Figure002

Note that two external routine are called: effront.m generates the e cient frontier

and figure2.m plots the e cient frontier and the tangency portfolio.

Running gure2.m at the end of this section of the programme, the following gure is

obtained:
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4.3. Testing the model

Given the availability ex-post of the data over the period 2004-2007 the model can be

testd by assessing its ex-post performance, and by comparing the asset allocation optimal

ex-ante with that optimal ex-post.

The following section of the programme implemets all these steps:

% % ------------------------------------------------------------------------

% Compute the cumulative performances out-of-sample

% -------------------------------------------------------------------------

p start = ’30/01/2004’;

p end = ’31/12/2007’;

date find=datenum([p start; p end],’dd/mm/yyyy’);

ps=datefind(date find(1,1),date);

pe=datefind(date find(2,1),date);

n = pe-ps+1;

R2 = [GER.LTBond.ExRet(ps:pe) GER.Stock.ExRet(ps:pe) UK.Stock.ExRet(ps:pe)

US.Stock.ExRet(ps:pe)];

PerfR2 = cumsum(R2);

Rport = R2*WeightsTP;

PerfPort1 = cumsum(Rport);

% Plot the cumulative performances out-of-sample
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