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Abstract

We construct an affine model that incorporates bond risk premia. By understanding
risk premia, we are able to use a lot of information from well-measured risk-neutral
dyanmics to characterize real expectations. We use the model to decompose the yield
curve into expected interest rate and risk premium components. We characterize the
interesting term structure of risk premia — a forward rate reflects expected excess
returns many years into the future, and current slope and curvature factors forecast
future expected returns even though they do not forecast current returns.
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1 Introduction

We construct and estimate a multifactor affine model of the term structure of interest rates
that incorporates the lessons we learned about bond risk premia in Cochrane and Piazzesi
(2005). Most of all, in that paper, we found that a single “factor” — a single linear com-
bination of yields or forward rates — captures all of the economically-interesting variation
in one-year expected excess returns for bonds of all maturities. We integrate this “return-
forecasting factor” into an affine model. The affine model extends our understanding of risk
premia over time — what do forecasts of two-year returns look like? It ties current yields or
forward rates to long-term expectations of future interest rates and risk premia. We use
this model to decompose the yield curve, to answer the question, “how much of a given yield
curve corresponds to expectations of future interest rates, and how much corresponds to risk
premia?”  Of course, the affine model with risk premia should be useful in a wider variety
of applications.

One may ask, why bother with the structure of an affine model? Just forecast interest
rates, and define the risk premium as the residual of observed forward rates from this forecast.
This approach leads to large statistical and specification uncertainty. Different but equally
plausible ways of forecasting interest rates give wildly different answers. To give a sense
of this uncertainty, Figure 1 forecasts one-year rates 1,2,3,... years into the future. Each
forecast is made using a VAR of the 5 Fama-Bliss (1987) forward rates. The top panel is a
simple VAR in levels. The bottom panel forecasts changes in forward rates from forward-spot
spreads, treating forward rates as a set of 5 cointegrated variables.

The levels VAR of the top panel indicates relatively quick mean-reversion. Most variation
in forward rates from the sample mean interest rate of about 6% will be labeled risk premium.
Obviously, the location of the “mean” and suspicions that it might shift over time give much
pause to that conclusion. The error-correction representation of the bottom panel essentially
allows such a shifting mean. It gives a bit of interest-rate forecastability, but not much.
Clearly, forward rates will show much less variation in risk premia in that representation.
But do we really believe there is so little forecastability in one-year rates? Most of all, must
such a huge difference in results come down to arbitrary specification choices? (Or, worse,
a battery of inconclusive unit root tests?) The large sampling error of 10 year interest rate
forecasts from any regression only muddies the picture even more.

The structure of the affine model allows us to infer a lot about the dynamics of yields
from the cross-section. The risk-neutral dynamics that fit the cross-section of yields or
forward rates are measured with very great precision, since the only errors are the 10 bp
or so “measurement errors” that remain after one fits 3 or 4 factors to a cross section of
yields. We start with estimates of the risk-neutral dynamics, and add market prices of risk
to understand the true-measure dynamics. A detailed investigation of market prices of risk
reduces this choice to one parameter, that only affects two elements of the 4 x 4 factor
transition matrix. Thus, we are able to learn a lot about true-measure dynamics from the
cross section.

For example, movements in yields are dominated by a “level factor” in which all yields
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Figure 1: Forecasts of the one-year rate. The top panel uses VAR at one-year horizon of
the 5 Fama-Bliss forward rates. The bottom panel forecasts changes in forward rates with
forward-spot spreads.

move together by approximately the same amount. To make sense of this, any model must
assign risk-neutral probabilities in which interest rates have a large permanent component.
The “level factor” must have an autoregressive coefficient near one. We show how market
prices of risk cannot alter this conclusion, so we estimate a very persistent real-measure
transition matrix as well, with results that look more like the cointegrated specification of
Figure 1, even though the model is written in levels.

Sampling uncertainty remains, of course, primarily coming from uncertainty about the
true means of the factors, and to a lesser extent from the market price of risk. But it only
affects the model’s conclusions in very restricted ways.

Sampling uncertainty aside, the affine model is useful in order to characterize and under-
stand point estimates of risk premia. Risk premia are large, measured either way. Expected
future interest rates are quite different from forward rates. A pure forecasting approach
leaves them as simple undigested residuals. The affine model connects many elements of
a time-series representation of bond yields. First, we find that variation over time in ex-
pected returns of all maturities can be captured in a single state variable, which we dub the
“return-forecasting factor”, and which is not spanned by standard level, slope, and curvature
factors.



Second, we find that slope and curvature movements forecast future movements in the
return-forecasting factor. Expected returns are not just an AR(1) process that one can tack
on orthogonally to a standard term structure model. If the slope or curvature of the term
structure is large, future risk premia are large, even if current risk premia are zero. Since
today’s 10 year forward rate reflects 10 years of return premia, these factors are important
for understanding long term forward rates. Understanding this term structure of risk premia
is a central theme.

Third, we find that time-varying expected bond returns correspond entirely to compen-
sation for exposure to risk of a “level” shock. The market prices of risk of expected-return,
slope, and curvature shocks are almost exactly zero. Thus, our representation of time-varying
risk premia, which potentially requires 16 numbers (a 4 x 4 matrix of loadings of each factor
on each shock) turns out to require only one parameter. Market prices of risk depend on
only one variable (the return-forecasting factor) and are earned in compensation for exposure
only to one shock (the level shock), and only a single parameter (\y;) describes the entire
transformation from risk-neutral to actual dynamics.

This last finding also paves the way to an economic understanding of risk premia in the
term structure. If one wants to understand expected returns as compensation for exposure
to macroeconomic shocks, those shocks must be shocks that have “level” effects on the term
structure. As a counterexample, monetary policy shocks are typically estimated to have a
“slope” effect on the term structure. We at least learn one variable that is not responsible
for risk premia in the term structure.

1.1 Literature

The current literature documenting the failure of the expectations hypothesis goes back to
the 1980s. Fama and Bliss (1987) and Campbell and Shiller (1991) showed that the particular
forward rates that should forecast spot rates do not do so at a one-year horizon, and instead
they forecast excess returns. However, Fama and Bliss also showed that forward-spot spreads
do seem to forecast changes in interest rates at longer horizons, so the total impact on yield
premia remains to be seen. Stambaugh (1988) and Cochrane and Piazzesi (2005) extend the
finding of time-varying expected bond returns by forecasting returns with all available yields,
not just single yields with specific maturities, finding substantially more return predictability.
Piazzesi and Swanson (2004) document large risk premia in the short-term Federal Funds
futures market.

The paper closest to ours is Kim and Wright (2005). Kim and Wright fit a three-factor
constant-volatility affine model to weekly bond data, with the same purpose of decomposing
observed yield and forward curves into expectations of future interest rates and risk premia.
In particular, they find that the 50 basis point decline in the 10 year zero coupon yield
between June 29 2004 and July 29 2005 includes an 80 basis point decline in term premium,
implying a 30 basis point rise in the 10 year average of expected future interest rates. They
estimate a 150 basis point decline in the 10 year instantaneous forward rate, of which 120
basis points are a decline in the corresponding risk premium. (p. 11.)

The main difference is implementation. We estimate our model with a stronger focus
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on matching direct estimates of one-year expected returns. In fact, we judiciously select
the four factors in our yield curve model so that it can exactly match the OLS regression
results for excess bond returns. These factors turn out to be traditional level, slope and
curvature factors combined with the return-forecasting factor from Cochrane and Piazzesi
(2005). Kim and Wright specify three latent factors and focus on matching interest rates
forecasts at various horizons. We explore risk premia in great detail. Kim and Wright
estimate weekly dynamics, raising them to the 520th power to find implications for 10 year
forward rates. We estimate annual dynamics, check them against direct long-term forecasts,
and investigate a cointegration specification for tying down the long run. Kim and Wright’s
estimation follows Kim and Orphanides (2005) in treating Blue Chip Financial Forecasts of
interest rates as observable conditional expected values of future interest rates, at least after
correcting for possibly autocorrelated measurement errors. Kim and Wright also have a nice
summary of stories told about the recent yield curve movements.

Rudebusch, Swanson, and Wu (2006) fit “Macro-Finance” models to the yield curve.
These models are based on observable macroeconomic factors rather than just bond yields.
As a result they do not always fit the yield curve — expected interest rates plus risk premium
can fail to add up to the observed yield. The models amount to very sophisticated regressions
of yields on macroeconomic variables. They find two such models fit well before 2004, but
produce large negative residuals for yields in the recent period, which they argue is a measure
that something unexplained or unusual is in fact going on, that there is in this sense a
“conundrum.” They investigate a number of popular stories and quantitatively evaluate a
number of them. In particular, they notice that declines in various measures of volatility
correlate well with the “conundrum.” Since their model does not have time-varying volatility,
this finding suggests that term structure models that include time-varying volatilities may
be important for understanding this period.

Kozicki and Tinsley (2001) emphasize as we do how much long-horizon interest rate
forecasts depend on the specification of the long-run time series properties one imposes, such
as level-stationarity vs. unit roots as in our Figure 1, and how little the time-series data
help to distinguish these since both models fit short run dynamics equally well. Our hope is
that fitting the cross-section via an affine model reduces some of this uncertainty.

2 Yields, risk premia and affine model

2.1 Notation, expectations hypothesis, and risk premia
2.1.1 Notation

Denote prices and log prices by

(n)

p; ~ = log price of n-year discount bond at time ¢.
The log yield is
m_ 1 m
Y = npt



The log forward rate at time t for loans between time ¢t +n — 1 and ¢t + n is

9 = )
and the log holding period return from buying an n-year bond at time ¢ and selling it as an
n — 1 year bond at time ¢ + 1 is

(n)

n—1 n
P = pTh) )

=Dty — Pt
We denote excess log returns over the one-period rate by

n n 1
TI§+)1 = rt(+)1 - yt( )

2.1.2 Expectations hypothesis and risk premia

There are three conventional ways of capturing yield curve relationships. 1) The long-term
yield is average of expected future short term rates plus a risk premium 2) The forward rate
is the expected future short rate plus a risk premium, and 3) The expected one period return
on long term bonds equals the expected return on short term bonds plus a risk premium. In
equations,

n 1 n
g = ~E; (yt(” +yh +y§fn71) +rpy™ (1)
= Bl ) e (2)
E(r) =y +rprf” (3)

One can think of these equations as definitions of the respective risk premia. These three
statements are equivalent, in the sense that if one equation holds with zero risk premium
or a risk premium that is constant over time, all the other equations hold with zero risk
premium or a risk premium that is constant over time as well.

Each statement has a portfolio interpretation. The yield-curve risk premium is the av-
erage expected return from holding a n-year bond to maturity, financed by a sequence of
one-year bonds. The forward risk premium is the expected return from holding an n-year
bond to maturity, financed first by holding an n — 1 year bond to maturity and then with a
one-year bond from time ¢ +n — 1 to time ¢ + n; equivalently it is the expected return from
planning to borrow for a year in the future spot market and contracting today to lend in the
forward market. The return premium is the premium from holding an n-year bond for one
year, financed with a one-year bond.

Since the forward rate translates so transparently into expected future interest rates, we
focus our analysis on the forward rate curve, rather than the more conventionally-plotted
yield curve. Obviously, the two curves carry the same information.

2.1.3 Relating return and yield curve risk premia

The yield, forward, and return risk premia are not the same objects, but each can be derived
from the other. In particular, as we digest the information in the forward curves at each
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date, we want to understand the connection between risk premia in the forward curve — the
difference between forward rate and expected future spot rate — to the one-period return risk
premium about which we have more information and intuition.

By simply rearranging the definitions, the n-year forward rate equals the future one-year
yield plus the difference between n-1 year returns on an n-year bond and an n-1 year bond,

1 -1
ft(n) = y§+)n—1 + Tg;grn—l - ngj;rn)fl'

Since this identity holds ex-post, we can take expectations and express it ex-ante as well,
splitting the n-year forward rate to expected future one-year rate plus the risk premium,
which is the difference in expected return between an n-year bond held for n-1 years and an
n-1 year bond held to maturity,

f M = = E; (yt+n 1) + E; <Tt t)+n 1 7’$+711) 1) (4)

Figure 2 illustrates, and emphasizes how this relation is simply an identity.

