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1. Introduction

Predicting the distribution of returns of financial assets is a task of primary importance for

identifying desirable investments, performing optimal asset allocation within a portfolio, as

well as measuring and managing portfolio risk. Optimal asset management depends on the

statistical properties of returns at different frequencies. Portfolio allocation, i.e., the choice of

optimal weights to be attributed to the different (financial) assets in a portfolio, is typically

based on a long horizon perspective, while the measurement of risk of a given portfolio takes

typically a rather short-horizon perspective. This means that a long-run investor decides

her optimal portfolio allocation on the basis of the (joint) distribution of the returns of the

relevant (i.e., from some pertinent asset menu from which to chose) financial assets at low

frequency.1 However, the monitoring of the daily risk of a portfolio normally depends on the

statistical properties of the distribution of returns at high frequencies.

This book (project), in its characteristically applied nature, is designed to illustrate the

statistical techniques to perform the analysis of time series of asset (often, financial) returns

at different frequencies and its application to asset management and performance evaluation,

portfolio allocation, and financial risk management.

The relevant concepts will be introduced and their application will be discussed by using a

set of programmes written using mainstream econometric software (EVIEWS and MATLAB)

specifically designed for each of the chapters. Draft codes for the solutions of the exercises,

that are designed to allow the reader to understand how the different econometric techniques

could be put at work, are made available in advance on the book webpage. Students are

expected to work through them in specifically devoted computer lab sessions.

1.1. The Data

All empirical applications will be based on publicly available databases of US data observed

at monthly (and therefore lower) frequency. They have been downloaded respectively from

Robert Shiller’s webpage

(http://www.econ.yale.edu/˜shiller/)

and Ken French’s webpage

(http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html).

The time series made available by Robert Shiller are saved in the successive columns of

the EXCELworksheet DATA in the file IE DATA.XLS

1There is emprical evidence that females outperform males as professional portfolio managers. One

wonders whether this may be a reflection of typical decision horizons that may possibly differ across these

two categories of investors.



The time-series in the IE DATA.XLS files

identifier description

P S&P composite index

D S&P dividend (at annual rate)

E S&P earnings

CPI US consumer price index

GS10 YTM of 10-year US Treasuries

CAPE cyclically adjusted PE ratio

As described in the section ”Online Data” of the webpage these stock market data are

those used in the book, Irrational Exuberance [Princeton University Press 2000, Broadway

Books 2001, 2nd ed., 2005] and cover the period 1871-Present . This data set consists of

monthly stock price, dividends, and earnings data and the consumer price index (to allow

conversion to real values), all starting January 1871. The price, dividend, and earnings series

are from the same sources as described in Chapter 26 of the book Market Volatility [Cam-

bridge, MA: MIT Press, 1989], although they are observed at monthly, rather than annual

frequencies. Monthly dividend and earnings data are computed from the S&P four-quarter

totals for the quarter since 1926, with linear interpolation to monthly figures. Dividend

and earnings data before 1926 are from Cowles and associates (Common Stock Indexes, 2nd

ed. [Bloomington, Ind.: Principia Press, 1939]), interpolated from annual data. The CPI-

U (Consumer Price Index-All Urban Consumers) published by the U.S. Bureau of Labor

Statistics begins in 1913; for years before 1913 1 spliced to the CPI Warren and Pearson’s

price index, by multiplying it by the ratio of the indexes in January 1913. December 1999

and January 2000 values for the CPI-Uare extrapolated. See George F. Warren and Frank

A. Pearson, Gold and Prices (New York: John Wiley and Sons, 1935). Data are from their

Table 1, pp. 11—14.

The time series made available by Ken French are saved in the successive columns of the

EXCELworksheet DATA in the file FF DATA.XLS.



The time-series in the FF Data CH3.xls files

identifier description

EXRET MKT MKT excess ret

SMB returns on SMB

HML returns on HML

RF returns on the risk-free asset

MOM returns on MOM

RMW returns on RMW

CMA returns on CMA

PR(i,j) returns on 25 FF portolios (i=1,...5,j=1,...,5)

The construction of the Fama French factors is described at http://mba.tuck.dartmouth.edu/pages/facu

f 5 factors 2x3.html while the construction of the FF portfolios is described at http://mba.tuck.dartmouth.e

1.2. The dimensions of the data

There are three relevant dimensions of the data on financial returns: time-series, cross-section

and the horizon at which returns are defined. In general, we shall define + as the returns

realized by holding between time  and time +  the asset . So the  index captures the

time-series dimension, the  index the cross-sectional dimension, and the  index the horizon

dimension.

2. The Challenges of Financial Econometrics

In general, financial data are not generated by experiments, what is available to the econo-

metrician are observational data, which are given. To investigate the effect of a medicine an

investigator can take a set of patients and attribute them randomly to a ”treatment” group

and a ”control” group. The medicine is then administered to the members of the treatment

group while a ”placebo” is given to the members of the control group. The effect of the

medicine can then be measured by the difference in the average health of the members of

the two groups after the administration of the treatment.

If a researcher is interested in measuring the effect of monetary policy on stock market

returns all she has are data on monetary policy indicators and the stock market returns

which are given and not generated by a controlled experiments.

Special issues arise in routinely in financial data that are different in special days (say,

for example, the days of the FOMC meetings), that are affected by seasonality, trends and

cycles. Moreover rare-events affect financial returns and rare events are, by definition, not

regularly observed. As Nassim Taleb forcefully stresses in his book Antifragile, absence of



evidence in a given sample of data cannot be taken as evidence of absence.

Econometricians face questions of different nature: sometimes the interest lies in non-

causal predictive modeling which can be handled by analyzing conditional expectations,

while this is not sufficient to understand causation to which end correlation and conditional

expectations are little informative. One issue is to evaluate if the monetary policy stance

helps to predict stock market returns, which is very different from establishing a causation

from monetary policy to the stock market, as the evidence of correlation between monetary

policy and the stock market might very well reflect the response of monetary policy to stock

market fluctuations taken as an indicator of (present and future) economic activity.

3. Prof Wald and the missing bullet holes: identification matters

Econometrics is about using the data. This is not as easy as it looks. There is an issue of

fundamental importance that needs to be addressed when using the data, econometricians

call it identification. To understand what this is about consider a nice story described by

J.Ellenberg(2015) in his excellent book ”How Not to be Wrong. The Hidden Maths in

Everyday Life”. The stroy is about Abraham Wald a famous statistician who was invited

to join the Statistical Research Group (SRG). SRG was a group of statisticians employed

strategically by the US Army in WWII to apply statistics to military issues. The SRG was

faced with the problem of the optimally design of armoring military planes. The problem is

interesting because it affected by a tradeoff: to prevent prevent planes from being shot down

by enemy fighters your armor them, but armour makes the plane heavier and therefore they

are handicapped in dogfights. So the question on the optimal level of amouring naturally

arises. Data might be helpful to answer this question. When American planes came back

from engagements over Europe, they were covered with bullet holes. Here are the data

Section of the Plane Bullet Holes per sq. f.

Engine 1.11

Fuselage 1.73

Fuel System 1.55

Rest of the plane 1.8

Econometrics is about using the data to make decisions. So, in the light of the data, if

you want to limit the armouring to the most relevant section of the plan to keep it light and

effective where do you put the armoring ?

Before you answer let me tell you what was A. Wald choice. The armor, said Wald, does

not go where the bullet holes are. It goes were the bullet holes are not:the engines.

To use the data it is important to identify how they are generated. These data are

not taken unconditionally they are taken conditionally on one event: planes used for the



observation came back. The sample is selected. So it informs us on the fact that planes that

are hit on the engine are less likely to come back. That is why it is the engine that should

be armoured.

4. The Traditional Model

The plan of our journey is determined by the evolution of the understanding and empirical

modelling of asset prices and financial returns from the 1960s onwards. We shall start from

the view from the sixties, based on the Constant Constant Expected Returns (CER) model

and the CAPM, when a simple econometric model serves the purpose of modelling returns

at all horizons and a one-factor model determines the cross-section, to illustrate its empirical

failures and how it has been replaced by a Time-Varying Expected Returns (TVER) model

where different econometric models for returns are to be adopted according to the different

horizon at which returns are defined .