Time

0 1 2

o ®

Log price

Figure 2: Example, following the price of 3 and 4 year bonds over time. The 4 year forward
rate is split into the one year rate in year 3 and risk premiums.

We want to relate bond prices ultimately to one-year risk premia, defined as one-year
expected returns in excess of the one-year rate. Therefore, we break the n — 1-year returns
to a sequence of one-year bond returns, also illustrated in Figure 2. The main representation
which we explore is then given by

ft(n)_Et (?Jt(}r)nA) E; <mt+)1 m§+1 )> +E; (mt+2 D mgi;)) +...+E <T‘T§<2F)n72> - (5)

In portfolio terms, the forward-spot spread breaks down to a sequence of one-year invest-
ments: This year, buy an n period bond, short an n-1 period bond. Next year, buy an n-1
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year bond, short an n-2 year bond, and so on and so forth. Relation (5) expresses the overall
forward premium as the sum of these investments.

Similarly, the yield curve risk premium — the difference between current yield and the
average of expected future short rates — is the average of expected future return premia of
declining maturity,

n 1 1 1 1 1 n n—1 2
o= B () 4 i) = o [ B (ralh) + B (refV) 4+ B (raf ) |
(6)
This somewhat simpler relationship between risk premia comes at the expense of a slightly
more complex relationship between yields and expected future interest rates in the expecta-
tions portion of the decomposition.

Formulas (4), (5) and (6) emphasize two important points. First, the forward premium
and the yield premium depend on expected future return premia as well as current return
premia. We will find interesting dynamics in return premia: they do not just follow expo-
nential decay. To understand forward or yield curve risk premia, we have to understand the
interesting term structure of risk premia.

Second, one gets the sense from empirical work (Fama and Bliss (1987), Chinn and Mered-
ith (2005), Boudoukh, Richardson and Whitelaw 2006)) that “the expectations hypothesis
works in the long run,” and that this might be a sensible restriction to impose. The formulas
reveal that this is not likely to be the case. The forward-spot spread cumulates expected
returns. Thus, if there is a positive risk premium, say E; (m‘ﬁ)l) - E; (rxg:l)) > 0 early
in the horizon, we would need to see an exactly offsetting negative risk premium later in

the investment horizon, in order to recover ft(n) —E (yt(i)n_l) for large n. It seems strained

to think that economic risk premia always change signs and integrate to zero. Instead, one
might naturally think (and we find) that risk premia die out exponentially as the horizon
increases. This natural pattern means that forward rates remain different from expected one-
year rates at any maturity. We can expect them to parallel each other at long maturities,
not to converge.

3 Affine Model Outline

Here we specify of the affine model, and outline our empirical procedure. The next few
sections discuss each element of the specification and empirical procedure in detail.

3.1 Model

We specify four observable factors, constructed from forward rates. The first factor z; is
a slight refinement of the the “bond-return forecasting factor” described in Cochrane and
Piazzesi (2005). It is a linear combination of yields or forward rates, formed as the largest
eigenvector of the expected-return covariance matrix. The remaining yield-curve factors
are level, slope and curvature factors, estimated from an eigenvalue decomposition of the
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forward-rate covariance matrix, orthogonalized with respect to the return-forecasting factor
x¢. (We run regressions f; = a + bx; + e;, and form factors from e;.) Thus, our factors are

X, = [ xy levely slope; curvey ]/.

The main observation of Cochrane and Piazzesi (2005) is that expected returns of all
maturities move together, so a single variable x; can describe the time-variation of expected
returns. Even if that variable were spanned by conventional level, slope and curvature factors,
it would be useful for our purpose to isolate it and then reorthogonalize the remaining factors.
In fact, as we document below, x; is not spanned by level, slope, and curvature, so it is
especially important to include it separately. Equivalently, curvature is not spanned by x,
level and slope, so we need four factors to describe the cross section of bond prices as well
as conventional three-factor models.

To construct the model, we use the discrete-time homoskedastic exponential-affine struc-
ture from Ang and Piazzesi (2003). We specify dynamics of the factors,

Xiy1 =+ 0Xy +vpq1; B (Ut+1U£+1) =V, (7)

with normally distributed shocks. We specify that the log nominal discount factor is a linear
function of the factors,

! 1 / !/
Myyy = exp (_50 — 07Xt — §>‘tV/\t - )‘tvt+1> (8)
>\t — )\0 + )\1Xt.

1, @, V., 09,01, \g, and Ay are parameters which we pick below. The time-varying market price
of risk \; generates a conditionally heteroskedastic discount factor, which we need to capture
time-varying expected excess returns.

We calculate the model’s predictions for bond prices recursively,
PV = log By (My1) = =80 — 0, X,
pgn) = log Ex [Mt+1 exp (pﬁ{l))] :

Calculating the expectations takes some algebra. The Appendix to Cochrane and Piazzesi
(2005), available on our websites, goes through the algebra in detail. We summarize the
results as follows: Log prices are linear (“affine”) functions of the state variables,

" = A, + B.X,.
The coefficients A,, and B,, can be computed recursively:

AOZO; BOZO
By = =0+ B¢" (9)

1
Apy1 = =00+ A, + B + §B;VBn



where p* and ¢* are defined as

Pr=0p—VN\ (10)
w=pu—V. (11)

This calculation gives us loadings — how much a price moves when a factor moves.

Having found prices, we can find the forward rate loadings, on which we focus,

M= Al + BI'X, (12)

where
B) = &0 (13)
Al =60 — B — %B;_J/Bnl. (14)

We find this A and Bf from our previous formulas for A and B and f™ = p{"™ — p{" =
(Ap-1 — An) + (B),_y — B],)X;. We recognize in (13) the risk-neutral expectation of future
one-year rates. Thus, u* and ¢" are “risk-neutral dynamics.”

With prices and forward rates, returns, expected returns, etc. all follow as functions of
the state variables. Expected returns are particularly useful for us

. 1
E (ra:§+>1> = BiVX— 5B, VB + B, VX, (15)
* 1 n *
= By (n— ") = 5o (ra) + Bl (6~ ¢) X,
We can also write the forward premium in terms of risk-neutral vs. actual probabilities as

n * * *7,— * *1,— 1
7 = 00+ 0 (I+6"+ 6%+ 6™ ) i+ 6" X, =SB VB
Byl . = S0+ 0 (I+d+¢+ . +¢" ) u+¢" X,

3.2 Parameters

As usual in term structure models, only the risk-neutral dynamics matter for determining
loadings. The relation between either prices (9) or forward rates (13)-(14) and state variables
X;, i.e. the coefficients A, B, or Al B! depend only on the risk-neutral versions ¢* and
w* of the transition dynamics, defined in (10)-(11), and the covariance matrix V.

We take V' from the innovation covariance matrix of an OLS estimate of the factor
dynamics (7). (We do not directly use the OLS estimated p and ¢, but we will contrast
that estimate with the p and ¢ estimated by our procedure. Updating V' and reestimating
makes very little difference.) Then, we choose risk-neutral dynamics ¢* and p* to match the
cross-section of forward rates. Since (13)-(14) nonlinear, this requires a search: we choose
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1" and ¢ to minimize the sum of squared differences between model predictions and actual
forward rates:
N T )
min 3" (4] + BIX, - 1) (16)
i
The 4-factor affine model produces a very good cross-sectional fit.

Market prices of risk A\g and Ay matter for our central question, evaluating risk premia and
finding true-measure expected interest rates and returns. Our inquiry leads to a restricted
specification:

A= do+MX, (17)
0 0O 0 00 Ty
. )\01 /\11 000 levelt
M=o T 0 00 0| slope
0 0O 00O curve;

The fact that all columns of A\; are zero other than the first means that expected returns
only vary over time with the return-forecasting factor z;. That is, of course, the whole point
of labeling z; the return-forecasting factor. The restriction that only the second row of )\, is
nonzero means that risk premia are earned only as compensation for exposure to level shocks.
As we will show, the data overwhelmingly support this restriction, because risk premia rise
essentially linearly with maturity, as does the return covariance with the level shock.

With these restrictions, we can easily estimate Ao and Ay;.  Via (15), any return-
forecasting regression has a constant that depends only on Ay and a slope coefficient that
only depends on A\y;. We choose a particularly convenient portfolio to run this regression,
and pick Ay; to match the regression coefficient. We choose Ay to match the means of the
factors. Given Ay, A1, we can now construct true-measure dynamics pu = p* + Vo and
¢ = ¢* + VA, and we can use the model to decompose the yield curve.

This is a method-of-moments estimation, so we use a GMM framework to evaluate as-
ymptotic sampling error.

4 Affine model specification and estimation

This section outlines the reason for and details of each step of our affine model specification
and estimation.

4.1 Data

It is convenient to summarize the yield curve by the yields of zero-coupon bonds at annually
spaced maturities. However, the underlying treasury bonds are coupon bonds with varying
maturities, so some fitting has to be done. We use two data sets. First, we use the Fama and
Bliss (1985) data on 1-5 year maturity zero coupon bond prices. This data is well known,

11



allowing a good comparison to previous work. Importantly, as we will see, the Fama and Bliss
data is not smoothed across maturities. It also has a long time span which is particularly
important for fitting risk premia. It is tempting to work with cleaner swap data, but if there
is only one recession in a data set, it’s hard to say much at all about recession-related risk
premia.

To incorporate longer maturities into the analysis, we also use the new Giirkaynak, Sack,
and Wright (2006) zero-coupon treasury yields. We use the data including maturities up to
15 years starting in 1971. By looking at longer maturities, we can check the behavior of our
forecasts and factor loadings at longer horizons. It is also important to check that the broad
brush of results hold up in a different dataset. The disadvantage, for some purposes, of this
dataset is that it consists of a fitted function which smooths across maturities. Giirkaynak,
Sack, and Wright estimate the Svennson (1994) six-parameter function for instantaneous
forward rates

f(n) = By + Ble_n/n + 52(”/7'1)6_71/71 + 53(”/72)6_71/72-

The parameters (3, 3, B4, 83, T1, T2 are different on each date. (35 and 79 only appear starting
in 1980, and jump in at unfortunately large values. This fact means that there can only be
one hump in the yield curve before that date. All of their yield, price, etc. “data” derive
from this fitted function. Granted the function is quite flexible, but by fitting a function
there are 6 degrees of freedom in 15 maturities; this is really a “6 factor model” of the term
structure. Yield curve models will be evaluated by how closely they match the functional
form, not necessarily by how well they match the underlying data. Finally, this functional
form cannot be generated by standard yield curve models. Since the asymptotic (n — o0)
forward rate and yield vary over time, there is an asymptotic arbitrage opportunity.

Now, the differences between the GSW and FB forward rate data are quite small on
most dates given date, so for many purposes the slight smoothing in GSW data may make
no difference. But excess return forecasts imply multiple differences of underlylng prlce data

— the excess return is rxg +)1 = pgil 2 p,E" + pgl), a forward-spot spread is ft yt =
p§” b_ pg " 4 pg ), and using all five prices on the right hand side of a return forecast allows

for further differencing — so small amounts of smoothing have the potential to lose a lot of
information in forecasting exercises.

4.2 One-year return forecasts mixing FB and GSW data

In Cochrane and Piazzesi (2005), we characterized one-period return risk premia by running
regressions of excess returns on all of the Fama-Bliss forward rates,

7“33751)1 = ol + /3&" o + 52 ft +.t 5 f + 5§+)1

We found that a single factor captured all the economically interesting variation in expected
returns. To an excellent approximation we can write

o= b, [%Jr%yt F ol 4 s O + el (18)
= b [Yfi]+e (19)
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The single “factor” or linear combination of forward rates (or yields) v/ f; captures expected
returns across all maturities.

Our first task is to extend the specification of return forecasts to incorporate the longer
maturities in the Giirkaynak, Sack, and Wright (GSW) data set. The conclusion of this
section is that the best forecast of the GSW excess returns remains to regress them on a
three month average of the 5 FB forward rates, and we use that specification of one-year
risk premia in the rest of the paper.

We clearly need some reduction of right hand variables. Regressions using the 5 Fama-
Bliss prices, yields, or forward rates on the right hand side already raise the specter of
multicollinearity. Regressions using 15 maturities on the right hand side, generated from a
six-factor model, are obviously hopeless.

Table 1 presents the R? values of forecasting one-year returns in the GSW data from for-
ward rates. We evaluate overall forecastability by the regression of average (across maturity)
returns

LB
TTi41 = 11 Z mgﬂ
n=2

on forward rates. The same patterns hold for individual-maturity bond returns.

regW oon | rafB | raSY on
Right hand variables | fGSW  fFB | on fFB | fFB — 4y
f1-£5 0.29 0.35] 0.33 0.32
f1, 13, 15 0.26  0.33 | 0.31 0.29
f1-f15 0.38
3 mo. MA, f1-5 0.31 0.46 | 0.42 0.44
3 mo. MA, f1-f15 0.48

Table 1. R? values for forecasting average (across maturity) excess returns
TTip1 = 14 Doms rzl™. GSW denotes Giirkaynak, Sack, and Wright (2006)
forward rate data. FB denotes Fama Bliss (1986) data, updated by CRSP. {1-f5
uses one to five year forward rates; fl, £3, f5 use only the one, three, and five
year forward rates; f1-f15 uses one to 15 year forward rates. 3 mo. MA uses
three month moving averages of the right hand variables. Overlapping monthly
observations of one-year return forecasts 1971-2006.

In the first row, we forecast GSW returns with the first 5 forward rates, as in our 2005
paper. The R? is a respectable 0.29. However, the regression coefficients (not shown) have
the strong W shape suggestive of multicollinearity rather than the tent-shape we found in FB
data. When we regress the GSW returns on the FB forward rates, we obtain much better
R? of 0.35, and exactly the same tent-shaped pattern of coefficients that we find regressing
FB returns on FB forward rates. This is even better than the 0.33 R? we find in regressing
FB forward rates on their own returns.

This finding suggests ill effects of smoothing across maturities in the GSW data. (The top
left panel of Figure 17, discussed below, plots a revealing data point.) The GSW smoothing
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removes some measurement error along with the forecasting signal, which is why when we
use it to measure returns on the left-hand side, it measures those returns a little more cleanly
and delivers a higher R? than the FB returns.

In the second row of Table 1, we use only the 1, 3, and 5 year maturities to forecast. This
forecast loses very little R?, and the coefficients show the familiar tent shape (not shown).
Though the extreme multicollinearity has been eliminated, the FB forwards still forecast the
GSW returns better than do the GSW forwards.

In the third row, we report what might seem the natural extension of our 2005 approach,
forecasting the GSW return with all 15 GSW forward rates on the right hand side. The R?
rises to an apparently attractive 0.38. However, the coefficients (not shown) are an unin-
terpretable combination of strong positive and negative numbers, the clear sign of extreme
multicollinearity. When one smooths out independent variation in forward rates, as the
GSW 6-factor fit does, then one loses the ability to run multiple regressions with 15 or even
5 right hand variables, and measure the separate contributions of each right hand variable
with any precision. In addition the 0.38 R? (unadjusted) is barely larger than the 0.35 R?
obtained from the 5 Fama-Bliss forward rates.

In our 2005 paper, we found that three-month moving averages of forward rates had better
forecast power than the last month alone, which we attributed to small i.i.d. measurement
errors. The last two rows of Table 1 show forecasts with these moving averages. All of the
R? improve. In particular, the 5 FB forward rates give an impressive 0.46 R2. Interestingly,
the R? using the GSW data also improve, suggesting that their cross-sectional smoothing
does not render their forward rates Markovian either.

Looking at individual maturities (not shown) all of these regressions show the one-factor
structure, which (as opposed to the shape of the coefficients) is the major message of our 2005
paper. Whatever the linear combination of forward rates is that forecasts excess returns, the
same linear combination on the right hand side forecasts returns of any maturity on the left
hand side.

We conclude that the 5 Fama-Bliss forward rates capture all the information in the 15
GSW forward rates about future returns, and more. We therefore construct our risk premium
estimates for the GSW data by running regressions on the FB data.

Forecasting the F'B returns on the left hand side produces nearly identical coefficients
and excess return forecasts (not shown) to go with the quite similar R? values shown in the
ray 5y column. There seems to be little problem with using GSW vs FB returns, i.e. left-hand
side variables.

One may worry about level effects in expected returns as much as one does in yield
forecasting. Perhaps the success of all these forecasts just comes down to saying expected
returns are high when interest rates are high, i.e. exploiting ex-post knowledge that the
1980s were a great decade for long-term bondholders. The final column of Table 1 forecasts
excess returns using only forward rate spreads, thus ruling out the level effect. We see that
the R? is hardly lower, and plots (quite similar to Figure 4 below) of the fitted values are
nearly identical. This short-term return forecast is not driven by a level effect.
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4.3 The return-forecasting factor x

Having isolated the best set of right-hand variables, we study expected excess returns of
individual bonds in detail. Given the results of Table 1, we use the Fama-Bliss data to
construct the return-forecasting factor. We regress the 14 GSW excess returns on a three
month moving average of the five FB forward rates,

raf’ = ot BT +en (20)
(14x1) = (14x1)+(14x5)(5x1)+(14x1)

Using the Fama-Bliss data on the right-hand side solves the issue of multicollinearity in the
GSW data. We do not get to learn how longer maturity forward rates might enter into the
return-forecasting function, i.e. how the tent-shape pattern across the first five forward rates
is modified by or extended to longer maturities, but it is clear from Table 1 that there are not
enough degrees of freedom left in the GSW data for us to do that. We do have a right-hand
variable that significantly forecasts the GSW returns, and that is all that the factor model
requires. (The R? results of Table 1 and discussion of coefficient patterns extend to the
individual maturities.)

We pursue one variation. One should be concerned with any regression that has the
level of yields or forwards on the right hand side, as those variables have a large increase to
1980 and decrease thereafter. A regression might just be picking up these two data points.
Technically, the level of yields or forwards contains a component that if it does not have a
pure unit root has a root very close to unity. With these problems in mind, we also construct
a return-forecasting factor that only uses spread information. We denote spreads with a
tilde,

r(n n 1
=g =
o= | @ j® fa . ]
Then the spread specification of the return forecast is

rafSV = a+ BFFE + 441 (21)
(14x1) = (14x1)+(14x4)(4x1)+ (14 x1)
Given our concern about overfitting regressions using “level” right hand variables, we adopt
this as the default specification, though the results are quite similar done either way.

Next, using either specification, we form a factor decomposition of expected returns by
eigenvalue-decomposing the covariance matrix of expected returns

QA Q. = cov [Ey(rzfV)] = cov(BFP).

(The Appendix briefly reviews factor models formed by eigenvalue decompositions.)

Figure 3 plots the loadings — the columns of (), — in this exercise. These loadings tell
us how much expected excess returns of each maturity move when the corresponding factor
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moves; they are regression coefficients of expected excess returns on the factors. The results
(not shown) are almost exactly the same for the level specification, based on cov(BfIP).

The caption gives the standard deviations of the factors o; = /A,; and the fractions of
variance 0?2 = A.;/ > ;\rj explained by the factors. We find that the first factor utterly
dominates this covariance matrix of expected returns, accounting for 99.9% of the variance
of expected returns. We change almost nothing by imposing a single-factor model that this
first factor describes movements in expected excess returns of all 14 maturities.

As shown in Figure 3, the dominant factor affects all maturities in the same direction, and
its effect on expected returns rises almost linearly with maturity. Expected excess returns
apparently all move in lockstep. Longer duration bonds’ expected returns are more sensitive
to changes in risk premia. This finding is reminiscent of the response of ex-post returns to
changes in a “level” factor: longer duration bonds have larger responses to level movements.
However, ex-post returns also move in response to changes in slope and curvature factors,
and that sort of response is missing in expected returns.

The other factors seem to have pretty and perhaps economically interpretable loadings.
However, the GSW data construction by smooth functions guarantees that even noise will
be pretty in this data set. Doing the same exercise with FB return data, the remaining
factors are clearly idiosyncratic movements in each maturity, as would be caused by pure
measurement or iid pricing errors.

We conclude that a single factor accounts for all of the economically-interesting! variation
in expected excess returns, and we follow that lead in constructing our factor representa-
tion. Thus, we define the return-forecasting factor by the eigenvector corresponding to this
eigenvalue,

T = ¢, By (rega) = q, (04 + 5ﬂFB) =qa++ 8

where ¢, denotes the column of (), corresponding to the largest eigenvalue, and the last
equality introduces the notation 7' = ¢..0.

Since the  have a tent-shaped form and ¢, weights them all positively, 7' = ¢.0 is a
familiar tent-shaped function of forward rates. Since @, is orthogonal, ¢.¢, = 1, and the
point of the one-factor model is that the regression coefficients of each maturity return on
forward rates are all proportional, 8 =~ ¢, so then ¢.5 ~ ¢,q.7 =7

If we start with the regression forecast of each excess return,
TTi1 = o+ Bfi + e
and we premultiply by ¢/, we obtain
Ei(gyraea) = o+ q. B[ = v (22)

Thus, the return-forecast factor x; is the linear combination of forward rates that forecasts the
portfolio ¢/rz:y1. We will use this fact to choose affine model parameters so that E; (¢.rz 1)
has a constant of zero and a slope on z; of one.

!The adjective is necessary because we cannot statistically reject the presence of additional factors. Minute
movements may nonetheless be well-measured. Cochrane and Piazzesi (2005) has an extended discussion of
this point.
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Figure 3: Factors in the covariance matrix of expected returns, regressing the 15 GSW
returns on the 5 FB forward spreads.

The single-factor restriction then says that other expected returns are, to an excellent
approximation, linear functions of this expected return, with ¢, as the constants of propor-
tionality:

B (reia) = a+Bfi

= a+ QT7,ft
= a+gqr (:Et - q;OZ)
Et (T«TtJrl) = (I - CIrq;) o+ qrZt (23)

Figure 4 plots the return-forecasting factor z;, calculated based on the levels and spreads
of forward rates. The plot shows the business-cycle nature of the premium in the 1980s,
and the early 1990s and 2000s. It also shows interesting business-cycle and inflation-related
premiums in the 1970s. The plot verifies that the spread and level specifications give nearly
identical results.

4.4 The return-forecast factor is not subsumed in level, slope and
curvature

One would hope that this return-forecast factor x; can be expressed as a linear combination
of conventional level, slope, and curvature factors. Then, we could describe yield curve
dynamics only in terms of these traditional factors. We would use our understanding of
expected excess returns only to impose structure on the three-factor dynamics. This hope
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Figure 4: Return-forecasting factor x; = 7' f; constructed from all forward rates (level) and
using only forward spreads (spreads).

turns out not to be fulfilled: the return-forecast factor is poorly spanned by level, slope and
curvature factors, so if we want to capture risk premia, we must include it as an extra factor.

The central question is, how well can we forecast excess returns using conventional yield
curve factors? In Table 2, we compare the forecasting performance of the return-forecast
factor with that of these conventional yield curve factors. We form the standard level, slope,
and curvature factors by an eigenvalue decomposition of the covariance matrix of forward
rates, QAQ" = cov(f;). The factors are formed by z;; = Q(:,7)’ f; where Q(:,7) denotes the
columns of @) corresponding to the three largest eigenvalues. The labels “level”, “slope”,
and “curvature” come from the shape of the loadings (and weights) Q(:,7). The first three
eigenvalues explain in turn 97.73, 2.16 and 0.10 percent of the variance of forward rates (this
is Aii/ > _;Aj5), adding up to 99.99% of the variance of forward rates explained. By any
factor-model fitting standards, these three factors appear sufficient on their own to capture
movements in the forward curve. In fact, the curvature factor is close to the threshold that
one would drop it, since it explains only 0.10 % of the variance of forward rates. We keep it,
to verify that the return-forecast factor is not just a proxy for this conventional curvature
factor.
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Ty level  slope  curve factord factord5 R?