4.1. The view from the 1960s: Efficient Markets and CER

The history of empirical finance starts with the “efficient market hypothesis” (see Fama,

1970). This view, that dominated the field in the 1960s and 1970s, can be summarized as

follows (see also the discussion in Cochrane, 1999):

• expected returns are constant and normally independently distributed;

• the CAPM is a good measure of risk and thus a good explanation of why some stocks

earn higher average returns than others;

• excess returns are close to be unpredictable: any predictability is a statistical artifact
or cannot be exploited after transaction costs are taken into account;

• the volatility of returns is constant.

Fama (1970) clearly stated:

“... For data on common stocks, tests of ‘fair game’ (and random walk) properties

seem to go well when conditional expected returns is estimated as the average

return for the sample of data at hand. Apparently the variation in common stock

returns about their expected values is so large relative to any changes in expected

values that the latter can be safely ignored...”



4.1.1. Time-Series Implications

In practice, the traditional view can be recasted in terms of the simplest possible specification

for the predictive models for returns, i.e., the constant expected returns model:

+1 =  +   ∼  (0 1)

 ( ) =

(
  = 

0  6= 


Note that the absence of predictability of excess returns is not a consequence of market

efficiency per se but it instead results from a joint hypothesis: market efficiency plus some

assumptions on the process generating returns (i.e., the Contant Expected Returns model).

4.1.2. Returns at different horizons

In this world, the horizon  does not matter for the prediction of returns because once 

and  are estimated, expected retrurns at all horizons and the variance of returns at all

horizon are derived deterministically.

(+) = (

X
=1

++−1) =
X

=1

(++−1) = 

 (+) =  (

X
=1

++−1) =
X
=1

 (++−1) = 2

4.1.3. The Cross-Section of Returns

The CER view allows for cross-sectional heterogeneity of returns but such cross-sectional

heterogeneity is related to a single factor, the market factor, and the CAPM determines all

the cross-sectional variation in  The statistical model that determines all returns  and

the market return  can be described as follows:

³
 − 




´
=  +  + ³
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0

0
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 

 
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where 


 is the return onthe risk-free asset. We shall see that  = 0 is a crucial

assumption for the valid estimation of the CAPM betas, and that assumption that risk

adjusted excess returns are zero (usually known as zero alpha assumption) requires that

 = 



4.1.4. The Volatility of Returns

The volatility of returns is constant in the CER model which therefore is not capable of

explaining time-varying volatility in the markets and the presence of alternating period of

high and low volatility.

4.1.5. Implications for Asset Allocation

When the data are generated by CER optimal asset allocation can be derived by achieved

by utility maximization that uses as inputs the historical moments of the distribution of

returns, optimal portfolio weights are constant through the investment horizon. The optimal

portfolio is always a combination between the market portfolio and the risk free asset. The

risk associated to any given asset or portfolio of assets is constant over time. Think of

measuring the risk of a portfolio with its Value-at-Risk (VaR). The VaR is the percentage

loss obtained with a probability at most of  percent:

Pr (  − ) = 

where  are the returns on the portfolio. If the distribution of returns is normal, then

-percent   is obtained as follows (assume  ∈ (0 1)):

Pr (  − ) = ⇐⇒ Pr

µ
 − 


 −  + 



¶
= 

⇐⇒ Φ

µ
−  + 



¶
= 

where Φ (·) is the cumulative density of a standard normal. At this point, defining Φ−1 (·)
as the inverse CDF function of a standard normal, we have that

−  + 


= Φ−1 ()⇐⇒   = − − Φ

−1 () 

and, given that  and  are constant over time,   is also constant over-time.