% of var(f) 977 2.2 0.10  0.01 0.00

0.24 0.46

(9.00)
0.19 0.03
(0.80)
021 -1.72 0.13
(0.95) (-2.51)
022 -1.74 479 0.25

(111) (-2.72) (2.82)
020 -1.70 473 -028  -1549  0.34
(1.13) (-2.60) (2.80) (-0.09)  (-2.87)

Table 2. Regression coefficients, t-statistics and R? for forecasting the average
(across maturity) excess return 77,1 in GSW data, based on the return-forecast
factor x; and eigenvalue-decomposition factors of forward rates. The top row
gives the fraction of variance explained, 100 x A;/ z;il A;. Monthly observa-
tions of annual returns 1971-2006. Standard errors include a Hansen-Hodrick
correction for serial correlation due to overlap.

We focus on the forecasts of average (across maturity) returns 7z, 1. The results are quite
similar with other portfolios or individual bonds. Table 2 starts with the return-forecasting
factor, which is highly significant (in all cases, ignoring estimation error in factor formation)
and generates an 0.46 R%. By contrast, the dominant (97.7% of variance) level factor does
nothing to forecast returns. Slope does forecast returns, with a 0.13 R?, and curvature also
helps, raising the R? to 0.25. The return forecast factor is correlated with these conventional
yield curve factors, and conventional factors do capture some of the return forecastability in
the data. But considerable orthogonal movement in expected return remains. To span this
movement without using the return-forecasting factor directly, one must include additional,
usually ignored yield curve factors. For example, Table 2 shows that the tiny fifth factor
significantly helps to forecast returns (t = —2.87), and raises R? from 0.25 and 0.34. But
this still is not all the predictability in the data. The Fama-Bliss forward rates underlying
the return-forecasting factor evidently include additional small “factors” that are set to zero
in GSW’s smoothing algorithm, raising the R? another 12 percentage points. Forming level,
slope and curvature factors from yields rather than forward rates gives quite similar results,
as does imposing a unit root-cointegration structure in which the level factor is a parallel
shift and the remaining factors derive from an eigenvalue decomposition of the covariance of
yield or forward spreads.

In sum, Table 2 verifies that, in order to construct a factor model that reflects what we
know about return forecasting, we have to explicitly include the return-forecast factor, along
with the remaining yield curve factors. Clearly, it would be a mistake to ignore the leftover
portion of the return-forecast factor as we conventionally ignore the fourth and fifth factors
in representing the level of yields of forward rates, and as we have ignored factors past the
first one in representing the covariance of expected excess returns.
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4.5 Constructing factors

To capture the yield curve in a way that captures return premia, then, we need to augment
conventional yield curve factors by explicitly including the return-forecasting factor. Our
first step is to construct data on factors whose movements will describe the yield curve.

Since eigenvalue decompositions are so easy and insightful, we proceed by minimally
modifying that procedure. We start with the return forecast factor

Ty = CL/« (05 =+ 5J;tFB)

as defined above. We include the constant so that this factor has directly the interpretation
as the expected return of the portfolio ¢.rz;iq, i.e. so ¢.rxi1 = 0+ 1oy + €441, but the
location of constants is irrelevant as any constants added here will be subtracted later.

We define the remaining yield curve factors by an eigenvalue decomposition of the forward
covariance matrix, after orthogonalizing with respect to the return-forecasting factor. As
Table 1 shows, the usual level, slope and curvature factors are correlated with z;, and also
forecast returns. By orthogonalizing these factors, we create factors that are uncorrelated
with each other (always convenient), plus we have the attractive restriction that the factors
other than x; do not forecast one-year returns at all. We run regressions

tGSW =c+dr; + €.

(We write ¢ and d to save a and b for loadings, below.) Then we take the covariance
decomposition of the residual,

QAQ' = cov(ey),

and we define the remaining factors as

level, = Q(:,1) (c+e)
slope; = Q(,2) (c+e)
curve;, = Q(:,3) (c+e)

The labels “level” “slope” and “curvature” come ex-post from the shapes of the resulting
loadings, i.e. how much each forward rate moves when a factor moves, or from the similar
shapes of the weights Q(:,7) by which we form factors from forward residuals.

4.6 Fitting forwards — risk-neutral dynamics

At this point, we have constructed observable factors
X, = [ x; levely slope; curve, ]/.

The next step is to pick parameters &g, 61, V, u*, ¢* of the affine model in its risk-neutral form.
Given these parameters, we can calculate the model’s predicted loadings Af, Bf (13)-(14),
i.e. how each forward rate should load on factors by

= Al + BI'X,.
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We pick V' from an OLS estimate of transition dynamics

Xit1 = p+ ¢Xi +vpg; B (Ut+1U£+1) =V. (24)

We specify the model to have mean-zero factors, and therefore = 0. Therefore, we
de-mean the factors before proceeding. This is important to obtaining reasonable results.
We will have ¢ and ¢* with eigenvalues near one, and in fact in some estimates we do
not impose eigenvalues less than one so point estimates can have larger eigenvalues. The
model’s factor mean E(X) = (I — ¢)~' 11 is thus a very sensitive function of . And, as
we have known since the first Figure, long-term means are important to long-term forward
rate decompositions. By de-meaning the factors before starting, we make sure the model
produces the sample means of the factors, or at least that (I — ¢)E(X) = p. In essence, we
are parameterizing the model by the factor means E(X) rather than p. We therefore will
parameterize sample uncertainty in terms of uncertainty about E(X).

With E(X) = 0, u = 0, and the structure on market prices of risk described in (32)
below, we have

*

po= cov(v,u)\y
4x1) = (4x1)(1x1)

Thus, we search over parameters {dg, 01, Ao, ¢} .

We search over these paremeters to minimize the sum of squared differences between
model predictions and actual forward rates.

N T
min "y (Ag +BI'X, - ft(”))2 (25)

n=1 t=1
As a benchmark, we compute OLS regressions of forward rates on factors,
ft(n) =a, + b;LXt + &¢. (26)

The coefficients in this regression are the best any linear factor model can do to attain the
objective (25), so the comparison gives us some sense of how much the affine model structure
is affecting the results. The a,, b, do not embody the restrictions of an affine model. Thus,
we can also think of the minimization as finding the affine factor model loadings that are
closest to the regression-based loadings, weighted by the covariance matrix of the factors.

The errors in (25) are strongly correlated across maturities. If there were any difficulty
in this fit, or to do maximum likelihood, we should minimize a weighted sum. However, our
fitted forward rates are so close to the best achievable (26) that this refinement makes little
difference to the results.

Figure 5 presents the estimated loadings B/ and regression-based loadings b,. These
loadings answer the question “if a factor moves, how much does each forward rate f(
move?” A movement in the return-forecast factor z; sends short rates down and all long
rates up. The “level”, “slope” and “curvature” factors are so named because of the familiar
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and sensible shapes of the loadings. The level factor moves all forwards in the same direction.
The slope factor moves short rates up and long rates down, but with a much smoother pattern
than does the return-forecast factor . The curve factor induces a curved shape to forward
rates. Since the return-forecast factor explains so little of the variance of forward rates, the
other factors are not much altered by orthogonalizing with respect to the return-forecast
factor.

These loadings — how much each forward rate moves when a factor moves — are not the
same as the weights — how we construct each factor from forward rates. Expected returns
and z are still constructed by the familiar tent-shaped function of forward rates. The largest
eigenvector of the covariance matrix of expected returns ¢, is both the weight and the
loading of expected excess returns on the factors, but neither the weight nor loading relating
forward rates to factors. Similarly, the remaining factors are constructed from residuals in a
regression of forward rates on expected return factors, so the weights and loadings are equal
for those residuals, but not for the underlying forward rates.

Loading B on x Level
0.015 0.35
0.01 0.3
0.005 0.25
0 0.2
-0.005 0.15
-0.01 0.1
~0.015 Risk-neutral model i 0.05
O fon Xregression
-0.02 0
0 5 10 15 20 0 5 10 15 20
Maturity Maturity
Slope curve
0.6 0.4
0.2
0
-0.2
-0.4
. -0.6
0 5 10 15 20 0 5 10 15 20
Maturity Maturity

Figure 5: Affine model loadings, B in f™ = A/ + B/ X,. The line gives the loadings of the
affine model, found by searching over parameters 0g, 91, u*, ¢*. The circles give regression
coefficients of forward rates on the factors.

Figure 5 shows that the “affine model” loadings give a very good approximation to the
regression loadings. The structure of the affine model is clearly flexible enough to give an
excellent fit to the data. We present the estimates of the risk-neutral dynamics p*,¢* below
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and contrast them with estimates of the true-measure dynamics p, ¢.

Table 3 quantifies this observation with measures of model fit — how close forward rates
predicted by the model f; () = = Al + BJ' X, are to actual forward rates. The “Model” columns
give the result of the minimization (25), while the “Regression” columns give the result of
unconstrained regression (26). “Model-Reg.” characterizes the difference between the affine
model and regressions. The mean squared errors are less than 20 bp, with somewhat lower
mean absolute deviations.

M. S. E. M. A. D.
Model Regression | Model-Reg. ‘ Model Regression Model-Reg.
Baseline model | 16.3 9.8 13.0 12.3 6.2 10.4
Force eig<1 17.0 9.8 13.9 13.0 6.2 11.1
OLS-affine 171 9.8 136 136 6.2 135

Table 3. Affine model fits in basis points (1 = 0.01%) . M.S.E. gives the
1
273
mean squared error, [15 S * L ( fln)model _ ftn)> . M.A.D. gives mean

The “model” is the

affine model prediction f""™*% = Af 4+ BI'X,. “Regression” is the fitted value
of a regression of data on the four factors, ft(n) =a, + b0, X; + . “Model-Reg.”
gives the difference between the two fitted values, rather than model - data. Force
Eig<1 describes the model in which we force the maximum eigenvalue of ¢* to
be less than one.

absolute deviations, %5 ,115 T t 1 H(ft )model ft(")) )

4.7 Market prices of risk

We choose market prices of risk A\g, A; to match the cross-section of bond expected returns.
From 1 = E; (M;1R;11) and (8) expected returns follow

1
Ey [rag ] + 502(7"%“) = cov(rx41, V4 1) (Ao + M Xy) (27)

(We have specified a conditionally homoskedastic model, so o, and cov; do not need ¢ sub-
scripts.) Thus \; gives the “market price of risk” of the v, shocks, i.e. it says how much an
expected return must rise to compensate for covariance of that return with a given shock.

We specified the regression-based single-factor model for expected returns,
Et (rxt+1) = ([ - QT%,»)OK + qrZ¢. (28)
This model means that all but the first column of A\; must equal zero, so that expected
returns in (27) only depend on the return-forecast factor x;. Putting together (27) and (28),
and denoting by Ay, the first column of A\;, we have

—02(roy) = cov(rzi, Uy 1) Ao (29)

(I = @g)a+ g

¢ = cov(rT, vy ) Ma (30)
(14x 1) = (14x4)(4x1).
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The first equation describes the constant term, or, roughly, how unconditional mean returns
are generated by covariances with shocks times market prices of risk. The second equation
describes how the time-varying component of mean returns is generated by covariances with
shocks times market prices of risk. Each is a four-factor model; covariance of returns with
innovations to each of the four factors can generate mean returns.

To understand these market prices of risk, we can use the time-series of excess returns
to estimate the variance term, and that along with the time-series of factor shocks vy, to
estimate the covariance covy(ra¢i1,v;,,). Figure 6 presents the the left-hand, “expected
return” side of (30), represented by the solid black line labeled ¢,, and the covariances of
returns with shocks to each of the factors —the covariance terms in the right hand side of
(30), represented by the dashed colored lines with triangles. The job of the cross-sectional
regression is to find the linear combination of the four covariance lines that most closely
matches the expected return line. The graph shows clearly that the expected return line is
already almost a perfect match to the covariances with the level shock. Both rise nearly
linearly with maturity. Longer maturity bonds have expected returns that vary more strongly
with the state variable x; — hence the rise of the expected return or ¢, line — and longer
maturity bonds are more affected ex-post when the level shock hits — hence the rise in the
cov(r, level) line. By contrast, the covariance of returns with the slope and return-forecast
factors have completely the wrong shape. Thus, it’s clear from the graph that we will obtain
an excellent approximation by setting the market prices of risk of expected-return, slope, and
curvature shocks to zero, and understanding all time-varying risk premia as compensation
for covariance with the level shock. Figure 6 presents the fitted value with this restriction,
the multiple of cov(r, level) closest to the g, line, with slope A estimated by cross-sectional
regression, and it is so close to ¢, as to be nearly visually indistinguishable. Unsurprisingly,
the simlar graph of the left hand side of (29) and covariances shows the same pattern, so
that the market prices of risk in A\g other than level shock can be set to zero.

In sum, it seems an excellent approximation to specify that the time-varying market price
of risk comes only from covariance of returns with the level shock. This finding is the first
step in the important task of coming to an economic understanding of bond risk premia.
Eventually, we want to understand what macroeconomic shocks underlie bond risk premia.
Now we know at least that those shocks must be shocks that have level effects on the forward
curve. For a counterexample, monetary policy shocks are usually estimated to have a slope
effect on the yield curve, affecting short term rates, but either leaving long term rates alone
or even sending them in the other direction. With such an estimate, the bond risk premium
will not be earned as compensation for the risk of monetary policy shocks.

We have now simplified market prices of risk greatly in two dimensions: the market prices
of the return-forecast, slope and curvature shocks are zero, and the market prices only vary
as a function of the return-forecast factor. An equation is worth a thousand words here: the
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Figure 6: Loading g, of expected excess returns on the return-forecasting factor x;, covariance
of returns with factor shocks, and fitted values. The fitted value is the OLS cross-sectional
regression of ¢, on cov(r, Vjeper), the dashed line nearly colinear with g.. The covariance lines
are rescaled to fit on the graph.

market prices of risk in (8) and (10)-(11) take the form

)\t = /\0+>\1Xt (31)
0 0 00O Ty
B Aot A 0 0 O level,
A=l o T o 00 0] slope (32)
0 0 00O curve;

The single-factor expected return model only requires that the last three columns of )\,
are zero. The restriction that the first and last two rows of Ay, A\; are zero is a separate
restriction, that can be imposed or not, and which comes from examination of expected
returns vs. covariances as in Figure 6 and the corresponding regressions.

4.8 Market prices of risk: estimates

The natural procedure, then, is to estimate market prices of risk (now down to two numbers),
so that the model reproduces the forecasting regressions that describe bond expected returns.
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The affine model predicts expected returns

n 1
Et <7“.T§+)1> = [B;_1VA0 — 58;1_1VBn1‘| + |:B;.L_1V)\1i| Xt

(again, we relegate the algebra to the appendix). Given the simplification of (32), we can
write this equation as

" 1
E, <7”x§+)1) = {B;_lcov(vt,vie“d))\m — EB;_lVBn_l] + [B;_lcov(vt,vie”d)} Az (33)

We have 14 expected returns, each a function of a constant and x;, which we wish to
match with two numbers Ay, and \y;. Anything we do will amount to choosing one portfolio
to match. The most natural portfolio is the one weighted by ¢, since it recovers the return-
forecasting factor xy, i.e.

E; (q;rxgi)l) = 2.

(See equation (22).) Substituting in (33), we therefore can estimate the market price of risk

Ay easily by setting the regression coefficient of q,ﬁrxgi)l on z; to one,

1 = ¢/ Beov(vy, v} Ay

ie.,

A= (34)

1
q".Bcov(vy, vievel)

where B is the 14 x 4 matrix whose nth row is B,,_1

We could similarly estimate the constant portion of the market price of risk as the value
that sets the intercept in the forecasting regression of q,’nrxgi)l on z; to zero,

1
q. Beov(vy, vl Ny = Eq; [B),_,VBy,1]

and hence

1
Aot = 5(]; [B;LflVanl] Aul

where the notation || means to make a vector out of the enclosed quantity over the index n.
However, we estimated \g; above to choose the risk-neutral mean p* in such a way that
1 = 0 exactly, i.e. that the model produces the demeaned factors. We check that the two

estimates are trivially different, and that the intercept of the q;rxgi)l is not importantly
different from zero.

With A\g; and Ay; estimated, we now can recover true-measure dynamics ¢ = ¢* + V.
We have i = 0 already. All the parameters are estimated, and we can now use the model.
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5 Estimates and decompositions

5.1 Transition matrices 1, ¢, and impulse-responses

Table 4 presents estimates of the transition matrices, ;1 and ¢. Figures 7 and 8 present cor-
responding impulse-response functions. These functions are the responses X;.1 = ¢X; that
follow from each element of X being set to one with the others zero in turn. We have not
orthogonalized the shocks (though only level and return forecast shocks have much correla-
tion; as usual, level slope and curvature factors defined from forward rates are quite similar
to similar factors defined from innovations, so orthogonal factors have nearly orthogonal
shocks), and these response functions do not have a structural interpretation. The point of
the response functions is merely a simple way to digest the dynamics, as an alternative to
staring at a 4 x 4 matrix of numbers.

100xpu  x level slope curve | mse R2?

Risk-neutral: | p* o

X -1.39 0.35 -0.02 -1.05 819 | 254
level 0.68 0.03 098 -0.21 -0.22 |4.77
slope 0.00 0.00 -0.02 0.76 0.77 | 1.73
curve 0.00 0.00 -0.01 0.02 0.70 | 0.65
Actual: 1 1)

X 0 0.61 -0.02 -1.05 8.19 |27.0
level 0 -0.09 098 -0.21 -0.22 | 3.65
slope 0 -0.00 -0.02 0.76 0.77 | 1.74
curve 0 0.00 -0.01 0.02 0.70 | 0.65

Table 4. Estimates of model dynamics, p and ¢ in Xy11 = p + ¢ X + vey.
leig| gives the eigenvalues of ¢, in order. mse is mean-squared error.

x level slope curve
X 1 -051 0.16 -0.07
level 1 -0.07 0.06
slope 1 -0.01
curve 1

Table 5. Correlation matrix of shocks V', in X, 1 = p+ ¢X; + vi4q,V =
cov(vi41v;,1). OLS estimates

The first panel of Table 4 and Figure 7 present the risk-neutral dynamics ¢*. A shock
to the return-forecast factor z dissipates quickly, with a 0.35 correlation coefficient. (first
column of Table 4, top left graph of Figure 7.) It has very little effect on the other factors.
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Figure 7: Impulse-response function of risk-neutral transition matrix ¢*. The z response is
divided by two to fit on the same scale.

A movement in the level factor is essentially a “parallel shift” sending all forward rates up
and lasting essentially forever with a 0.98 coefficient (second column of Table 4, top right
panel of Figure 7). A slope shock decays at medium pace with a 0.76 coefficient. However,
it also sets off movements in the return-forecast factor and level. A curvature shock also
decays moderately with a 0.70 coefficient, and sets off movements in all the other factors.

The extreme persistence of the level shock (top right panel of Figure 7) is important. It is
a natural finding: nearly “parallel shifts” or a “level factor” dominate yield curve movements
in just about any characterization. Risk neutral dynamics must make sense of this movement
via the expectations hypothesis (plus minor variance terms). The only way to make sense
of a level movement in yields or forward rates is to suppose that expected future interest
rates also rise in parallel, i.e. that dynamics have a root very close to unity. A motivating
issue of our investigation, starting with Figure 1, is whether to model interest rate forecasts
as mean-reverting or containing an important random walk component. The risk-neutral
dynamics suggest something close to a random walk, for clear reasons: this is the only way
to generate a level factor. The remaining question is, what do our estimates of true-measure
¢ dynamics say?

The middle panel of Table 4 and Figure 8 presents these central estimates of ¢. Again, we
form ¢* first to match the cross-section of forward rates, and then we estimate ¢ = ¢*+V Ay,

28



Resp. to x shock —— Return—forecast Resp. to level shock

0.6 15
T ;
= © = level e
0.4 -
—— slope 1 @=06- .Q-Q-Q—Q'e'-o
curve 1
e 02 € 1
[} [
e © 0511
@ 4 ¢ 1
o U,—"\-"- I e A 5 o
) . 1 ‘__"_a——-H‘—'E_E'_H
~
(] -~ Qs RO 4 ‘- 1
0.2 0"0‘9'0-9-9"‘1’ ' v~MV
-0.4 -0.5
2 4 6 8 10 2 4 6 8 10
Years Years
Resp. to slope shock Resp. to curve shock
1.2 6

Percent
=

Percent

Figure 8: Impulse-response function of the real-measure transition matrix ¢. The x response
is divided by two to fit on the same scale.

and (32) means this has the restricted form:

cov (v, vy)
cov(vy, vy)
cov(vg, vy)
cov(ve, vy)

¢=0¢"+ Aol

o O O
o O O O
o O OO

0

Thus ¢ and ¢* only differ in their first column, and that in a constrained way, according to
the covariance of shocks with the level shock. Finally, the bottom two elements are nearly
zero — shocks other than x and level are nearly uncorrelated (Table 5) — so ¢ and ¢* really
only differ in the first two elements. We italicize the first column of ¢ in Table 4 to emphasize
that the remaining columns are identical to the risk-neutral columns.

This relationship is important. Estimates of transition dynamics built on time-series
evidence are subject to substantial statistical uncertainty. Estimates of the risk-neutral
dynamics are, by contrast, measured with high precision. The only error is the 16 bp or
so fitting or “measurement” error in the regression of contemporaneous forward rates on
factors — this is not a forecasting regression — and that error can be made arbitrarily small by
increasing the number of factors. If the data followed an exact factor model, we would know
the risk-neutral dynamics with perfect precision, even in a short time-series with substantial
uncertainty in transition-matrix estimates.
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If we allow arbitrary market prices of risk, all this precision vanishes in our estimate of
¢. However, the compelling structure we are put on market prices of risk means that all but
the first column of ¢ — and, really, all but the top two elements — are measured from the
cross-sectional, risk-neutral dynamics ¢* ignoring any time-series evidence.

In particular, the ¢;; element must remain unchanged at 0.98 (middle panel of Table 4,
top right plot of Figure 8), so level shocks still have very long-lasting effects. To avoid this
conclusion; to get mean-reversion like we find in the OLS dynamics, we would need expected
returns to vary with the level factor. The finding that they do not — that 99.9% of the
variance of expected returns comes from the x factor — drives our estimate of a much more
persistent level factor than indicated by OLS dynamics.

The remaining elements of the actual dynamics ¢ (Middle panel, Table 4, Figure 8)
are only slightly changed from the risk-neutral counterparts. Of course these changes are
important, as if there are no changes then returns are not forecastable and there are no
risk premia. The return-forecast factor is a bit more persistent, with a 0.61 own coefficient
rather than 0.35, and a more drawn-out response. As the ¢, coefficient is increased, a
return-forecast = shock is now followed by a slow decline in the level factor. The pattern of
the other response functions is broadly unchanged. There is an interesting block structure:
Level shocks have no effect on anything else (top right). Return forecast shocks persist and
set of a small level effect, with no effect on the other factors. Slope shocks affect slope, level,
and return-forecast, but not curve. Curve shocks affect all of the factors.