Consider the case of a researcher interested in the one per cent value at risk. Because

Φ−1 (001) = −233 under the normal distribution we can easily obtain VaR if we have

available estimates of the first and second moments of the distribution of portfolio returns:

[ 001 = −̂ − 233̂

5. Empirical Challenges to the traditional model

Over the course of time the traditional view has been empirically challenged on many

grounds. In particular it has been observed that



• The tenet that expected returns are constant is not compatible with the observed
volatility of stock prices. Stock prices in fact are ”too volatile” to be determined only

by expected dividends;

• there is evidence of returns predictability that increases with the horizon at which
returns are defined.

• There are anomalies that make returns predictable on occasion of special events.

• The CAPM is rejected when looking at the cross-section of returns and multi factor

models are needed to explain the cross-sectional variability of returns

• high frequency returns are non-normal and heteroscedastic, therefore risk is not con-
stant over time.

5.1. The time-series evidence on expected returns

Practictioners implementing portfolio allocation based on the CERmodel experienced rather

soon a number of problems that stressed limitations of this model but it was the work of

Robert Shiller and co-authors that led te profession to go beyond the CER model. The

basic empirical evidence against the CER model was the excessive volatility of asset prices

and returns which is clearly illustrated in Shiller(1981).

We shall illustrate the excess volatility evidence by considering a simple model of stock

market returns: the Dynamic Dividend Growth (DDG) model. As we shall discuss in detail

in one of the next chapters total returns to a stock  can be satisfactorily approximated as

follows:

+1 = +  (+1 − +1) +∆+1 − ( − )

where  is the stock price at time t and  is the dividend paid at time t,  = ln()  =

ln()  is a constant and  =


1+
  is the average price to dividend ratio. In practice

 can be interpreted as a discount parameter(0    1)  By forward recursive substitution

one obtains:

( − ) =


1− 
+

X
=1

−1 (∆+)−
X
=1

−1
¡
+

¢
+  (++1 − ++1)

which shows that the ( − ) measures the value of a very long-term investment strategy

(buy and hold). This value, in absence of bubbles, is equal to the stream of future dividend



Figure 1:

growth discounted at the appropriate rate, which reflects the risk free rate plus risk premium

required to hold risky assets.

By introducing uncertainty we have:

( − ) =


1− 
+

X
=1

−1 (∆+)−
X
=1


−1 ¡+¢+  (++1 − ++1)

Two considerations are relevant here. First, note that under the CER and no bubbles

the price dividend ratio should reflect only expected dividend growth. The empirical evi-

dence is strongly against this prediction (see the Shiller(1981) and Campbell-Shiller(1987)).

Stock prices are too volatile to be determined only by expected dividends. The following

figure, taken from Campbell-Shiller(1987) illustrates the point by reporting the observed

price-dividend ratio and a counterfactual price-dividend ratio which is obtained by assuming

constant future expected returns and by using a Vector Autoregressive Model to predict

future dividend-growth:

The volatility in the price-dividend ratio is clear much higher than that predicted by the



CER model.

Second, once the hypothesis of CER is rejected, the DDG model has interesting implica-

tions for predictability of returns at different horizons. If we decompose future variables into

their expected component and the unexpected one (an error term) we can write the relation-

ship between the dividend-yield and the returns one-period ahead and over the long-horizon

as follows:

+1 = +  (+1 − +1) +∆+1 − ( − ) + 

+1 + ∆

+1

X
=1

−1+ =


1− 
+

X
=1

−1 (∆+)− ( − ) +  (+ − +) +



+ +

X
=1

−1∆
+

These two expressions illustrate that when the price dividends ratio is a noisy process,

such noise dominates the variance of one-period returnsand the statistical relation between

the price dividend ratio and one period returns is weak. However, as the horizon over which

returns are defined gets longer, noise tends to be dampened and the predictability of returns

given the price dividend ratio increases.

The DDG model predicts a tighter relation between aggregate stock market returns and

the price-dividend ratio as the horizon at which returns are defined increases. A first evidence

of the increasing explanatory power of the dividend-yield as the investment horizon increases

is reported in Table (1). Here we report the slopes, the adjusted 2, as well as the adjusted

t-stats as in Valkanov (2003), of the following predictive regression

:+ =  +  log () + + + ∼ (0 1)

where :+ the aggregate US stock market returns from  to  + ,  the aggregate

dividend,  the index, + an idiosyncratic error component and  its corresponding risk.

The sensitivity of the aggregate cumulative returns on the log dividend-yield  increases

with the investment horizon. The same is true for the adjusted 2, meaning, the longer the

forecasting term, the higher the predictive power of the value-weighted dividend-yield This

increasing monotonic relationship is visually confirmed in Figure (2), which reports the 1-

year returns as well as the 10-year returns together with the dividend-price ratio. The top

panel reports the lagged dividend yield (t-1 year) and the annual aggregate stock market

returns in the US. On the other hand the bottom panel reports the lagged dividend yield (t

- 10 years) the 10-year aggregate stock market returns in the US.



Table 1: The Predictive Power of the Dividend-Yield

This table reports the OLS estimates of the aggregate US stock market returns on the value-weighted dividend-price ratio.

The sample is monthly and goes from 1946:01 to 2012:12. The first column reports the forecasting horizon. The second

column reports the slope coefficients while the third the adjusted t-stats, i.e. 
√
 as in Valkanov (2003). The last column

reports the adjusted 2.

Horizon k β̂ t/
√
T R2

1 0.726 0.092 0.007

4 3.369 0.187 0.032

8 7.105 0.269 0.066

16 15.96 0.412 0.144

24 23.59 0.523 0.214

60 54.69 0.976 0.487
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5.2. Anomalies

Are Stock Market Returns Unpredictable ?

• Lucca Moench(2014)

— Document large average excess returns on U.S. equities in anticipation of mon-

etary policy decisions made at scheduled meetings of the Federal Open Market

Committee (FOMC) in the past few decades.

• Cieslak et al. (2015)

— Document that since 1994 the US equity premium follows an alternating weekly

pattern measured in FOMC cycle time, i.e. in time since the last Federal Open

Market Committee meeting.

The Data

5.3. The Cross-section Evidence on Expected Returns

The CAPM has important empirical implications for the cross sections of assets. If


¡
 − 

¢
= 

¡
 − 

¢
then heterogeneity in excess returns to different assets should be totally explained by the

different exposure to a single common risk factor, the market excess returns.



Given a sample of observations on  

  


 the  can be estimated first by OLS re-

gression over the time series of returns, then the following second-pass equations can be

estimated over the cross-section of returns:

 = 0 + 1 + 

Where are the average returns in the period over which the  have been computed.

If the CAPM is valid , then 0 and 1 should satisfy:

0 = 

 1 = 



where 

is the mean market excess return.

When the model is estimated with appropriate methods, the restrictions are strongly

rejected (Fama-French(1992), Fama-McBeth). This evidence has paved the way to the es-

timation of multi-factor models of returns. Fama-French(1993) introduced a three-factor

model based on the integration of the CAPM with a “small-minus-big” market value (SMB)

and “high-minus-low” book-to-market ratio (HML).These factors are equivalent to zero-cost

arbitrage portfolio that takes a long position in high book-to-market (small-size) stocks and

finances this with a short position in low book-to-market (large-size) stocks. Jegadeesh and

Titman(1993) discovered the importance of a further additional factor in explaining excess

returns: momentum(MOM). An investment strategy that buys stocks that have performed

well and sells stocks that have performed poorly over the past 3-to 12-month period generates

significant excess returns over the following year. More recently Fama- French(2013) have

extended the standard factors model based on the Market, SMB, HML and MOM, to include

two more factors: RMW and CMA. RMW (Robust Minus Weak) is the return on a prot-

folio long on robust operating profitability stocks and short on weak operating profitability

stocks, while CMA (Conservative Minus Aggressive) is the average return on a position long

on conservative investment portfolios and short on aggressive investment. It is interesting to

note that augmenting the CAPM with SMB and HML, does not challenge per se the CER

model, which still hold as valid if the constant expected return model can be applied to

the two additional factors. However, momentum provides direct evidence against the CER

model as it indicates that the conditional expections of future returns is not constant.