Life would be simple if expected returns followed a simple AR(1) process, disconnected
from other factor movements. Then we could largely avoid questions of the “term structure of
risk premia.” When current expected returns are high, so would be future expected returns,
and forward rates of all maturities would be higher than spot rates. We could legitimately
talk about “the” forward premium. All the terms of the forward premium decomposition
(5) or yield premium decomposition (6) would move together. The fact that slope and curve
shocks feed back to the expected return factor shows that we cannot simplify the world in
this way. If slope is high, even if current expected returns are zero (no x movement), we
forecast that future expected returns will decline, and vice-versa for curvature (see the x
responses to slope and curve shocks in Figure 8, or the loadings in the x rows of Table 3).
The forward and yield premium decompositions can feature interesting term-structures of
risk premia. Since this feature comes from the well-measured second through fourth columns
of ¢*, unaffected by market prices of risk, it is not easily avoidable by appeal to sampling
error.

The responses of the risk-neutral ¢* and estimated ¢ dynamics do not seem to be settling
down after the 10 years plotted in Figures 7 and 8. In fact, the maximum eigenvalue of ¢* is
1.02 and the maximum eigenvalue of ¢ is 1.05, both slightly larger than one. If bonds of all
maturity are traded, an eigenvalue ¢* above one leads to an arbitrage opportunity, so can be
ruled out. We can easily impose that the eigenvalues of ¢* are less than one in our estimation
procedure. Doing so produces a very slight deterioration in cross sectional fit, seen in Table
3. Eigenvalues of ¢* slightly greater than one let the model fit the slight upward curve in
the x and level loadings, the top two panels of Figure 5. Imposing an eigenvalue less than
one makes the right side of these loadings a straight line. Since the long-term data are fitted
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from a statistical model that does not impose eigenvalues less than one, these may well be
spurious phenomena. However, almost nothing of substance for predictions out to 20 year
time or maturity is changed by imposing eigenvalues of ¢* less than one vs. leaving the
estimate as is, so we leave the simple result. Obviously, taking extreme long-maturity limits
of the estimates is dangerous in any case. Given either estimate of ¢, the largest eigenvalue
of ¢ is a gently rising function of the market price of risk. Using a lower market price of risk
makes almost no difference. We can obtain an eigenvalue of ¢ less than one only by forcing
the eigenvalue of ¢* to be correspondingly lower than one. Again, this improves the esthetics
of the right hand side of the graphs, but makes essentially no difference to our results.
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Figure 9: Response of expected future one-year yield, current forward rates, and return-
forecast factor x to unit shocks, under the risk-neutral transition matrix ¢*.

As another perhaps more intuitive way to understand the dynamics, Figures 9 and 10
plot the responses of expected one year yields Etygr)n_l , current forward rates ft(") and
the expected future return-forecast factor x; to each of the factor shocks. Under risk-neutral
dynamics in Figure 9, the response of expected future yields is, of course, exactly the same as
the response of current forward rates. A change in the return forecast factor quietly decays
(top left panel). A change in the level factor sends current forward rates and expected future
interest rates up for a long maturity and time, of course. Slope and curvature shocks lead
to sensibly shaped movements in expected future rates and current yields; each leads to
substantial movements in the return-forecast factor as seen above.
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Figure 10: Response of expected future one-year yield, current forward rates, and return-
forecast factor x to unit shocks, under the estimated transition matrix ¢.

In our estimate of the real transition matrix ¢, Figure 10, we can see the crucial diver-
gence between current forward rates and expected future interest rates. This is the central
question for a yield curve decomposition, and in this figure we can see how the forward curve
decomposition at any date depends on factor configurations at that date. If there is a large
return-forecast factor x;, and the other factors are zero (top left panel), we see that current
forwards are nearly constant. Expected future interest rates decline, however, so forwards
exceed expected future interest rates. As the expected return x reverts, the forward and
expected yield curves become parallel, all as one expects from the forward decomposition
(5).

However, movement in the other factors can also lead to a divergence between forward
rates and expected future interest rates, despite no current risk premium. A level shock
leads to a slow decline in future risk premia, so forwards do not rise as much as expected
future yields. Here is the source of the slightly greater eigenvalue of actual vs. risk neutral

dynamics — since expected returns decline in response to the level shock, expected future
yields rise even more than forward rates, which follow the “level” pattern.

More importantly, a large slope or curvature set off a rise in future expected returns so
forwards move more than yields. These are crucially important responses in our decomposi-
tions. To get a large spread between forward rates and expected future spot rates, we need
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not so much a large current expected return, seen in the x factor, but large slope or cur-
vature, which can forecast large and, more importantly, long-lived, movements in expected
future one-year return premia.

5.2 Decompositions

We can now use the estimated model to decompose the yield curve. At any moment in time,
how much of the forward rate corresponds to expected future interest rates, and how much to
risk premia? What is the term structure of such risk premia — are forward rates responding
to current expected excess returns, or to expectations of future expected excess returns?

10 year forward decomposition, Risk—-neutral model
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Figure 11: Current one-year rate, 10 year forward rate ft(n), and expected one-year rate
Etyﬁ)g, generated from the risk-neutral model.

Figure 11 starts by plotting the current one-year rate, ygl), the 10 year forward rate ft(lo)
and the expected one-year rate Etyfi)g as generated by the risk-neutral model. Risk neutral
isn’t quite expectations hypothesis because of %02 terms, but the plot shows that these terms
are small, and do not matter much for the rest of our discussion

Figures 12 and 13 present the corresponding decompositions computed from our esti-
mated affine model. You can see sharp divergences between forward rates and expected
future interest rates. Far from reverting quickly to the mean as in the top panel of Figure
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5 year forward decomposition, Return—forecast model
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Figure 12: Current one-year rate y§”, 5 year forward rate ft(5), and expected one-year rate

Etyt(_lg4 computed from estimated affine model.

1, expected future interest rates track current rates through the three rate declines of the
recent sample. In fact, expected future rates decline faster than current rates — the expected
future rates move even more than the cointegrated representation of the bottom panel of
Figure 1. This is a reasonable finding: market participants quite plausibly knew rates would
decline further in these episodes. These are periods of large current expected returns, as we
found in our 2005 paper. With forward rates that do not move much, high expected returns
means expectations of further yield declines. However, past the bottom, expected interest
rates rise quickly, eliminating the forward premium. Again, this is the pattern we have seen
in the return-forecast factor. It says to “get out” after the bottom, even when forward-spot
spreads are still forecasting return premia. In the late 1970s, by contrast, the model says
that investors expected interest rates to climb above current rates, so the comparatively low
forward rates implied a negative risk premium on long term bonds.

Are the large risk premia seen in these figures due to this year’s expected returns, or
to expectations of future premia? Figure 14 presents the terms of the forward-rate decom-
position (5) along with the spread between the 5 year forward rate ft(5) and the expected

one-year rate Etyﬁ)él. Each line represents the cumulated terms of (5). The line closest to

zero is the contribution of one-year expected returns £, (rxg)l — m;ﬁi’l); the next line adds
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10 year forward decomposition, Return—forecast model
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Figure 13: Current one-year rate yfl), 10 year forward rate ft(w), and expected one-year rate

Etyt(i)g computed from estimated affine model.

to that the second year of expected returns E; <m§i)2 — r:)sgi)z) and so forth. The forward

rate and expected one-year rate are the same as plotted Figure 12. As the figure shows,
the 5 year risk premium is typically due to expectations of one-year return premia many
years into the future. In typical times of large premium, the first year risk premium only
accounts for 20% or so of the total premium. Since the return-forecast factor mean-reverts
fairly quickly, these times are times in which the constellation of other factors implies large
future risk premia. In particular, these are typically times of a large positive slope, which
leads to large expected future risk premia as seen in the impulse-responses. A big forward
spread needs a strong slope and a large current return forecast.

Finally, Figure 15 presents a spectrum of interest rate forecasts, as a counterpart to
Figure 1. The large root imposed by the risk-neutral dynamics means that, although the
model is specified as a VAR(1) in levels, interest rate forecasts end up looking a lot more
like the unit root/cointegrated representation of the bottom part of Figure 1. In fact, more
so: most notably in the interest rate declines going into the last three recessions, expected
future one-year rates decline even beyond current rates, where Figure 1 still shows modest
rises.
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5 year forward premium decomposition, Return—forecast model
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Figure 14: Spread between five year forward rate and expected one-year rate ft(5) — Etyﬁ)él,

and the terms of its decomposition into one-year risk premia. The line closest to the origin

gives the first year premium, £, (r:vgi)l — mﬁf&) ; the next line adds the second year premium

E, (mﬁg — rxgig) and so forth.
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Figure 15: Forecasts of one-year rates Eyt(}r)n from the affine model
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5.3 The conundrum

The decomposition of the yield curve in the last few years has attracted a lot of attention.
Most famously, in February 2005 testimony?, Federal Reserve Chairman Alan Greenspan
called the lowering of long-term yields while short term rates rose a “conundrum”. He
elaborated in a speech® on June 6 2005, opining that “The pronounced decline in U.S.
Treasury long-term interest rates over the past year despite a 200-basis-point increase in
our federal funds rate is clearly without recent precedent.” The importance of separating
expectations from risk premiums in this context was made clear in a speech? by Governor
Donald Kohn in July 2005:

Nothing better illustrates the need to properly account for risk premiums than
the current interest rate environment: To what extent are long-term interest rates
low because investors expect short-term rates to be low in the future... and to
what extent do low long rates reflect narrow term premiums, perhaps induced by
well-anchored inflation expectations or low macroeconomic volatility?

Chairman Bernanke continued the inquiry. In a widely-reported speech® on March 20
2006, he made clear how we separate yield curves into “expectation” and “risk premium”
components, and how stories about “demands” by various agents are the same thing as a
risk premium. He continued

According to several of the most popular models, a substantial portion of the
decline in distant-horizon forward rates over recent quarters can be attributed
to a drop in term premiums ...the decline in the premium since last June 2004
appears to have been associated mainly with a drop in the compensation for
bearing real interest rate risk.

He cited Kim and Wright (2005) here, undoubtedly the first-ever citation by a sitting
Federal Reserve Chairman to an “Arbitrage-Free Three-Factor Term Structure Model” in a
public speech. Chairman Bernanke also explained why he thinks the issue is important:

What does the historically unusual behavior of long-term yields imply for the
conduct of monetary policy? The answer, it turns out, depends critically on the
source of that behavior. To the extent that the decline in forward rates can be

2Testimony of Chairman Alan Greenspan Federal Reserve Board’s semiannual Monetary Policy Re-
port to the Congress Before the Committee on Banking, Housing, and Urban Affairs, U.S. Sen-
ate  February 16, 2005. All Federal Reserve official’s testimony and speeches are available at
http://www.federalreserve.gov/newsevents.htm

3Remarks by Chairman Alan Greenspan Central Bank panel discussion to the International Monetary
Conference, Beijing, People’s Republic of China (via satellite) June 6, 2005.

4Remarks by Governor Donald L. Kohn at the Financial Market Risk Premiums Conference, Federal
Reserve Board, Washington, D.C. July 21, 2005.

®Remarks by Chairman Ben S. Bernanke before the Economic Club of New York, New York, New York
March 20, 2006.
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traced to a decline in the term premium, perhaps for one or more of the reasons
I have just suggested, the effect is financially stimulative and argues for greater
monetary policy restraint, all else being equal.....

However, if the behavior of long-term yields reflects current or prospective
economic conditions, the implications for policy may be quite different—indeed,
quite the opposite. The simplest case in point is when low or falling long-term
yields reflect investor expectations of future economic weakness. Suppose, for
example, that investors expect economic activity to slow at some point in the
future. If investors expect that weakness to require policy easing in the medium
term, they will mark down their projected path of future spot interest rates, low-
ering far-forward rates and causing the yield curve to flatten or even to invert....

One doesn’t have to agree with the conclusions about optimal monetary policy to accept
Chairman Bernanke’s endorsement that the issue is important.