5.4. The behaviour of returns at high-frequency: non-normality and heteroscedasticity

At small horizon (i.e. when  is small: infra-daily, daily, weekly or at most monthly returns)

the following framework is supported by the data :

+ = +

2 = (I) + ∼  D(0 1)

The following features of the model at high frequency are noteworthy:

1. The distribution of returns is centered around a mean of zero, and the zero mean model

dominates any alternative model based on predictors.

2. The variance is time-varying and predictable, given the information set, I available
at time .

3. The distribution of returns at high frequency is not normal, i.e., D(0 1) may often
differ from N (0 1)

6. The Implications of the new evidence

6.1. Asset Pricing with Predictable Returns

Empirical work based on the DDG model has shown that the CER model does not provide

the best representation of the data. This evidence opens a very interesting question on

the determinants of time-varying expected returns. Different approaches have been used in

finance to model time-varying expected returns, they are all understood within the context

of a basic model that stems from the assumption of the absence of ”arbitrage opportunities”

(i.e. by the impossibility of making profits without taking risk). Consider a situation in

which in each period k state of nature can occur and each state has a probability () in

the absence of arbitrage opportunities the price of an asset i at time t can be written as

follows:

 =

X
=1

+1()+1 ()+1 ()

where +1 () is the discounting weight attributed to future pay-offs, which (as the

probability ) is independent from the asset i, +1 () are the payoffs of the assets (we

have seen that in case of stocks we have +1 = +1 + +1), and therefore returns on

assets are defined as 1 + +1 =
+1


For the safe asset, whose payoffs do not depend on

the state of nature, we have:



 = +1

X
=1

+1()+1 ()

1 ++1 =
1

P
=1

+1()+1 ()

In general, we can write:

 =  (+1+1)

1 ++1 =
1

 (+1)

consider now a risky asset :

 (+1 (1 ++1)) = 1

 (+1+1) = 1− (+1) (1 ++1)

 (1 ++1) = − (+1+1)

 (+1)
+ (1 ++1)

Turning now to excess returns we can write:

 (+1 −+1) = − (1 ++1)  (+1+1)

Assets whose returns are low when the stochastic discount factor is high (i.e. when

agents values payoffs more) require an higher risk premium, i.e. an higher excess return

on the risk-free rate. Turning to predictability at different horizon, if you consider the

case in which t is defined by taking two points in time very close to each other the safe

interest rate will be approximately zero and  will not vary too much across states. The

constant expected return model (with expected returns eqaul to zero) is compatible with the

no-arbitrage approach at high-frequency. However, consider now the case of low frequency,

when t is defined by taking two very distant points in time; in this case safe interest rate

will be diffferent from zero and  will vary sizeably across different states. The constant

expected return model is not a good approximation at long-horizons. Predictability is not a

symptom of market malfunction but rather the consequence of a fair compensation for risk

taking, then it should reflect attitudes toward risk and variation in market risk over time.

Different theories on the relationship between risk and asset prices should then be assessed

on the basis of their ability of explaining the predictability that emerges from the data.



Also, different theories or return predictability can be interpreted as different thoeries

of the determination of  On the one hand we theories of  based on rational investor

behaviour, on the other hand we have alternative approaches based on psycological models

of investor behaviour. Our main interest is to show how the predictability of returns can be

used for optimal portfolio allocation purposes, rather than on discriminating between the

possible sources of predictability.

7. Quantitative Risk Management and the behaviour of returns at

high-frequency

Once the portfolio weights (ŵ) are chosen, possibly exploiting the predictability of the distri-

bution of the relevant future returns, the distribution of a portfolio returns can be described

as follows:

 ∼ D ¡ 2¢
 = μ0ŵ 2 = ŵ

0Σŵ

Having solved the portfolio problem and having committed to a given allocation described

by ŵ, there is a different role that econometrics can play at high frequencies: measuring

volatility and providing information on portfolio risk. As our simple specification of the

previous section shows, noise is not predictable but its volatility is. The role of econometrics

in applied risk management is best seen through a different statistical model of high frequency

returns. When  is small (i.e., when one is considering infra-daily, daily, weekly or at most

monthly returns) the following framework is normally referred to:

+ = +

2 = (I) + ∼  D(0 1)
The following features of the model at high frequency are noteworthy:

1. The distribution of returns is centered around a mean of zero, and the zero mean model

dominates any alternative model based on predictors.

2. The variance is time-varying and predictable, given the information set, I available
at time .

3. The distribution of returns at high frequency is not normal, i.e., D(0 1) may often
differ from N (0 1)

Given these features of the data, econometrics can still be used at high frequency to assess

the risk of a given portfolio. In particular, we shall investigate the role of econometrics for

deriving the time-varying Value-at- Risk (VaR) of a given portfolio.



8. The Plan of the book. Predictive Models in Finance

We shall begin our journey by considering asset allocation under the constant expected re-

turns model. We shall then discuss the limitations of this model and consider alternatives

that will be based on different specifications of the relevant predictive model. In particu-

lar we shall consider in turn asset allocation at different horizon with models featuring

predictability of expected returns, and Risk Management with models featuring the pre-

dictability of the distribution of returns.Given that financial decisions are based on the

predicted distribution of returns they require a model of future behaviour of the variables

of interest. Predictive models are statistical models of future behaviour in which relations

between the variables to be predicted and the predictors are specified as functional relation

determined by parameters to be estimated. Predictive models can be univariate, when there

is only one variable of interest, or multivariate when we have a vector of variables of interest.

Predictive models considered in this book will be special cases of this general specification:

r+ =  (

 Θ


 ) +H+²+ (1)

Σ+ = H+H
0
+

Σ+ =  (
 Θ


 ) + +

X

=1
BΣ+−B

0
 (2)

²+ ∼ D (0 I)

where r+ is the vector of returs between time t and time t+k in which we are interested,



 is the vector of predictors for the mean of our returns that we observe at time t,  specifiies

the functional relation (thant is potentially time-varying) between the mean returns and the

predictors that depends also on a set of parameters Θ

  the matrix H+ determines the

potentially time varying variance-covariance of the vector of returns..The process for the

variance is predictable as there is a functional relation determining the relationship between

H+ and a vector of predictors 

 that is driven by a vector of unknown parameters Θ


 

Our first look at the data clearly show that the appropriate specification of the general

predicitive model depends on the horizon at which returns are defined. Consider, for example,

the problem of univariate modelling of stock market returns. When  is small and high-

frequency returns On the one hand, in the simple asset allocation model, the econometric

framework considered for returns is as follows:2

+ = 0 + ++ + ∼  D(0 1)
2+ =  + 2+−1 + 2+−1 |+ |  1

2During the lectures, it is possible that the sum of IIDness of returns and of normality has also been

denoted as + ∼ (0 1) Note that IID (0 1) and n.i.d.(0, 1) have identical meaning.



This is a model that feautres no predictability in the mean of r returns (the expected future

return at any horizon is constant at zero), but there is predictability in the variance of returns

that it is mean reverting towards a long-term value of  (1− − ). No assumption of

normality is made for the innovation innovation in the process generating returns. Consider

now the case of large  i.e. long-horizon returns (note that in the continuously compounded

case, + ≡
P

=1 +), in this case the relevant predictive model can be written as follows:

+ = + β0X + + + ∼  N (0 1)

where X is a set of predictors observed at time . In this case we have that returns feature

predictability in mean, constant variance and the innovations are normally distributed. As

the horizon  increases, predictability increases and therefore the uncertainty related to the

unexpected components of returns decreases (i.e., the annualized variance of returns is a

downward sloping function of the horizon). Moreover–as we have already discussed–the

dependence of  on time (i.e., its time-varying nature) declines and long-horizon returns

can be described as a (conditional) normal homoskedastic processes. In the short-run noise

dominates and modelling returns on the basis of fundamentals is very difficult. However, as

the horizon increases fundamentals become more important to explain returns and the risk

associated to portfolio allocation based on econometric models is reduced. The statistical

model becomes more and more precise as  gets large.
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