10 T T T T T T

0
2000 2001 2002 2003 2004 2005 2006

Figure 16: Forward rates in two recessions. The federal funds rate, 1-5, 10 and 15 year
forward rates are plotted. Federal funds, 1, 5 and 10 year forwards are emphasized. The
vertical lines in the lower panel highlight specific dates that we analyze more closely below.
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It is unfortunate for the excitement of our application, but fortunate for our statistical
approach that imposes some kind of stationarity so we can analyze the present by exploiting
historical correlations, that recent history is in fact not at all that unusual. Figure 16
contrasts the behavior of forward rates through the last two recessions, conveniently occurring
almost exactly a decade apart. The pattern is strikingly similar. Short-term yields and
forwards decline, spreads widen, and then yields and forwards recover as spreads tighten
again. Long term forwards decline overall. The only difference is the exact timing of the
forward rate movements.

“What conundrum?,” we are tempted to ask. First, long forwards should fall when
the Fed tightens. Tighter policy now means lower inflation later, and thus lower nominal
rates in 10 years. In 1994, the opposite nearly one-for-one rise of long forwards with rises
in the Federal Funds rate was viewed as a conundrum for just this reason. Second, the
term premium should be negative. In a world with stable inflation, so that interest rate
variation comes from variation in real rates, long-term bonds are safer investments for long-
term investors. Were we Fed Chairs testifying to Congress with the plots of Figure 16 in
hand, we would be tempted to say simply that markets believe inflation is conquered, and
you’re welcome.

This isn’t a policy paper however. The “conundrum” provides an interesting historical
episode on which to evaluate our method for decomposing the yield curve, and Figure 17
gives our model’s analysis of this period.

The top panels and the bottom left panel present the cross-section of forward rates on
the three indicated dates, which are also marked by vertical lines in the bottom right panel.
“Fwds” gives the forward curve on each date and “Ey(M) gives the expected future one-year
rate, Eyt}r)j as a function of j. If the expectations hypothesis held, these two lines would
coincide. The forward premium for each maturity is the vertical distance between “Fwds”
and “EyM” lines.

E(rz19/2) gives the expected return of a 10 year bond through time, Et(rxtio) /2) as

a function of j. We divide by two so that this line fits on the same scale as the others. The
point of this line is to understand the term structure of risk premia, via the decomposition

(5),

"~ B, <yt+n 1) B <mt+)1 - erJrl > + B (mtiz Y- mgizm) -+ B (mwr)n 2)
(35)
In general, understanding this decomposition for each maturity at a give date requires us
to plot a lot of lines. Fortunately, the structure of the affine model allows a much simpler
understanding. First, expected excess returns all depend on the single state variable x;, so
the risk premium terms on the right hand side of (35) are linear functions of x;, F; (z:11),

E; (x442), and so forth. Second, the loading of E; (Txﬁ)l) on z; is nearly a linear function

of n, so to a good approximation F; <m=§ ") m§” 1)> ~ a + bz, is the same for all n. Thus,

ignoring the constant to focus on variation over time, we have to a very good approximation

t(n) Et <yt+n 1) + ary + CLEt (It+1) + CLEt ($t+2) + ..+ CLEt (QL‘tJrn,Q) .
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Figure 17: Decomposition of the 10 year forward rate. The top panels and the bottom
left panel present the cross-section of forward rates on the three indicated dates, which are
also marked by vertical lines in the bottom right panel. Fwds gives the forward curve on
each date, FB fwd gives the Fama-Bliss forward curve on the same dates. Ey() gives the
expected future one-year rate, Ey,f}r)] as a function of j. E(rz(19) /2) gives the expected return

of a 10 year bond through time, Et(rngj) /2) as a function of j. In the bottom right panel,
£U9 i5 the 10 year forward rate, y" is the current one-year rate, Eyt(}r)g is the expected

value at each date of the future one-year rate, i.e. Et(yfi)g) as a function of ¢, and 5 gives

Et(yg)g) plus the first five years of risk premia in the forward decomposition, i.e. Et(yﬁ)g)
10 9 9 8 6 5
+Et(7’x§+1) - 7”$§+)1) + Et(rngr)Q - Tngr)Q) +o Tt Et(Tx£+)5 - 7’$§+)5)-

Therefore, we can understand the term structure of the forward premium - the extent to
which the difference between the 10 year forward and the expected one year rate 9 years in
the future depends on this year’s expected excess returns rather than expectations of next
year’s excess returns, etc.— by just tracking forecasts of the return-forecasting variable z;,
or by tracking forecasts of any single expected excess return that is a linear function of z;.
Figure 17 does this by presenting expectations of the 10 year bond’s expected excess return.
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The bottom right panel of Figure 17 tracks a smaller number of variables through time.
19 is the 10 year forward rate, ygl) is the current one-year rate, and Ey,fi)g is the expected
value at each date of the future one-year rate, i.e. Et(yg)g) as a function of ¢. Thus, in
thls anel the 10 year forward premium is given by the vertical distance between f1%and

Eyt lines. Adding all the terms of the forward decomposition (5) clutters up the graph
too much, so the line marked “5” gives the first 5 terms of that decomposition, i.e. Et(yﬁ)g )
—l—Et(rxSrOl rxgil)—i-Et(mti)g ra Jr)2)+ +Ey(ral? V=TT +5) The vertical distance between
the “5” line and Eylf +)9 gives the contribution to the 10 year forward premium from the first
five years of expected returns, while the vertical distance between the “f(1%” line and the
“5” line gives the contribution to the 10 year forward premium from the remaining (years
6-9) years of expected returns.

Having met the players, we can now tell the story. Start with December 2001, the first
slice of the bottom right panel and the date plotted in the top left panel of Figure 17. The
one-year risk premium was large, represented by the large value Et(rxg_lfl)) in the left-hand
end of the top left panel (in fact, x reaches its peak in this sample on January 2002). This

fact translates to the large difference between the first forecasted one year rate F; (yt(}r)1> and

its corresponding forward rate, shown in the second data points of the top left panel. The
model was right on this occasion, as December 2001 was a great time to buy long-term bonds.
Interest rates continued to decline for two years, despite high long-term yields and forward
rates, generating great returns for long-term bond holders. Our measure of the one-year risk
premium is so high because the Fama-Bliss forward rate data show a strong “tent shape”,
which is the signal of high expected returns. This date is particularly interesting because it
is one of the few dates in which the Fama-Bliss forward curve and the GSW forward curve
are substantially different. The GSW forward curve smooths over the decline in 4 and 5
year forwards at this date, but in doing so it throws out the crucial information that the FB
forward curves use to forecast expected returns. Data points like these are why we found in
Table 1 that Fama-Bliss data do a better job of forecasting even GSW returns. Notice that
FB and GSW data are nearly identical on the other dates in this analysis.

However, the one-year return risk premium is not expected to stay constant. For the first
few years the risk premium (measured by the E(rz(1?))/2 line) declines quickly, following
the response to an = shock picture we might expect from the top left panel of the impulse-
response Figure 8. However, expected returns then stop declining at about 2%, and stay
at about 2% out to a 15 year maturity. Both slope and curvature are large in December
2001, as you can see from eyeballing the forward curve, and large slope and curvatures set
off large future risk premia, even when memory of the current z; has melted away, as we
saw in the bottom panels of the impulse-response functions Figure 8. Each year of expected
large returns must correspond to further divergence between forward curve and expected
one-year rates, and the expected one-year rate curve keeps going down. The conjunction of
large return-forecast (tent), with large slope and curvature factors makes this date a perfect
storm for forward premia, and in fact this date is one of the largest forward premiums seen
anywhere in the sample.
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The history of the bottom panel of Figure 17 shows the events that brew this storm.
Interest rates ylfl) have been falling while the 10 year forward stayed relatively constant. As
current (x) and future (slope, curve) risk premia rose, the expected future interest rate has
fallen even faster than the one-year rate. The “5” line shows that the rise in one-year risk

premia accounts for the bulk, but not all of the large risk premium on this date.

The sharp decline in the Eyﬁ)g curve through 2001 is notable. Expected future interest
rates fell more than current interest rates. This seems to us a a sensible reading of history
(and certainly more reasonable than a constant 6% expectation as suggested by the top panel
of Figure 1). In late 2002, the Fed had been following a sharp and unprecedented decline
in Federal funds rates (see Figure 16). The economy was in a recession following a sharp
stock market decline. It was not clear how low the Fed would go or for how long. There was
much talk about deflation and the dangers of repeating Japan’s experience. Economists were
writing papers about helicopter drops, fiscal expansion, and impact of a zero lower bound
on nominal interest rates for the conduct of monetary policy.

By December 2003, things have settled down considerably. We have now had two years
of stable low interest rates and steady macroeconomic growth. In the top right panel of
Figure 17 we see the forward curve is still upward sloping and curved, but it has completely
lost the tent shape that generates one-period expected returns. The Fama Bliss data now,
as typically, agree with the GSW data and the return-forecast factor x (not shown) is in
fact very slightly negative. Once again, this proved a correct forecast, and return forecasts
based on the slope of the yield curve proved wrong: interest rates were poised to rise, and
long-term bond investors did not make good returns in 2004. Following this low one-year
risk premium, expected future interest rates track the forward curve almost exactly for the
first few years. There is no risk premium in 3 year forward rates and nearly none in 4 year
forward rates. However, the large slope (about its maximum value in the sample on this
date) forecasts a rise in future expected returns. Thus, starting in year 4, the forward curve
and expected interest rate curve diverge, leaving a substantial 10 year forward premium even
though there was no 4 year forward premium. This is a good date on which to remember
there is no single “forward premium,” there is a term structure of forward premia.

The bottom right panel shows how we got to this date. Interest rates y,gl) declined slowly
in 2002 and 2003, and the 10 year forward rate again didn’t change much. The tent factor
melted away, and so our measure of expected interest rates Ey,gi)g rose quickly. Almost the
entire 10 year forward premium comes from years 6-10 in the bottom right panel. Again, the

C Y . (1) .
quick rise in expected interest rates Ey, g seems plausible to us. It was clear the economy
would recover, interest rate rises were on their way, repeating the 1994 experience. What is
unusual is that our factor model is able to read these expectations from bond data.

At the end of our sample, in March 2006, the forward curve is essentially flat, and so are
expected future interest rates (bottom left panel of Figure 17). There is no tent, no slope
and no curvature. Slightly negative expected current returns send expected interest rates a
bit above the forward curve for short maturities — there is a slight negative forward premium
up to 10 years— but slightly positive expected future returns have the opposite effect for
larger maturities.
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So, what “caused” the decline in the 10 year forward rate from 2004 to 2006, or at least
how do we decompose it to interest rate expectations and risk premiums? Following the
history in the bottom right panel of Figure 17, we see the rise in interest rates, together with
the decline in the 10 year forward rate that sparked the “conundrum.” Broadly speaking, the
decline in forward rates can, in fact, be chalked up to a decline in risk premium. From Dec
2003 to March 2006 the expected one-year rate Eyﬁr)g only rises about a percentage point,
while the forward rate declines. We see more: almost all of the decline in risk premium
happened in the first year 2004. By Jan 2005, the 10 year forward and expected one-year
rate are nearly equal, and track each other well. Interestingly, the zero overall risk premium
corresponds through the year, as on the last date plotted in the bottom right panel, to a
slightly negative near-term premium and a slightly positive longer-term premium, as the
green “5” line is below both forward and expected one-year curves in the last year.

However, one can just as well summarize the plot with the opposite conclusion: the 10
year forward premium fell two percentage points from Jan 2005 to March 2006, as it always
does in a period of rising rates and macroeconomic growth, and exactly as it did in previous
episodes. Thus the forward rate would not have fallen if expected one-year rates had risen
as they usually do in such periods. One can then debate whether one interprets the failure
of expected interest rates to rise as a successful anchoring of inflation expectations or a
mysterious delinking of long from short rates, as Greenspan apparently was doing.

However, it’s equally clear that this is far from a puzzling event. A one or two percent
forward premium in either direction is small compared to the 7 percent forward premium in
December 2001. Small and even negative forward premiums are common at this stage of the
business / interest rate cycle, as we saw in the full-sample 10 year forward rate decomposition
of Figure 13.

6 Variations

6.1 Less risk premium

The estimate of the market price of risk \q; is the central source of sampling uncertainty in
our procedure. It comes, fundamentally from the size of regression return forecasts
q;mﬁ)l =a+ Br; + &1

In addition to pure sampling error, this regression (and the formation of the = factor) is
likely to be overfit and hence biased upwards. Fortunately, it is a single parameter \g;. To
investigate its effect, we present here some key graphs that use half the estimated market
price of risk. As one might expect, they come out essentially halfway between the risk-
neutral results and the results we have presented so far. If you thought those results looked
“overfit”, there is a simple way to cure that feeling. This calculation gives a sense of the
sampling uncertainty in the final results, or what the result of a more principled lowering
of the estimated risk premium based on small-sample biases or Bayesian shrinkage towards
risk neutrality might produce.
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10 year forward decomposition, half-lambda model
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Figure 18: Current one-year rate ygl), 10 year forward rate f*(19)  and expected one-year rate

Etyt(i)g computed from estimated affine model using half the estimated market price of risk
Aoi-

Figure 18 presents the 10 year forward rate and expected one year rate, mirroring Figure
13, and Figure 19 presents a detailed look at the 2000-2006 period, mirroring Figure 17.

In Figure 18 expected future interest rates move now essentially one for one with current
interest rates from 1972 to 1975, rather than getting ahead of the rises and declines as they
did with the full estimated risk premium. There is still nothing like quick reversion to an
unconditional mean as seen in the OLS estimates. Through the three dips of 1987, 1993,
and 2003, we now see expected one year rates stop their decline, rather than fall all the way
down and past the one-year rate as they did with the full risk premium.

In Figure 19, the lower risk premium means relatively stable expected interest rates in
December 2001 (top left) rather than the continued decline that this data point (with one of
the largest forward premia in the whole sample) presented with the full risk premium. The
other dates are similar to the previous findings, but with expected interest rates that are
halfway to their corresponding forward curves, with about half the premium.
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Figure 19: Recent history forward rate decomposition, using the affine model with half the
estimated risk premium Ag;.

6.2 Comparison with OLS dynamics

We have found the risk-neutral dynamics ¢* to fit forward rates, and then carefully worked
back to the true dynamics ¢ by careful examination of market prices of risk. One could
follow the opposite tack — estimate the true dynamics by simple OLS regression X;;; =
i+ ¢Xy + vip1. (Figure 1 used raw data. Here, we investigate OLS estimates of factor
dynamics after forming our factors, including the return-forecasting factor z.)

Table 6 presents the OLS - estimated dynamics, Table 7 presents standard errors, and
Figure 20 presents the impulse-response functions, which we can compare with Figures 7
and 8. The broad pattern of the impulse-responses is gratifyingly similar. The major dif-
ference is the persistence of the level shock. Table 6 finds ¢,, = 0.89 and Figure 20 shows
strong mean-reversion in the level shock, where we estimated ¢, = ¢35, = 0.98 and an es-
sentially permanent response above. OLS estimates of near-unit roots are notoriously biased
downward, so the difference makes sense.

The OLS t statistics also document the substantial sampling uncertainty in a time-
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Figure 20: Impulse-response function for the OLS estimate of the transition matrix ¢. The
x response is divided by two to fit on the same scale.

series procedure. The coefficients of z; on slope;_; and curvature;_;, which are central to
understanding long-term forward premia, have t stats near 2.

100xp | x level slope curve | mse R?
/ ¢
X -0.84 0.25 0.72 -348 6.25 |24.1 0.20

level |-0.10 |[-0.08 0.89 0.12 -0.18 | 3.52 0.84
slope | -0.02 |-0.01 -0.01 0.38 -0.33 | 1.47 0.21
curve | -0.02 | 0.00 0.00 0.22 0.22 |0.57 0.10

Table 6. Estimates of model dynamics, ¢ and ¢ in Xy = p + ¢ X; + veys.
leig| gives the eigenvalues of ¢, in order. mse is mean-squared error.

100xp | x level slope curve
[ ¢
X -0.22 | 1.69 1.81 -2.03 1.73

level | -0.17 441 14.7 047 -0.28
slope | -0.06 -1.49 -0.38 2.53 -1.63
curve | -0.25 0.86 0.41 070 2.20
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Table 7. T- statistics. OLS t-statistics are computed with a Hansen-Hodrick

correction for serial correlation due to overlap
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Figure 21: Loadings B’ of an affine model constructed from an OLS estimate of the transition
matrix ¢, using market price of risk estimates to construct ¢* = ¢ — V' A;.

We can complete the affine model, taking the OLS estimate of the true dynamics, and
using our estimates of market prices of risk to work back to the risk-neutral dynamics ¢*,
rather than follow the opposite procedure as we have done above. Figure 21 presents the
resulting affine-model loadings. Initially, this looks like a disaster compared to the beautiful
fit of Figure 5. Table 3 shows that the fit is indeed much worse, with 1-2 percentage point
errors rather than 10-20 basis point errors. However, this is the result of an estimate that
places no effort whatsoever in fitting the cross-section of forward rates. Given that fact, it
is in a sense remarkable that anything even vaguely reasonable comes out. Nonetheless,
any model-fitting procedure that places weight on fitting the cross-section as well as the
time series will obviously give up quickly on OLS dynamics to better fit the cross section,
especially with the possibility of 15 bp measurement errors in sight.

The quicker mean-reversion means that the OLS dynamics give a fundamentally different
picture of risk premia. Figure 22 presents the 10 year forward rates along with the OLS
expectation of the corresponding future one-year yield. These VARs do incorporate the
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10 year forward decomposition, OLS—Affine model
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Figure 22: One year rate, 10 year forward rate ft(w), and expected one-year rate Etyﬁ)g,

generated from an OLS estimate of factor dynamics X; = u + ¢.X;_ 1 + v;.

return-forecasting factor, so there is a bit more variation in long-term expected interest
rates. However, the pattern of quick reversion to the unconditional (sample!) mean is clearly
visible.

We can see the decomposition for the recent period by looking at the right hand portion
of Figure 22. Expected one-year rates quickly converge to the roughly 6% unconditional
mean. Forward rates happen to be near 6% in the recent period, so we see little premium,
but all the recent small decline in forward rates is attributed to a decline — to negative values
— in that premium.

Aside from the appeal to sampling error downward bias of large roots, we can consider the
plausibility of results. Contrast the 10 year forward decompositions in 22 and 13. The OLS
estimates ask us to believe that forward rates throughout the high interest rate period of
the 1980s corresponded to tremendous negative risk premia, since investors all knew interest
rates would soon return to the average of about 6 percent. They ask us to believe that
long-term expected interest rates are essentially unaffected by current experience, including
both the effects of varying inflation in the 1970s and the business cycle dips of the last 20
years.
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7 Conclusions and questions

We construct an affine model of the term structure of interest rates with risk premia, that
allows us to decompose the yield curve at any moment in time into expected future interest
rates and risk premia. We estimate the risk-neutral dynamics from the cross-section of
forward rates. A detailed examination of market prices of risk leads us to an important
restriction: expected returns vary over time only in response to a single “return-forecast”
factor, and are only earned in compensation for covariance with level shocks. As a result, a
single parameter controls the transformation from risk neutral to actual dynamics, and that
parameter is measured by running a simple return-forecasting regression. Therefore, we are
able to estimate actual dynamics by using all the information in the cross-section, and this
single parameter.

We find plausible but unusual results. Long-term expectations of one-year rates track
current one-year rates, and often get ahead of them, declining more than one-year rates when
one year rates decline for example. They do not revert quickly to a mean, as a simple OLS
estimate of interest rate dynamics would suggest, nor do they follow current forward rates
as a risk-neutral or expectations hypothesis would suggest. They behave more closely to a
cointegrated system. This is sensible, but it results in very large estimates of forward risk
premia, given that forward rates do not move much over time. The key to the result is that
risk-neutral dynamics require eigenvalues very near to one, to account for a level factor in
yields or forward rates, and our transformation to real dynamics cannot do much to change
the very persistent nature of shocks.

We connect forward premia — the difference between a 10 year forward rate and the
expected one-year rate in nine years — to one-period expected return premia. A forward
premium can result from a high current expected return, or an expectation that one-period
returns will carry a premium in the future. There is an interesting and time-varying term
structure of risk premia, which we characterize. We find that the one-period return fore-
casting factor x declines swiftly. However, orthogonal slope and curvature movements of the
term structure, though unrelated to current expected returns, nonetheless forecast rises in
long-term future expected returns, and thus contribute to forward rate risk premia.

We have focused on point estimates, with some loose discussion of sampling error. Obvi-
ously, the model needs a careful analysis of sampling error, induced from uncertainty about
factor means and market prices of risk especially, and documentation of the idea that going
from risk-neutral to real measure with constrained market prices of risk really does reduce
sampling uncertainty.

The natural next step is to incorporate other information about long-term interest rate
expectations. We can take that information from real bonds, such as the TIPS yield curve,
inflation itself, or price or exchange rate data.

It is certainly plausible that the nature of the term structure of interest rates changes in
different inflation environments. Long term nominal bonds have less volatile real returns
than rolling over short rates when inflation is steady and real rates vary, and conversely
when inflation is volatile and real rates vary less. Therefore, we expect a negative forward
premium when inflation is steady, and a positive forward premium when inflation is more
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volatile.  When inflation is incorporated, one should allow for changes over time in the
nature of term premia.

One wants eventually a macroeconomic understanding of risk premia in the term struc-
ture. We have advanced (at least our own) understanding of risk premia by connecting them
across maturity, and understanding how level, slope, and curvature movements forecast fu-
ture risk premia. We understand that risk premia move on a single factor, and are earned as
compensation for exposure to another single factor, level shifts. This is a start, and indicates
that whatever macroeconomic events drive bond risk premia they must also correspond to
level shocks, and will be forecastable by the same term-structure factors. But their identity
remains an important question for economic investigation.
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8 Appendix

8.1 Eigenvalue-based factor models

The eigenvalue decomposition gives a very quick way to form factor models. Given an N x 1
vector of mean-zero random variables z, with cov(z,z') = X, we form QAQ’ = cov(x) by the
eigenvalue decomposition. If X is a 7" x N matrix of data on z, then [Q,L] = eig(cov(x)) in
matlab. A is diagonal and @ is orthonormal, QQ' = Q'Q = I.

If we form “factors” by z = Q'x, we have cov(z,2') = Q'QAQ'Q = A, i.e. the z are
uncorrelated with each other. The columns of () thus express how to construct factors from
the data on z. We can then write x = )z, and the columns of x also give “loadings” that
describe how each x moves if one of the z moves.

If some of the diagonals A are zero, then we express all movements in x by reference
to only a few underlying factors. For example, if only the first A is nonzero, then we can
express * = Q(:, 1)z; where Q(:, 1) denotes the first column of (). In practice, we often find
that many of the diagonals of A are very small, so setting them to zero and fitting x with
only a few factors leads to an excellent approximation.

Since the factors are orthogonal we have © = Q(:,1)21 + Q(:,2)z; + .... Thus, the factor
model amounts to a regression fit of x on the factors z. If some diagonals of A are small, the
variance of the corresponding z are small, and this regression fits with an excellent R?.

Factors constructed in this way solve in turn the question “what linear combinations of
z has maximum variance, subject to the constraint that the sum of squared weights is one
and each linear combination is orthogonal to the previous ones?” In equations, each column
of () satisfies

max [var (Qx)] s.t. Q:Q; =1, QiQ; =0, j <1

We often compute the “fraction of variance of = explained by the first £ factors,” as the
ratio of included to excluded eigenvalues. Zle Aii/ Zfil A;;. Since x is a vector, this means
the fraction of the sum of the variances of each element. > . var(z;) = Trace(Q'AQ’) =
> i Nii, so if we form a factor model by setting some A;; to zero, the sum of the variances of
the fitted forward rates is the sum of the retained eigenvalues.
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